基于综合集成法的复杂产品协同设计若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂产品设计涉及不同领域、不同层次、不同类型的知识,一般采用多领域协同设计模式。由于复杂产品在国防军工及国民经济领域有着重要应用,因此提高复杂产品设计效率,对于国家安全及经济持续发展有着重要意义。综合集成法是我国科学家提出的处理复杂系统问题的有效方法,综合集成研讨厅是综合集成法的应用形式,其实质是将专家体系、知识体系、机器体系有机结合,把各种学科理论与人的经验、知识结合起来,共同用于复杂系统相关问题的处理。
     本文以大型武器系统及流程工厂设计为背景,研究利用综合集成法提高复杂产品协同设计效率的模型、方法。通过构建兼有群体研讨、项目管理、协同决策、三维可视化等功能的面向复杂产品协同设计的综合集成研讨厅,为设计专家提供全过程的、统一的协同平台。分布在不同地点的设计专家并行进行设计活动,在各个设计关键阶段利用该研讨厅进行设计任务调度,进行设计信息共享,进行设计方案的群体讨论,协同决策彼此相关的问题,协同进行设计结果的检查与修改,以达到缩短复杂产品设计周期、提高复杂产品设计质量、降低复杂产品设计成本的目的。论文首先以综合集成法为指导,建立了复杂产品协同设计过程模型及总体框架;然后研究了相关关键技术,即群体研讨中共识分析、项目管理中任务调度、协同决策中系统综合、三维可视化中三维校审;最后构建了研讨厅原型系统。本文主要成果包括:
     1.基于综合集成法的复杂产品协同设计过程模型及总体框架
     建立过程模型,将设计过程有效地表达出来,是协同设计的基础。针对复杂产品设计过程的特征,根据综合集成法,建立了一个以时间、粒度、并行度三维分布的多层次复杂产品协同设计过程模型。该过程模型在时间维强调多阶段综合,在并行度维强调多专业综合,在粒度维强调分解与综合的迭代。在该过程模型基础上,结合专家体系、知识体系、机器体系,提出基于综合集成法的复杂产品协同设计总体框架。该框架中机器体系依靠知识体系中的知识给专家群体提供帮助,专家群体在机器体系提供的项目管理、群体研讨、协同决策、三维可视化等支持工具帮助下,实现人机结合、多专业结合、多阶段结合的协同设计过程,以提高复杂产品的协同设计效率。
     2.支持专家群体研讨的共识分析方法
     实时、准确的了解当前研讨的共识状态,能够提高设计专家在研讨厅中的研讨效率。针对发散型研讨具有连续性、模糊性、复杂性等特点,提出了一种基于云模型与证据理论的共识分析方法。该方法利用云模型根据研讨信息间语义关系求取每条发言表达的意见;并利用证据理论根据某专家所有时刻发言表达的意见推理该专家意见;最后根据求得的各专家意见形成定性的专家意见分布图和定量的共识水平、关注水平。实例表明该方法能有效地分析出当前群体研讨的共识状态,促进共识的达成。
     3.定性与定量相结合的设计任务调度方法
     设计任务调度在时间上、质量上对复杂产品协同设计有着重要意义。针对在复杂产品协同设计过程中任务调度存在的问题,建立了定性与定量相结合的调度模型,提出了基于案例推理的任务设计时间估算策略以及基于遗传算法的模型求解策略。调度模型通过引入调度主、客体的隐性知识,综合考虑定性指标与定量指标对协同设计的影响;时间估算策略以设计单元以往完成任务的信息为依据,提高了时间估算的合理性;模型求解策略能够保证搜索空间的完全性,在满足任务间约束的前提下,快速求得最优调度。实例结果表明,该方法是有效的,它能缩短设计周期,提高设计质量。
     4.人机结合的系统综合方法
     系统综合实质上是一个面向方案组合优化的决策过程。针对复杂产品协同设计过程中系统综合存在的方案组合量大、评价体系复杂、综合效率低等问题,提出了人机结合的系统综合方法。首先基于AHP法由定性到定量的构建系统评价指标体系,然后基于交互式遗传算法,将定性与定量相结合的综合评价作为适应度进行各项遗传操作,在多次迭代中进行方案整体筛选。实例表明方法能大幅提高系统综合效率。
     5.计算机支持的多专业三维校审改进方法
     校审实质上是一个冲突发现及冲突解决的过程。利用计算机进行三维校审不但可以使校审人员身临其境的对设计结果进行检查,以提高设计错误及设计冲突的发现率,还可以利用计算机的强大计算能力进行自动、半自动检查,以降低校审人员的工作强度,缩短校审时间。然而多专业三维校审中,存在信息结构异、类型多、数量大与计算机性能有限之间的矛盾。为了在普通PC机上实现多专业三维校审,提出了场景树与属性树相结合的信息模型以及基于可编程图形管线的复杂场景多分辨率绘制方法。信息模型不仅能对来自不同CAD系统的信息进行统一组织,还能优化信息查询速度。多分辨率绘制方法能够在保证绘制质量的前提下满足大规模复杂场景漫游的实时性要求,且预处理时间极短并无需额外硬盘空间。实例证明了该方法的有效性和实用性。
The design of complex product, in which the multidisciplinary cooperative design model is usually used, is involved with knowledge of different levels, different fields and different types. Improving the design efficiency is of great significance to the national security and economic sustainable development, due to the important application of complex product in defense and military field, as well as in national economy field. Meta-synthesis is an effective method proposed by Chinese scientists, to deal with the problems of complex system. Hall for workshop of meta-synthetic engineering (HWME) is application form of meta-synthesis, and it's essentially an integration of expert system, machine system and knowledge system, which combines the different discipline theory with the experience and knowledge of human, to deal with the problems related to complex system.
     Based on the design of large-scale weapon system and process plant, this paper researches on the model and method of improving the efficiency of collaborative design for complex product, using meta-synthesis. HWME of collaborative design for complex product is constructed, with multiple functions e.g. group argumentation, project management, collaborative decision and 3-d visualization, to provide the design experts full process and unified collaborative platform. The design experts in different places could perform design activities in parallel. At key stages, with this HWME, they schedule the design task, share design information, make group discussion, make decision for relative problems, check or modify the design result collaboratively, which could help to shorten the design period, improve the design quality and reduce design cost. First, based on meta-synthesis, the process model and the general framework of collaborative design for complex product are established. Then, the key technology is researched, including analysis of consensus in the filed of group argumentation, task scheduling in the filed of project management, system synthesis in the filed of collaborative decision,3-d review in the filed of 3-d visualization. Finally, a prototype system of HWME is developed. Some specific contributions are as follows:
     1. A process model and a general framework of collaborative design for complex product based on meta-synthesis
     Establishing the process model and expressing the design process effectively is the foundation of collaborative design. According to the features of design process for complex product, a multi-level process model of collaborative design for complex product based on the dimensions of time, particle size and parallelism is established, combining with meta-synthesis. This process model emphasizes on the combinations of multi-stage in time dimension, combinations of multi-specialty in parallelism dimension and iteration of decomposition and integration in particle dimension. Then, on the based of the process model, a general framework of collaborative design for complex product based on meta-synthesis is proposed, combining with expert system, knowledge system and machinery system. Machinery system helps the expert group with knowledge from knowledge system. Expert system fulfill the collaborative design process of combinations of human-computer, multi-specialty and multi-stage, with the services provided by machinery system, e.g. project management, group argumentation, collaborative decision and 3-d visualization.
     2. A method for analyzing consensus to support group argumentation
     If the experts understand current consensus state, the efficiency of the group argument can be improved. So a method for analyzing consensus based on cloud model and evidence theory is proposed, with respect to the characteristics of divergent argument in HWME, such as continuity, fuzziness and complexity. Firstly, this method uses cloud model to acquire the opinion implicated in every comment, according to the semantic relations between argument information. Then synthesizes the implicated opinions expressed by an expert in all time into the expert opinion on the base of evidence theory. And at last, obtains qualitative distribution map of expert opinion and quantitative level of consensus and attention, in accordance with acquired opinions from different experts. Examples indicated that the consensus state could be analyzed effectively using this method, which could help to reach consensus.
     3. A hybrid method of qualitative and quantitative analysis for design task scheduling
     Design task scheduling is of great significance to collaborative design for complex product, both in terms of time and quality. To solve the task scheduling problem in collaborative design for complex product, a qualitative and quantitative model is established, and a strategy to estimate design task time based on case-based reasoning is proposed, and a strategy to solve the model based on genetic algorithms is proposed. By introducing tacit knowledge of the subject and object, this model synthesizes the impact of qualitative indexes and quantitative indexes on collaborative design. Based on the information of the design task which has been finished by design unit before, the estimating strategy improves the rationality of time estimation for task design. The solving strategy can guarantee the completeness of search space, and obtain the optimal solution of the model rapidly under the constraints of tasks. Finally, a detailed example is given to confirm this method, which can be used to shorten the design period and improve the design quality.
     4. A human-computer combination method for system synthesis
     System synthesis is essentially a decision process for combinatorial optimization. To solve the problems of system synthesis in collaborative design for complex product, a human-computer combination method for system synthesis is proposed. Firstly, an evaluation index system is established on the base of AHP method, from qualitative to quantitative. Then scheme selection is carried out in many times of iteration based on interactive genetic algorithm, with the comprehensive evaluation combining of qualitative and quantitative analysis as its fitness. Finally, a detailed example is given to confirm this method. It proves that this method can be used to improve the efficiency of system synthesis greatly.
     5. An improved method of computer supported 3-d review for multi-specialty
     Review is essentially a process of conflict detection and conflict resolution. The 3-d review can make the reviewer feeling realistic while checking the design results, which improves the detection rate of design errors and design conflicts. It also can carry out automatic or semi-automatic review by the strong computing capability of the computer, which reduce the reviewer's working strength and shorten the review time. However, in the 3-d review for multi-specialty, there're contradictions between the heterogeneous information with large quantities, various categories and the computers with limited performance. In order to perform 3-d review for multi-specialty on an ordinary PC, an information model combined scene tree and attribute tree is proposed, and a multi-resolution rendering approach of large-scale process plant models based on programmable graphics pipeline is proposed. The information model could organize the information from different CAD systems with a unified structure, also could optimize the query speed of information. The multi-resolution rendering approach could ensure real-time interaction in large-scale and complex scene without extra hard-disk space, with little loss in image quality, while less preprocessing time is required. An example indicates that this method is effective and practical.
引文
[1]G. Ullinan. The mechanical design process[M]. New York:MeGraw-Hill,1992.
    [2]唐荣锡.CAD/CAM技术[M].北京:北京航空航天大学出版社,1994.
    [3]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向[J].计算机集成制造系统,2003,9(8):613-620.
    [4]WF Bronsvoort, Noort A. Multiple-view feature modeling for integral product development[J]. Computer-Aided Design,2004,36(10):929-946.
    [5]Kvan T. Collaborative design:what is it?[J]. Automation in Construction,2000,9(4): 409-415.
    [6]Mark R. Pack:An experiment in integratig concurren engineering system[J]. IEEE Compute,1993,26(1):28-37.
    [7]容芷君.基于群体决策的协同设计过程研究[D].武汉:华中科技大学,2007.
    [8]胡晓惠.研讨厅系统实现方法及技术的研究[J].系统工程理论与实践,2002(6):1-10.
    [9]戴汝为.从定性到定量的综合集成法的形成与现代发展[J].自然杂志,2009,31(6):311-314.
    [10]柴旭东,李伯虎,熊光楞等.复杂产品协同仿真平台的研究与实现[J].计算机集成制造系统,2002,8(7):580-584.
    [11]李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统,2002,8(9):678-683.
    [12]张佳,窦丽华,陈杰.复杂武器系统总体设计综合集成方法的实现[J].北京理工大学学报,2009,29(5):415-419.
    [13]戴肖锋.基于扩展图与多态模型的工程CAD建模技术研究[D].北京:中国科学院计算技术研究所,2000.
    [14]钱学森,于景元,戴汝为.一个科学的新领域:开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [15]钱学森.再谈开放的复杂巨系统[J].模式识别与人工智能,1991(1):1-4.
    [16]戴汝为,李耀东.基于综合集成的研讨厅体系与系统复杂性[J].复杂系统与复杂性科学,2004,1(4):1-24.
    [17]戴汝为.人-机结合的智能工程系统——处理开放的复杂巨系统的可操作平台[J].模式识别与人工智能,2004,17(3):257-261.
    [18]唐晓晟.CSCW系统中一些问题的研究与实践[D].北京:北京邮电大学,2004.
    [19]Jonathan Grudin. Computer-supported cooperative work:history and focus[J]. IEEE Computer,1994(5):19-26.
    [20]赵汝嘉.先进制造系统导论[M].北京:机械工业出版发社,2003.
    [21]史美林.Cscw计算机支持的协同工作[J].通信学报,1995,16(1):55-61.
    [22]ROdden T. CSCW:Theory, technology and applications[M].1993.
    [23]Holger Kress. Netwokred collaboratlon disrtibuted design Teams[C]. Proe.of Inetmational Snmposium on Globa Engineering Newtokring. Antwerp:1997.
    [24]林宗楷.协同设计将对设计工作和CAD技术引起的变化[J].软件学报,1998(6).
    [25]来可伟,殷国富.并行设计[M].北京:机械工业出版社,2003.
    [26]钱学森.论系统工程[M].长沙:湖南科学技术出版社,1982.
    [27]于景元,周晓纪.综合集成方法与总体设计部[J].复杂系统与复杂性科学,2004,1(1):20-26.
    [28]高红霞.综合集成研讨厅中知识重建方法研究[D].北京:中国科学院自动化研究所,2003.
    [29]戴汝为,操龙兵.综合集成研讨厅的研制[J].管理科学学报,2002,5(3):10-16.
    [30]徐路宁,张和明,张永康.复杂产品协同设计过程中关键问题的研究[J].现在制造工程,2005(1):9-13.
    [31]田志斌.现代机械运动系统概念设计原理与应用研究[D].上海:上海交通大学,2001.
    [32]于景元,涂元季.从定性到定量综合集成方法——案例研究[J].系统工程理论与实践,2002(5):1-7.
    [33]钱亚东.支持协同设计的知识管理系统研究与开发[D].杭州:浙江大学,2006.
    [34]候俊杰.集成环境下产品开发方法及过程管理研究[D].西北工业大学,2003.
    [35]檀润华,苑彩云,张瑞红.基于技术进化的产品设计过程研究[J].机械工程学报,2002,38(12):60-65.
    [36]V. Aalst, Hofstede A. Verification of workflow task structures:a Petri-net-based appproach[J]. InformationSystem,2000,25(1):43-69.
    [37]熊光楞,李伯虎.并行工程总体技术及实施方法研究[J].计算机集成制造系统,1996,2(3):3-10.
    [38]周雄辉,李祥,阮雪榆.注塑产品与模具协同设计任务规划算法研究[J].机械工程学报,2003,39(2):113-117.
    [39]B. Dan. Partitioning tasks to product development teams[C]. Second International Conference on Axiomatic Design. Cambridge:2002.
    [40]Dunbing Tang, Zheng Li, Li Zhizhong, et al. Re-engineering of the design process for concurrent engineering[J]. Computers&Industrial Engineering,2000,38:479-491.
    [41]Chen Shi-Jie, Li Lin. Decomposition of interdependent task group for concurrent engineering[J]. Computers&Industrial Engineering,2003,44:435-459.
    [42]Henk Jan, Wassenaar. An approach to decision-based design[C]. ASME design engineering technical conference and computers and information in engineering conference. Pittsburgh,Pennsylvania:2001.
    [43]G. A. Hazelrigg. A framework for decision-based engineering design[J]. ASME Journal of Mechanical Design,1998,120:653-658.
    [44]J. Michalek, Feinberg M., Papalambros Y. An optimal marketing and engineering design model for product development using analytical target cascading[J]. Journal of product innovation management,2005,22(1):42-62.
    [45]赵海燕.协同产品开发中的决策支持理论和技术研究[D].南京:南京理工大学,2000.
    [46]Ruiqiang Zhuang. Conflict Detection in Web Based Concurrent Engineering Design[D]. University of Florida,1999.
    [47]Tianhong Jiang. Conflict Cause Identification in Web-Based Concurrent Engineering Design[D]. University of Florida,2000.
    [48]Nada Matta. Confliet Management in concurrent Engieering:Modeling Guides[C]. Conflicts in Al Workshop. ECAI, BudaPes:1996.
    [49]徐文胜,常天庆,张新访,et a1.并行工程基于实例的冲突解决的研究[J].中国机械工程,1999,10(4):384-386.
    [50]徐文胜,常天庆,张新访,et a1.并行工程基于规则的冲突解决的研究[J].计算机辅助设计与图形学报,1999,11(5):477-480.
    [51]M. R. Cutkosky. PACK:An experiment in integrating concurrent engineering systems[J]. IEEE Computer,1993,26(1):28-37.
    [52]L. Qiang, Zhang Y. F., Nee A. Y. A distributed and collaborative concurrent product design system through the WWW/internet[J]. The International Journal of Advanced Manufacturing Technology,2001,17(5):315-322.
    [53]谢友柏.现代设计理论和方法的研究[J].机械工程学报,2004,40(4):1-9.
    [54]路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(1):1-8.
    [55]于景元.钱学森的现代科学技术体系与综合集成方法论[J].中国工程科学,2001,3(11):10-18.
    [56]张志强,张朋柱.面向复杂决策任务的综合集成决策研讨总体框架设计[J].系统工程理论与实践,2006(1):9-11.
    [57]谭俊峰,张朋柱,黄丽宁.综合集成研讨厅中的研讨信息组织模型[J].系统工程理论与实践,2005(1):86-92.
    [58]张兴学,张朋柱.群体决策研讨意见分布可视化研究[J].管理科学学报,2005,8(4):15-27.
    [59]李欣苗,张朋柱.综合集成过程中研讨信息记录模式的识别方法研[J].系统工程理论与实践,2005(2):24-29.
    [60]程少川,程前向,李霆.电子公共大脑本体系统设计[J].管理工程学报,2004,18(1):88-91.
    [61]顾基发,唐锡晋.综合集成与知识科学[J].系统工程理论与实践,2002(10):2-7.
    [62]顾基发,唐锡晋.综合集成系统建模[J].复杂系统与复杂性科学,2004,1(2):32-41.
    [63]唐锡晋,刘怡君.从群体支持系统到创造力支持系统[J].系统工程理论与实践,2006(5):63-70.
    [64]王丹力,戴汝为.综合集成研讨厅体系中专家群体行为的规范[J].管理科学学报,2001,4(2):1-6.
    [65]王丹力,戴汝为.群体一致性及其在研讨厅中的应用[J].系统工程与电子技术,2001,23(7):33-37.
    [66]操龙兵,戴汝为.综合集成研讨厅的软件体系结构[J].软件学报,2002,13(8):1430-1435.
    [67]操龙兵,戴汝为.综合集成与决策[J].计算机研究与发展,2003,40(4):531-537.
    [68]Cao Long-bing, Ru-wei Dai. Human-Computer Cooperated Intelligent Information System Based on Multi-Agents[J]. Acta Automatica Sinica,2003,29(1):86-94.
    [69]李耀东.综合集成研讨厅设计与实现中的若干问题研究[D].北京:中国科学院自动化研究所,2003.
    [70]王黎明,毛汉英.区域可持续发展综合集成研讨厅体系研究[J].地理研究,1998,17(4):408-414.
    [71]王慧斌,徐小群.综合集成研讨厅体系及应用研究[J].信息与控制,2001,30(6):516-521.
    [72]司光亚,胡晓峰.战略决策模拟环境中XOD综合集成机制的研究与实现[J].小型微型计算机系统,2002,23(2):242-245.
    [73]司光亚,胡晓峰,吴琳.“决胜”系统——构建战争决策综合集成研讨与模拟环境的实践与思考[J].系统仿真学报,2004,15(12):1667-1671.
    [74]常显奇等.空间军事系统综合集成研讨厅内容体系的研究与建设[J].系统工程理论与实践,2001,6(5):86-90.
    [75]张景涛,王丹力,王宏安,et al.敏捷供应链管理的综合集成研讨厅[J].系统工程学报,2003,18(6):515-520.
    [76]吴晓伟,徐福缘,吴伟昶.基于“综合集成研讨厅”的企业竞争情报系统研究[J].情报学报,2004,23(6):746-754.
    [77]Mizoguchi R, Y Kitamura, Etc. A Methodology of Collaborative Synthesis by Artificial Intelligence[EB/OL]. http://www.ei.sanken.osaka-u.ac.jp/pub/miz/miz-skfcw99.pdf.,2010.
    [78]Sandelowski M, J Barroso. Writing the Proposal for a Qualitative Research Methodology Project[J]. Qualitative Health Research,2003(13):781-820.
    [79]Mulholland P, Z Zdrahal, P Sainter, et al. Supporting the sharing and reuse of modelling and simulation engineering knowledge[C]. International Conference on Concurrent Enterprising. Espoo:2003.
    [80]Zdrahal Z, P Mulholland, M Valasek, et al. A toolkit and methodology to support the collaborative development and reuse of engineering models[C]. Database and Expert Systems Applications Conference. Prague:2003.
    [81]戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256.
    [82]于景元,周晓纪.从定性到定量综合集成方法的实现和应用[J].系统工程理论与实践,2002,22(10):26-32.
    [83]Winner R. I, P Pennell J., E Bertrand H., et al. The role of concurrent engineering in weapons system acquisition[R]. Alexandria:VA:Institute for Defense Analysis,1988,338.
    [84]李明,刘涛.武器装备发展系统论证方法与应用[M].北京:国防工业出版社,2000.
    [85]Pahl G, W Beitz. Engineering design--A systematic approach[M]. New York: Springer,1996.
    [86]Hubka V. Principles of engineering design[M]. New York:Butterworth Scientific, 1982.
    [87]W. E. Eder. Design modeling-a design science approach[J]. Journal of engineering design,1998,9(4):355-371.
    [88]邓家提.产品设计的基本理论与技术[J].中国机械工程,2000,11(1):139-143.
    [89]曹健,张申生.面向并行工程的集成化产品开发过程管理系统研究[J].中国机械工程,2002,13(1):80-83.
    [90]孔建寿,张友良,汪惠芬等.协同开发环境中项目管理与工作流管理的集成[J].中国机械工程,2003,14(13):1122-1125.
    [91]Jin Y, W Zhou. Agent-based knowledge management for collaborative engineering[EB/OL]. http://cadcam.yonsei.ac.kr/abstract_system/19_9022.pdf,1999.
    [92]S. C-Y Lu, Cai J. Modeling collaborative design process with a socio-technical framework[C]. Proceedings of the 6th ISPE International Conference on Concurrent Engineering. Bath:2002.
    [93]J. F. Gu, Tang X. J. Meta synthesis approach to complex system modeling[J]. European Journal of Operational Research,2005,166(3):597-614.
    [94]王丹力,戴汝为.专家群体思维收敛的研究[J].管理科学学报,2002,5(2):1-5.
    [95]郭四海,冯珊,赵勇等.面向SBA的系统综合决策方法研究[J].系统工程与电子技术,2008,30(11):2155-2159.
    [96]E. Viedma Herrera. A consensus support system model for group decision-making problems with multi-granular linguistic preference relations[J]. IEEE Trans. Fuzzy Systems,2005,13(5):644-658.
    [97]T. F. Gordon, Prakken H., D D. Waition. The Carneades model of argument and burden of proof[J]. Artificial Intelligence,2007,171(6):896-975.
    [98]程少川,张朋柱,卢明德.群体过程信息的树状结构及其定性收敛的研究[J].系统工程学报,2001,16(5):371-375.
    [99]李欣苗,张朋柱,张兴学.团队创新信息关系的自动识别方法及其应用[J].管理科学学报,2007,10(5):28-37.
    [100]李德毅.不确定性人工智能[M].北京:国防工业出版社,2005.
    [101]宋远骏,李德毅,杨孝宗,et a1.电子产品可靠性的云模型评价方法[J].电子学报,2000,28(12):74-76.
    [102]G. Shafer. A mathematical theory of evidence [M]. Princeton:Princeton University Press,1976.
    [103]R. R. Yagerandd P. Filev. Including probabilistic uncertainty in fuzzy logic controller modeling using Dempster-Shafer theory[J]. IEEE Trans.Sys.Man.Cyber,1995, 25(8):1221-1230.
    [104]谭俊峰,张删柱.建立目标价值评定系统:综合集成的方法[J].系统工程理论与实践,2004,24(4):1-10.
    [105]E. S. H. Hou, Ansari N., Hong R. A genetic algorithm for multiprocessor scheduling[J]. IEEE Transactions on Parallel and Distributed Systems,1994,5(2): 113-120.
    [106]任东锋,方宗德.并行设计中任务调度问题的研究[J].计算机集成制造系统,2005,11(1):32-38.
    [107]曹健,张友良,赵海燕,et a1.并行工程中设计任务的动态分配方法研究[J].计 算机辅助设计与图形学学报,1999,11(2):168-171.
    [108]张利,陈士明,张建军.不确定多因素下的多属性决策在任务分配中的应用[J].合肥工业大学学报,2008,31(6):835-851.
    [109]陈圣磊,吴慧中,肖亮,et al.协同设计任务调度的多步Q学习算法[J].计算机辅助设计与图形学学报,2007,19(3):398-408.
    [110]殷国富,罗阳,龙红能,et a1.并行设计子任务调度的遗传算法原理与实现方法[J].计算机辅助设计与图形学学报,2004,16(8):1122-1126.
    [111]V. D. Wiley, Deckro R. F., Jr Jack A. J. Optimization analysis for design and planning of multi-project programs[J]. European Journal of Operational Research,1998, 107(2):492-506.
    [112]袁清坷,赵汝嘉.并行工程环境下设计任务调度原理与实现方法的研究[J].计算机学报,2000,23(4):440-443.
    [113]Y. C. Wang, Usher J. M. Application of reinforcement learning for agent-based production scheduling[J]. Engineering Application of Artificial Intelligence,2005,18(1): 73-82.
    [114]H. E. TSENG, CHANG C. C., CHANG S. H. Applying Case-based Reasoning for Product Configuration in Mass Customization Environments[J]. Expert Systems with Applications,2005,29(4):913-925.
    [115]周平,柴天佑.基于案例推理的磨矿粒度软测量及其软件实现[J].系统仿真学报,2007,19(23):5397-5400.
    [116]S. W. WANG, TAN J. R., ZHANG S. Y., et al. Case-based Product Configuration and Reuse in Mass Customization[J]. Chinese Journal of Mechanical Engineerin,2004, 17(2):233-236.
    [117]M. Riedmiiler, Braun H. A direct adaptive method for faster back Propagation learning:The RPROP Algorithm[C]. Proceedings of the IEEE International Conference on Neural Networks. USA:Institute of Electric and Electronic Engineer,1993.
    [118]D. E. Goldberg, Richardson J. Genetic Algorithms with Sharing for Multimodal Function Optimization[C]. Proceedings of the Second International Conference on Genetic Algorithms. USA:L. Erlbaum Associates Inc,1987.
    [119]M. Srinivas, Patnaik L. M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems Man and Cybernetics,1994,24(4): 656-667.
    [120]K. Tai, Chee T. H. Design of structres and compliant mechanisms by evolutionary optimization of morphological representations of topology[J]. Journal of Mechanical Design,2000,122(12):560-566.
    [121]H. Kargupta, Park B. H. Gene expression and fast construction of distributed evolutionary representation[J]. Evolutionary Computation,2001,9(1):43-69.
    [122]许可证,赵勇.面向方案组合优化设计的混合遗传蚂蚁算法[J].计算机辅助设计与图形学学报,2006,18(10):1587-1592.
    [123]陈光柱,肖兴明,李志蜀,et a1.基于模糊多目标免疫算法的概念设计[J].机械工程学报,2007,43(3):165-171.
    [124]R. M. Dawes. Social selection based on multidimensuional criteria[J]. Journal of Abnormal and Social Psychology,1964,68(1):104-109.
    [125]T. L. Saaty. The Analytic Hierarchy Process:planning, priority setting[M]. New York:Mcgraw-Hill,1998.
    [126]刘心报,杨善林.判断矩阵的Hadamard凸组合[J].系统工程理论与实践,2000,20(4):83-85.
    [127]魏世孝,周献中.多属性决策理论方法及其在C3I系统中的应用[M].北京:国防工业出版社,1998.
    [128]T. L. Saaty. Highlights and critical points in the theory and application of the analytic hierarchy process[J]. European Journal of Operation Research,1994,74(3): 426-447.
    [129]刘振宇,谭建荣,张树有.面向虚拟装配的产品层次信息表达研究[J].计算机辅助设计与图形学学报,2001,13(3):223-227.
    [130]J. C. LON, GANDIAGA U., DUPONT D. Modelling flexible parts for virtual reality assembly simulations which interact with their environment[C]. International Conference on Shape Modeling & amp Applications Genova.2001.
    [131]武殿梁,杨润党,马登,et a1.虚拟装配环境中的装配模型表达技术研究[J].计算机集成制造系统,2004,10(11):1364-1369.
    [132]刘检华,姚俊,宁汝新.CAD系统与虚拟装配系统间的信息集成技术研究[J].计算机集成制造系统,2005,11(1):44-47.
    [133]J. Clark. Hierarchical geometric models for visible surface algorithms[J]. Communications of the ACM,1976,19(10):547-554.
    [134]D. Luebke. A developer's survey of polygonal sim plification algorithms[J]. IEEE Computer Graphics and Applications,2001,21(3):24-35.
    [135]D. Luebke, Reddy M., Cohen J., et al. Level Of Detail For 3D Graphics[M]. San Francisco:Morgan Kaufmann,2002.
    [136]P. Cignoni, Ganovelli F., Gobbetti E., et al. Adaptive tetra puzzles:efficient out-of-core construction and visualization of gigantic multiresolution polygonal models[J]. ACM Transactions on Graphics,2004,23(3):796-803.
    [137]L. Hu, Sander P. V., Hoppe H. Parallel view-dependent refinement of progressive meshes[C]. Proceedings of Symposium on Interactive 3D Graphics and Games. New York: ACM,2009.
    [138]E. Shaffer, Garland M. A multiresolution representation for massive meshes[J]. IEEE Transactions on Visualization and Computer Graphics,2005,11(2):139-148.
    [139]S. E. Yoon, Salomon B., Gayle R., et al. Quick-VDR:out-of-core view-dependent rendering of gigantic models[J]. IEEE Transactions on Visualization and Computer Graphics,2005,11(4):369-378.
    [140]张亚萍,熊华,姜晓红,et al.基于外存八叉树的大模型多分辨率并行构建[J].中国图象图形学报,2010,15(4):650-657.
    [141]苏智勇,唐卫清,李蔚清,et al.而向动态流程工厂模型的快速分层层次细节法[J].计算机辅助设计与图形学学报,2008,20(8):1038-1046.
    [142]苏智勇,唐卫清,李蔚清,et al.网络环境下基于外存的大规模流程工厂模型交互绘制[J].计算机辅助设计与图形学学报,2010,22(1):66-74.
    [143]Richard S. Wright Jr, Haemel Nicholas, Sellers Graham, et al. OpenGL SuperBible[M].5th ed ed. Boston:Pearson Education,2010.
    [144]袁正刚,吴雪琴,唐卫清,et al.面向工程CAD的图形库设计[J].计算机辅助设计与图形学学报,2001,13(3):197-201.
    [145]S. J. Kim, Kim C. H., Et Al. Surface simplification using a discrete curvature norm[J]. Computers & Graphics,2002,26(5):657-663.
    [146]周元峰,张彩明,贺平.体积平方度量下的特征保持网格简化方法[J].计算机学报,2009,32(2):203-212.
    [147]M. Garland, Heckbert P. S. Surface simplification using quadric error metrics[C]. ACM SIGGRAPH. Los Angeles:1997.
    [148]H. Hoppe. New quadric metric for simplifying meshes with appearance attributes[C]. Proceedings of IEEE Visualization. San Francisco:1999.
    [149]Zhanting Yuan, Zhang Qiuyu, Yang Jie. Solution on Enterprise Applieation Integration Based on Web Services[J]. Computer Integrated Manufacturing System,2004, 10(4):394-398.
    [150]王博,郭波.一种异构数据源模型转换和模式集成框架[J].计算机科学,2007,34(10):129-132.
    [151]陈跃国,王京春.数据集成综述[J].计算机科学,2004,31(5):48-51.
    [152]宋东明.面向复杂产品概念设计的综合集成研讨厅问题求解过程与方法研究[D].南京:南京理工大学,2009.
    [153]陈学勤.基于Web服务的虚拟采办若干关键技术研究[D].南京:南京理工大学,2009.
    [154]韩祥兰.SBA系统的综合集成研讨厅研究与应用[D].南京:南京理工大学,2005.
    [155]黄晓剑.工程CAD中的快速绘制技术研究[D].北京:中国科学院计算技术研究所,2002.
    [156]石念峰.流程工厂协同设计系统及关键技术研究[D].北京:中国科学院计算技术研究所,2008.