天基预警低轨星座星载传感器资源管理与预警探测任务调度问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基预警卫星系统作为弹道导弹防御系统部署在太空的“耳目”,是弹道导弹防御系统的重要组成部分。早期的预警卫星系统能提供导弹发射的大致方位、导弹落点的区域范围,以及有限的弹道信息;而美国目前正在发展的新一代预警卫星系统—“天基跟踪与监视系统”(STSS,Space Tracking and Surveillance System),能够对飞行中的弹道导弹提供精确的跟踪和监视能力。本文以美国STSS系统基本结构和功能为参照,针对低轨预警星座对中远程弹道导弹飞行中段的精确跟踪和探测任务,逐渐深入的展开对星载传感器资源管理和预警探测任务调度问题的研究和探讨。
     星载传感器资源管理和预警探测任务调度问题与传统的传感器资源管理和任务调度问题不同。首先,星载传感器资源随预警卫星环绕地球轨道作周期性动态运动;其次,弹道导弹目标具有极快速移动特性。因此,预警探测任务的执行面临着动态性、随机性,以及各种不确定性因素的影响,且具有强实时性要求,加之弹道目标同星载传感器资源之间复杂的对应可视关系,都极大地增加了星载传感器资源管理和任务调度问题的难度。本文研究内容主要包括以下几个方面:
     (1)基于传感器资源管理反馈构建预警探测任务系统闭环控制模式
     借鉴多传感器数据融合系统的闭环控制结构,提出了基于星载传感器资源管理反馈的预警探测任务系统闭环控制模式,构建具有反馈结构的的预警探测任务系统结构,并具体的分析了星载传感器资源管理的功能模型和体系架构。星载传感器资源管理子系统作为闭环控制模式的反馈环节,有利于实现整个任务系统的实时调整和迭代优化。
     (2)基于滚动时域控制理论对预警探测任务调度问题进行深入的分析
     滚动时域控制理论将反馈与优化有机结合,其实质是用随时间反复进行的一系列小规模优化问题的求解过程来替代大规模优化问题的求解过程,以达到在优化的前提下降低计算量并减少不确定性的目的。本文基于滚动时域控制理论对预警探测任务的调度时机、调度策略和调度评价等问题进行了详细、深入的分析,为建立预警探测任务调度模型和设计调度算法提供了坚实的理论依据。
     (3)基于Multi-Agent的预警探测任务调度系统自治运营结构
     在闭环控制模式和滚动时域调度理论的基础上,本文提出并构建了基于Multi-Agent的预警探测任务调度系统自治运营结构,这也是当前多卫星系统发展的必然趋势。并通过对预警卫星系统自治性的分析和研究,对基于Multi-Agent的预警探测任务调度系统的体系结构、通信机制和协商机制等展开深入的分析。
     (4)构建调度模型和设计调度算法
     建立了基于滚动周期调度窗口的静态预测式调度模型以及基于动态扰动事件点的动态反应式调度模型,并设计了基于遗传操作的粒子群优化调度算法(GOBPSO)和基于Multi-Agent协商机制的动态调度算法(MANSA)。基于遗传操作的粒子群优化算法用以解决滚动周期调度窗口内的静态调度问题,基于Multi-Agent协商机制的调度算法用以解决动态扰动产生情况下的动态调度问题。
     (5)仿真系统设计和算法验证
     以远程弹道导弹预警探测任务为背景,构建了原型仿真系统,并设计了典型实验方案,通过对多种算法进行仿真比较,验证了GOBPSO算法和MANSA算法的多项性能指标。
     本文从理论分析和实验验证两个方面,对天基预警卫星系统星载传感器资源管理和预警探测任务调度问题展开了深入的分析和研究,实验结果表明,本文所提的方法和理论是有效的、可行的,为进一步展开研究提供了良好的依据。
As an“eye”deployed in space by ballistic missile defense system (BMDS), space based early warning satellite system is an important part of BMDS. Early warning satellite system plays the key role in finding the enemy intercontinental missile strike as early as possible.and can provide the missile launch roughly position, the missile balls area, and limited ballistic information; And the United States is currently developing a new generation of early warning satellite System-“Space-based Tracking and Surveillance System”(STSS), and it can provide accurately tracking and surveillance ability for the ballistic missile free-flight. This paper references STSS system in the United States, gradually in depth research and discuss the satellite sensor resources management and early warning detection tasks scheduling problem.
     The satellite sensor resources management and early warning detection tasks scheduling problem are different from the traditional resources management and the task scheduling problem, first of all, the satellite sensor resource act periodic dynamic movement with the early warning satellite orbit around the earth; Secondly, the early warning constellation of LEO face extremely fast moving ballistic missile target. Therefore, the early warning detection task execution faces, random, and all sorts of dynamic uncertainty factors, and has the strong real-time requirement, and with the complex visible windows between satellite sensor resources and ballistic targets greatly increased the difficulty of resources management and tasks scheduling problem.The research content of this paper mainly includes the following aspects:
     (1) Based on the sensor resource management feedback constructing early warning detection task scheduling system closed-loop control mechanism
     This paper reference multi-sensor data fusion system closed loop control structure and propose early warning detection task scheduling system closed loop control pattern based on the satellite sensor resources management, and specificly analysis the satellite sensor resources management function model and system architecture. As feedback part of the closed-loop control mode, the satellite sensor resource management subsystem can realize the real-time adjustment and iterative optimization of task scheduling system.
     (2) Analysing the early warning detection tasks scheduling problem based on rolling horizon control theory
     Rolling horizon control theory organic combinate feedback with optimization, its essence is a iterative optimization process with a series of small optimization problem solving process over time to replace a large scale optimization problem solving process to achieve optimization in the premise of the purpose of reducing calculation and uncertainty. This paper detailed analysis the problems such as early warning detection task scheduling time, scheduling strategy and scheduling evaluation, based on the theory of rolling horizon control, providing the solid theoretical basis for the establishment of early warning detection task scheduling model and design scheduling algorithm.
     (3) Constructing autonomous operation structure based on Multi-Agent's early warning detection task scheduling system
     Based on the closed-loop control mode and rolling horizon scheduling theory, the paper proposes early warning detection task scheduling system autonomous operation structure based on Multi-Agent, this is current the inevitable trend of the development of multi-satellites system. And through analyzed and studied autonomy of the early warning satellite system, the early warning detection task scheduling system structure based on Multi-Agent, communication mechanism and consultation mechanism on in-depth analysis.
     (4) Constructing scheduling model and designing scheduling algorithm
     Some static and dynamic scheduling model was established, which based on rolling horizon scheduling windows and dynamic disturbance events points, and it designed the static scheduling algorithms of particle swarm optimazation based on genetic operation (GOBPSO) and dynamic scheduling algorithm based on negotiate mechanism of Multi-Agents(MANSA). The particle swarm optimization algorithm based on genetic operation is to solve rolling horizon scheduling problem, The scheduling algorithm based on negotiate mechanism of Multi-Agent is to solve dynamic disturbance events points scheduling problem.
     (5) Simulation system design and algorithm verification
     With long-range ballistic missile early warning detection task as the background, it constructed the prototype simulation system, and designed a typical experiment scheme, through the comparison of a number of algorithms, the simulation verified the optimization performance of GOBPSO algorithm and MANSA algorithm.
     This paper analysis and research in-depth satellite sensor resources management and early warning detection tasks scheduling problem of early warning satellite system from the two aspects of theoretical analysis and simulation test. The experimental results show that the proposed method and theory is effective, feasible, and it provides a good basis for further research.
引文
[1]赵阳,易先清,罗雪山.面向任务的天基预警系统体系结构研究[J].电子科学研究院学报,2008,3(3):247~251.
    [2]冯明月,李国辉,易先清.一种基于任务的预警卫星传感器规则调度方法[J].计算机应用,2007,27(12):3095-3098.
    [3]李大光,孙绍红.太空哨兵:美、俄天基预警系统[J].现代军事,2004,14(2):30~33.
    [4]叶庆,汪亚夫.DSP预警卫星探测能力评估[J].光电工程,2010,37(6):65~72.
    [5]冯芒.美国的新一代预警卫星系统——天基红外系统[J].飞航导弹.2001,(10):32~34
    [6]秦之瑾,魏其勇.太空中的30只“眼睛”——美国天基红外系统[J].现代军事,2002(5):64~65.
    [7] N.S.Andreas. Space-based infrared system (SBIRS) system of systems [C].IEEE Aerospace Conference,1997 (4):429~438.
    [8] B.L.Morgan. Exploratory model analysis of the space based infrared system (SBIRS) low global scheduler problem[D]. Monterey: Naval Postgraduate School,1999.
    [9] Space based infrared system (SBIRS) mission control station for defense support program consolidation[R].Colorado: United States Air Force Headquarters Space and Missile Systems Center, 2001.
    [10]陈云,徐洋,安玮.基于BOM的STSS系统仿真设计与实现[J].系统仿真学报,2010,22(11):2679~2682.
    [11]薛永宏,王博,安玮.低轨星座传感器调度方法[J].飞行器测控学报,2009,28(5):19~23.
    [12]王震,邓大松.俄罗斯天基预警系统浅析[J].电子工程师,2006,32(3):78~80.
    [13]刘先省,申石磊,潘泉.传感器管理方法综述[J].电子学报,2002,30(3):394~398.
    [14] Ng G W, Ng K H. Sensormanagement:what,why,and how[J].Information Fusion, 2000, 1(2):67~75.
    [15] Dambreville F, L E CJ. Spatio temporal muiti-model information management for moving target detection[J]. Information Fusion, 2004, 16(5):169~178.
    [16] Viswanath A, Mullen T, Hall D. MASM: a market architecture for sensor management in distributed sensor networks[A], Proceeding of SPIE on Multisensor, Multisource Information Fusion: Architectures, Algotithms,and Applications[C].Orlando FL, USA, 2005,281~289.
    [17] Anderson J, Hong L. Sensor resource management driven by threat projection and priorities[J]. Information Sciences, 2008, 178(6):2007~2021.
    [18] J M Nash. Optimal allocation of tracking resource[A]. Proceedings of the IEEE Conference on Decision and Control[C], 1977:1177~1180.
    [19] Liu Xianxing,Pan Quan,Zhang Hongcai. Study on algorithm of sensor management based on functions of efficiency and waste[J]. Chinese Journal of Aeronautics,2000,13(1):39~44.
    [20] Schmaedeke Wayne. Information based sensor management[A]. SPIE Proceedings[C],1993,1955:156~164.
    [21] Chhetri A S, Morrelld, Suppappola A. On the use of binary programming for sensor scheduling[J]. IEEE Transactions on Signal Processing. 2007,55(6):2826~2839.
    [22] Malhotra Raj,et al. Achieving Near-Optimal Sensor Allocation Policies Through Reinforcement Learning[R]. Final Report. Report No.:AD2A318335.
    [23] Malhotra Raj. Temporal considerations in sensor management [A]. Proceedings of the NAECON[C],1995,1:86~93.
    [24] David A Castann?. Approximate dynamic programming for sensor management[A]. Proceedings of the 36th IEEE Conference on Decision and Control[C],1997,2:1202~1207.
    [25] David A Castann?. Optimal search strategies in dynamic hypothesis testing[J]. IEEE Trans. on System, Man and Cybernetics,1995,25(7):1130~1138.
    [26] Bland W S. A Simulation Based Approach for Efficient Sensor Management of Distributed Sensor Networks[D]. Virginia, USA, University of Virginia,2003.
    [27] Hintz Kenneth J, McIntyre Greg. Goal lattices for sensor management[A]. SPIE Proceedings[C],1999,3365:249~255.
    [28] McIntyre Gregory A, Hintz Kenneth J. Sensor management simulation and comparative study[A]. SPIE Proceedings[C], 1997,3068:250~260.
    [29] McIntyre Gregory A, Hintz Kenneth J. An information theoretic approach to sensor scheduling[A]. SPIE Proceedings[C],1996,2755:304~312.
    [30] McIntyre Gregory A, Hintz Kenneth J. Sensor measurement scheduling: An enhanced dynamic,preemptive algorithm[J]. Optical Engineering, 1998, 37(2): 517~523.
    [31] J M Manyika,H Durrant-Whyte. On sensor management in decentralized data fusion[A]. Proceedings of the 31st Conference on Decision and Control[C],1992,4:3506~3507.
    [32] J MManyika,H F Durrant-Whyte. An information-theoretic approach to management in decentralized data fusion[A]. SPIE Proceedings [C], 1992, 1828:202~213.
    [33] B D Leon, P R HelIer. An expert system and simulation approach for sensor management and control in distributed surveillance network[A]. SPIE Proceedings [C],1987,786:41~51.
    [34] Addison Edwin R, Barbara D Leon. A blackboard architecture for cooperating expert system to manage a distributed sensor network[A]. Proceeding of the Data Fusion Symp[C],1987:669~675.
    [35] Dunkelberger Kirk A. Hypothesis-driven distributed sensor management[A]. SPIE Proceedings[C],1994,2232:79~90.
    [36] Liggins Martin E, Chong Chee-Yee. Distributed multi-platform fusion for enhanced radar management[A]. NATRAD’97[C], 1997:115~119.
    [37] I Y Hoballah, R K Varshney. An information theoretic approach to the distributed-detection problem[J]. IEEE Transaction on Information Theory,1989 ,35 (5):988~994.
    [38] Kastella K D, Musick S. Search for optimal sensor management[A]. Proceeding of SPIE on Signal and Data Processing of Small Targets[C]. Orlando, FL, USA, 1996, 2759:318~329.
    [39] Kastella Keith. Discrimination gain to optimize detection and classification[A]. SPIE Proceedings[C],1995,2561:66~70.
    [40] K Kastella. Discrimination gain for sensor management in multitarget detection and tracking[A]. IEEE-SMC and IMACS Multiconference CESA’96[C],1996,1:167~ 172.
    [41] K Kastella, S Musick. The search for optimal sensor management[A]. SPIE Proceedings[C], 1996,2759:318~329.
    [42] Schmaedeke Wayne. Information based sensor management[A]. SPIE Proceedings[C], 1993, 1955:156~164.
    [43] Schmaedeke W W, Kastella K D. Information based sensor management and IMMKF[A]. Proceeding of SPIE on Signal and Data Processing of Small Targets[C]. Orlando, FL, USA, 1998, 3373:390~401.
    [44] Pierre Dodin, Julien Verliac, Vincent Nimier. Analysis of the multisensor multitarget tracking resource allocation problem[A]. The 3rd International Conference of Information Fusion[C], 2000,WECE-3.
    [45] J M Mplina Lopez. Cooperative management of a net of intelligent surveillance agent sensors[J]. Internation Journal of Intelligent Systems. 2003,18(3):279~307.
    [46]田康生,朱光喜,徐毓.基于多代理的传感器管理系统[J].现代雷达,2004,26(2):9~13.
    [47] Xiao W, Wu J K, Xie L. Adaptive sensor scheduling for target tracking inwireless sensor network[A]. Proceeding of SPIE on Advanced Signal Processing Algorithms, Architectures, and Implementations[C]. SanDiego, CA, USA, 2005, 5910:1~9.
    [48] Kalandros M K. Managing Multiple Sensor Resources Using Covariance Control Techniques for Tracking System with Data Association[D]. University of Colorado at Boulder, USA, 2000.
    [49] Kalandros M K. Covariance control for sensor management in cluttered tracking vironments[J]. Journal of Guidance, Control, and Dynamics. 2004, 27(3):493~496.
    [50] R Mahler. The random set approach to data fusion[A]. SPIE Proceedings [C],1994,2234:287~295.
    [51] R Mahler. Nonadditive probability,finite-set statistics and information fusion[A]. Proc. 34th IEEE Conference on Decision and Control[C],1995:1947~1952.
    [52] R Mahler. Measurement models for ambiguous evidence using conditional random sets[A]. SPIE Proceedings[C],1997,3068:40~51.
    [53] J M Mplina Lopez, F J Jimenez Rodriguez, J R Casar Corredera. Fuzzy reasoning for multisensor management[A]. IEEE InternationaI Conference on SMC[C],1995,2:1398~1403.
    [54] J Zhongliang, X Hong, Z Xueqin. Information fusion and tracking of maneuvering targets with artificial neutral networks[A]. Proceedings of the 1994 IEEE International Conference on Neural Networks[C], 1994,5:3403~3408.
    [55] B D Leon,P R HelIer. An expert system and simulation approach for sensor management and control in distributed surveillance network[A]. SPIE Proceedings [C],1987,786:41~51.
    [56] Addison Edwin R, Barbara D Leon. A blackboard architecture for cooperating expert system to manage a distributed sensor network[A]. Proceeding of the Data Fusion Symp[C],1987:669~675.
    [57] A.B.Teixidor.Proactive management of uncertainty to improve scheduling robustness in proces industries[D]. Universitat Politμecnica de Catalunya, 2006.
    [58] M.T.Jenson. Robust and flexible scheduling with evolutionary computation[D]. University of Aarhus, 2001.
    [59] H.C.Horng, S.H.Chou. Comparing dispatching rules in an open shop-a simulation study[C]. IIE Annual Conference,2002.
    [60] V.Gabrel, A.Moulet, C.Murat, et al. A new single model and derived algorithms for the satellite shot planning problem using graph theory concepts[J].Annals of Operational Research, 1997(69):115~134.
    [61] V.Gabrel, C.Murat. Mathematical programming for earth observation satellite mission planning[J]. OR IN SPACE AND AIR, 2002:103~122.
    [62]陈慧中,王钧,李军等.卫星成像规划调度系统中的可视化决策支持研究与实现[J].计算机工程与科学,2007,29(7):58~61.
    [63]任宇,张维勇,金麒.基于移动Agent的无线传感器网络管理模型[J].合肥工业大学学报(自然科学版),2009,32(1),55~57.
    [64]周军升.基于多Agent的多星任务分配问题研究[D].长沙:国防科技大学,2009.
    [65]程红斌,张晓丰,张凤鸣.基于Agent的多传感器管理原型系统研究[J].现代防御技术,2006,34(2):44~47.
    [66]杜红梅,刘明盛.基于多智能体协作技术的卫星测控资源动态调度解算[J].装备指挥技术学院学报,2010,21(3):76~80.
    [67] J.C.Pemberton, F.Galiber. A constraint-based approach to satellite scheduling[J]. DIMACS Service in Discrete Mathematics and Theoretical Computer science, 2001(57):101~114.
    [68] B.Bensana, M.Lemaitre,G.Verfaillie.Earth observation satellite management[J]. Constraints, 1999(4):293~299.
    [69]阮启明.面向区域目标普查的成像侦察卫星调度问题研究[D].长沙:国防科技大学,2006.
    [70]方炎申,陈英武,顾中舜.中继卫星调度问题的CSP模型[J].国防科技大学学报, 2005,27(2):6~10.
    [71] T.D.Gooley. automating the satellite range scheduling process[D]. Ohio:Air Force Institute of Technology, 1993.
    [72] T.D.Gooley, J.J.Borsi, J.T.Moore. Automating air force satellite control network (AFSCN) scheduling[J]. Mathl.Comput.Modelling, 1996, 24(2):91~101.
    [73] D.A.Parish. A genetic algorithm approach to automating satellite range scheduling[D]. Ohio:Air Force Institute of Technology, 1994.
    [74] M.Lemaitre, G.Verfaillie, F.Jouhaud, et al. Selecting and scheduling observations of agile satellite[J]. Aerospace Science and Technology, 2002(6):367~381.
    [75]靳肖闪,李军,刘湘辉.基于拉格朗日松弛与最大分支算法的卫星成像调度算法[J].宇航学报,2008,29(2):304~309.
    [76] L.Barbulescu, A.Howe, D.Whitley. AFSCN scheduling: how the problem and solution have evolved[J]. Mathematical and Computer Modeling, 2006(43):1023~1037.
    [77] T.D.Gooley, J.J.Borsi, J.T.Moore. Automating air force satellite control network (AFSCN) scheduling[J]. Mathl.Comput.Modelling, 1996, 24(2):91~101.
    [78]李云峰,武小悦.基于综合优先度的卫星数传调度算法[J].系统工程学报,2007,22(6):644~648.
    [79]李云峰.卫星-地面站数传调度模型计算法研究[D].长沙:国防科技大学, 2007.
    [80]陈理江,武小悦,李云峰.基于时间灵活度的中继卫星调度算法[J].航空计算技术,2006,36(4):48~51.
    [81]徐雪仁,宫鹏,黄学智等.资源卫星(可见光)遥感数据获取任务调度优化算法研究[J].遥感学报,2007,11(1):109~114.
    [82] H.Muraoka, R.H.Cohen, T.Ohno, et al. Aster observation scheduling algorithm[C]. In Proceedings of the International Symposium Space Mission Operations and Ground Data System,1998.
    [83] S.E.Burrowbridge. Optimal allocation of satellite network resources[D]. Virginia:Virginia Polytechnic Institute and State University, 1999.
    [84] J.Nowakovski, W.Schwarzler, E.Triesch. Using the generalized assignment problem in scheduling the ROSAT space telescope[J]. European Journal of Operational Research, 1999(112):531~541.
    [85] L.Barbulescu, L.D.Whitley, A.E.Howe. Leap before you look: an effective strategy in an oversubscribed scheduling problem[J]. Constraint Satisfaction & Satisfiability, 2004:143~148.
    [86] D.Habet, M.Vasquez. Solving the selecting and scheduling satellite photographs problem with a consistent neighborhood heuristic[C]. Proceedings of the 16th International Conference on Tools with Artificial Intelligence, 2004.
    [87] N.Bianchessi, J.F.Cordeau, J.Desrosiers, et al. A heuristic for the multi-satellite, multi-orbit and multi-user management of earth observation satellites[J]. European Journal of Operational Research, 2007(177):750~762.
    [88]李菊芳,谭跃进.卫星观测系统整体调度的收发问题模型及求解[J].系统工程理论与实践,2004(12):65~71.
    [89]卢盼,徐培德.基于贪婪算法成像侦察卫星调度方法研究[J].计算机仿真,2008,25(2):37~40.
    [90] Globus, J.Crawford, J.Lohn, et al. Scheduling earth observing satellites with evolutionary algorithms[C]. In Proceedings ofInternational Conference on Space Mission Challenges for Information Technology, 2003.
    [91] Globus, J.Crawford, J.Lohn, et al. A comparison of techniques for scheduling earth observing satellites[C]. Sixteenth Innovative Applications of Artificial Intelligence Conference, 2004.
    [92] R.J.Abbott, M.L.Campbell, W.C.Krenz. A sustainable genetic algorithm for satellite resource allocation[J]. Telematics and Informatics, 1995, 12(3):141~159.
    [93]祝江汉,李曦,毛赤龙等.多卫星区域观测任务的侧摆方案优化方法研究[J].武汉大学学报,2006,31(10):868~870.
    [94]孙雅茹,王凤阳,韩月平等.卫星自主运行任务调度问题的优化算法[J].计算机工程与设计,2005,26(2):461~464.
    [95]贺赢,张艳,马正新等.基于遗传算法的卫星广播调度[J].清华大学学报,2006, 46(10):1699~1702.
    [96] K Veeramachaneni, L A Osadciw. Danymic Sensor Management Using Multi Objective Particle Swarm Optimizer[C]. MultiSensor, Multi-source Information Fusion: Architectures, Algorithms, and Applications 2004, Proc. Of SPIE, Vol. 5434, 2004:205~216.
    [97] S Maheswararajah, S Halgamuge. Sensor Scheduling for Target Tracking Using Particle Swarm Optimization[C]. IEEE Int. Conf., 2006:573~577.
    [98] Bo Wang, Wei An, Yi-yu Zhou. Research on Sensor Management Algorithm of Midcourse Object Tracking[C]. Proceedings of the 1st International Workshop on Intelligent System and Applications, 2009:805~808.
    [99]王红飞,李绪志,陈立军.基于Multi-agent的卫星计划调度系统智能机制[J].计算机工程,2006, 32(22):194~196.
    [100]陈浩,景宁,李军.基于外包合同网的自治电磁探测卫星群任务规划[J].宇航学报, 2009,30(6):2285~2291.
    [101]阎志伟,牛轶峰,李汉铃.基于并行禁忌遗传算法(PTGA)的预警卫星传感器调度研究[J].宇航学报,2003,24(6):598~603.
    [102]郭浩波,王颖龙,曾辉.采用遗传模拟退火算法研究导弹预警卫星传感器调度[J].电光与控制,2006,13(4):71~74.
    [103]原野.国外导弹预警卫星发展动向[J].中国航天,1996(6):26-2
    [104]阎文丽,姜振东,朱乃波.国外导弹预警卫星功能综述[J].中国航天,1997 (8):24-26.
    [105]王戎瑞.国外导弹预警卫星的发展[J].激光与红外,1998,28(3):131-135.
    [106]王立平.美国弹道导弹防御的天眼_导弹预警卫星[J].航天,2000(9):10~11.
    [107]赵久奋,王明海.预警卫星对导弹预警模型的仿真[J].固体火箭技术,2001,24(3):1~4.
    [108]陈凌云,姜振东.基于HLA的预警卫星仿真系统中OM的研究[J].装备指挥技术学院学报,2002,13(1):46~49.
    [109]李盾,周一宇,吕彤光.空间预警系统对弹道导弹的监视与跟踪[J].系统工程与电子技术,2002,24(3):52~56.
    [110]傅妤华,胡晓惠,李英华.天基红外预警探测系统仿真模型的构建[J].军事运筹与系统工程,2003(4):23~25.
    [111]石磊,张涛,李骏.空间预警仿真系统研究[J].航天电子对抗,2005,21(3):8~10.
    [112]郭文鸽,冯书兴.美国导弹预警卫星系统分析及其启示[J].中国航天,2005(12):39~42.
    [113]阎志伟,牛轶峰,李汉铃.基于并行禁忌遗传算法(PTGA)的预警卫星传感器调度研究[J].宇航学报,2003,24(6):598~603.
    [114]郭浩波,王颖龙,曾辉.采用遗传模拟退火算法研究导弹预警卫星传感器调度[J].电光与控制,2006,13(4):71~74.
    [115]谢恺,韩裕生,薛模根等.天基红外低轨星座的传感器管理方法[J].宇航学报, 2007,28(5):1331~1336.
    [116]冯明月,李国辉,易先清.一种基于任务的预警卫星传感器规则调度方法[J].计算机应用,2007,27(12):3095-3098.
    [117]冯明月,易先清,李国辉.侦察卫星探测资源调度研究[J].计算机工程与应用,2007, 43(31):25-27.
    [118]鲁建华,程洪玮,王博.基于层次分析的STSS系统传感器管理算法[J].飞行器测控学报,2009,28(1):85~89.
    [119]冯明月,李国辉,易先清.天基预警系统传感器调度方法[J].计算机工程与应用,2009,45(2):225-228.
    [120]薛永宏,王博,安玮.低轨星座传感器调度方法[J].飞行器测控学报,2009, 28(5): 19~23.
    [121]王博,周一宇,鲁建华.基于实值粒子群优化的STSS系统传感器管理算法研究[J].系统仿真学报,2009,21(22):7287~7292.
    [122]罗开平,李一军.导弹预警卫星调度问题分析[J].现代防御技术,2009,37(6): 5~10.
    [123]王博,刘海军,安玮.基于粒子群优化的传感器预分配方法[J].信号处理,2010, 26(4):486~491.
    [124]王博,安玮,谢恺.基于多模型的低轨星座多目标跟踪传感器资源调度[J].航空学报,2010,31(5):946~957.
    [125]王博,安玮,谢恺.基于分支剔除的低轨星座实时传感器调度算法[J].系统工程与电子技术,2010, 32(6): 1244~1250.
    [126]程洪玮,唐宏斌,李骏.基于信息决策树分支剔除的传感器资源调度[J].湖南大学学报(自然科学版),2010,37(9):44~48.
    [127]姜维,李一军.天基预警调度的启发式优化方法[J].系统工程理论与实践,2010,20(10):1834~1840.
    [128]陈曦,邓勇,王春明.红外低轨星座多目标传感器调度研究[J].计算机仿真,2011,28(4):43~47.
    [129]赵砚,张寅生,易冬云.基于PCRLB的低轨星座对自由段多目标的多传感器调度算法[J].宇航学报,2011,32(4):842~850.
    [130]佛显超,范宏深.空间跟踪与监视系统探测能力分析[J].探测与控制学报,2009,31:49~53.
    [131]张颖.预测调度的算法研究和性能分析[D].上海:上海交通大学,2008.
    [132]席裕庚.动态不确定环境下广义控制问题的预测控制[J].控制理论与应用,2000,17(5):665~670.
    [133]方剑,席裕庚.基于遗传算法的滚动调度策略[J].控制理论与应用,1997,14(4):589~594.
    [134]王冰.滚动时域调度方法及性能分析研究[D].上海:上海交通大学,2005.
    [135]李昊.基于Agent的自主多卫星系统建模与仿真应用研究[D].长沙:国防科技大学,2007.
    [136] Lin G Yuh-jiun, Solberg J J. Integrated Shop Floor Control Using Agents. IIE Transactions. 1992,24(3): 57~71.
    [137] Carlos Ramos. An Architecture and a negotiation protocol for the dynamic scheduling of manufacturing systems[C].Proceedings IEEE International Conference on Robotics and Automation pt 4 May 8-13 1994: 3161~3166.
    [138] D Ouelhadj, C Hanachi, B Bouzouia. Multi-agent system for dynamic scheduling and control in manufacturing cells[C]. IEEE International Conference on Robotics and Automation v 3 May 16-20 1998:2128~2133.
    [139] R. J. Rabefo, L.M.Camarinha-Matos. Multi-Agent-Based agile scheduling[J]. Robotics and Autonomous Systems, 1999(27):15~28.
    [140]张宇,孙宪鹏,尹朝万.一种基于Agent的Job Shop调度模型[J].中国机械工程,2001,12(10):1138~1141.
    [141] Wong T.N. Fang F., An agent-based framework for buyer-seller negotiations in supply chain management[C], Proceedings of the 36th International Conference on Computers and Industrial Engineering. Taipei, Taiwan, 2006, 4293~4307.
    [142] Sycara K, R.oth F; SadehN. Resource allocation in distributed factory scheduling. IEEE Expert, 1991:29~40.
    [143] Baker, D.A. A Survey of Factory Control Algorithms That Can Be Implemented in a Multi-Agent Heterarey: Dispatching, Scheduling, and Pull[J]. J of Man, Sys,1998, 17(4): 297~320.
    [144] Gary Knotts, Moshe Dror, Bruce C. Hartman. Agent-based projectscheduling[J]. IIE Transactions, 2000, 32(5): 387~401.
    [145] Albert D. Baker. Survey of factory control algorithms that can be implemented in a multi-agent hierarchy: Dispatching, scheduling, and pull[J]. Journal of Manufacturing Systems. 1998, 17(4): 297~320.
    [146] Bo Zhao. Yu-shun Fan. Multi-agent Based Integration of Scheduling Algorithms[C]. Proceedings of the IASTED International Conference-Intelligent Systems and Control, 2001.
    [147]郭文胜,殷国富,胡晓兵.基于Multi-Agent的虚拟车间调度作业原理与算法[J].中国机械工程,2001,12(12):1428~1431.
    [148]张磊,张瑞林.基于多智能体的动态车间调度系统[J].计算机系统应用,2009,18(3):35~37.
    [149] Hernandez M L, Kirubarajian T, Bar-shalom Y. Efficient multi-sensor management using Cramer-Rao lower bounds[C]. Proc. Of the SPIE,2002,4728:394 ~409.
    [150] Zhao F, Shin J, Reich J. Information-driven dynamic sensor collaboration[J]. IEEE Signal Processing Magazine, 2002,19(3):61~72.
    [151] Kalandros M, Pao L Y. Covariance control for multisensor systems[J]. IEEE Trans AES,2002,38(4):1138~1157.