用户名: 密码: 验证码:
多点激励振动试验系统的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动试验可以检验产品耐振动能力,考核产品在振动环境应力下的性能及表现,发现它们的设计缺陷以改进产品设计,从而提高产品的性能与质量。单点激励振动试验是目前振动试验领域广泛采用的试验方式,但随着产品结构的复杂化和多样化,单点激励振动试验的弱点与不足越来越多地为人们所认识到。多点激励振动试验相对单点激励振动试验更加真实地模拟实际振动环境,同时它能够克服单点激励存在的一些缺点,如推力不足、振动应力分布不均匀和易造成局部欠试验或过试验等。本文围绕多点激励振动试验控制策略进行了深入研究,并将其研究成果应用至控制系统设计中,为多点激励振动试验控制系统开发提供理论指导。
     多点激励振动试验控制系统辨识。为实现系统的有效控制,必须要掌握系统特性,对系统进行辨识。多点激励振动试验控制系统是一个控制算法复杂的实时控制系统,论文在对系统辨识模型研究的基础上,根据多点激励振动试验控制系统的特点,确定频响函数模型是适用于多点激励振动试验控制系统的辨识方法。提出采用偏相干残差法进行多点激励振动试验控制系统频响估计,归纳总结出用于多点激励振动试验控制系统频响矩阵估计的计算流程,并将其应用至控制系统设计中。偏相干残差法估计系统频响矩阵是通过对对角线为1的上三角矩阵求逆获得,相对传统的频响矩阵估计方法计算量更小,非常适用于多点激励振动试验这种实时性要求较高的系统,同时它能够提供更多的输入输出之间相干信息。
     多点正弦振动试验最优控制策略研究。针对传统多点正弦控制方法中频响特性不更新和迭代步长不变导致控制系统潜在不稳定的缺点,提出了采用最优控制策略进行系统控制。最优控制能对控制迭代步长与频响矩阵根据系统特性进行实时更新,在保证控制系统稳定的基础上,加快了控制系统的收敛速度。同时文中对多点正弦信号幅值与相位估计方法进行研究,利用最小二乘法完成对多点正弦信号幅值与相位的估计。
     多点随机振动试验控制策略研究。文中对多点随机驱动信号的生成方法进行了研究,采用时域随机化技术生成符合控制系统要求的真随机信号。对多点随机振动试验的参考谱矩阵的设定条件进行了讨论,推导出谱矩阵的正定性是判定参考谱设置是否合理的重要依据。对多点随机振动试验控制算法进行了研究,在对传统控制算法分析的基础上,提出了综合均衡的控制算法,它能够克服传统控制算法存在的一些缺点,改善了控制系统的性能。由于非高斯随机振动环境与实际振动环境更加相近,成为目前随机振动试验发展中的热点,文中对非高斯随机振动试验控制研究提出了并行控制策略,实现峭度控制与功率谱控制的相互独立。对非高斯随机信号的生成方法展开研究,提出基于泊松过程的非高斯随机信号生成方法。
     多点激励振动试验控制系统构建与实验研究。针对多点激励振动试验控制系统设计中的关键技术,确定了多点激励振动试验控制系统设计的体系结构,最终构建了振动试验控制系统的硬件平台与软件平台。在对多点激励振动试验控制策略研究的基础上,结合构建好的振动试验控制系统软硬件平台,进行了相关的实验研究,分别对多点正弦、多点随机和非高斯随机进行了实验研究。在相同的实验条件下,多点激励正弦振动试验分别采用传统控制算法与最优控制算法进行比较研究,在奇异点附近采用最优控制算法的幅值控制结果相对传统控制算法波动要小,控制效果更好。多点随机振动控制系统自闭环控制实验表明控制系统的控制动态范围达到90dB,连接振动台实验结果表明振动控制系统的控制响应自功率谱都控制在±1.5dB范围内。非高斯随机振动控制系统自闭环振动实验结果表明控制系统的控制动态范围达到90dB,连接振动台的非高斯随机振动实验结果表明在试验频率范围内各频率点的功率谱都控制在±1.5dB范围,非高斯随机信号的峭度值始终控制目标峭度附近,在很小的范围内波动,从振动台上采集获得的非高斯响应信号幅值变化剧烈,呈现明显非高斯性。
Vibration test is intended to examine the anti-vibration capability of products and their performance in vibration environment so that design faults of products can be found out in vibration test accompanying with improving design and quality of these products. So far, Single-exciter vibration test has been widely adopted in the vibration testing, however, its shortages also attract people's attention since the structure of product is becoming more and more complicated. Multi-exciter vibration test actually can simulate the practical environment better than single-exciter vibration test, the latter bears some disadvantages, such as pushing force insufficiency, non-uniform vibration stress distribution, under-test and over-test and so on, while the former can overcome those drawbacks. The deep investigation to the control strategy of multi-exciter vibration test is conducted, and research findings are also applied into the design of the control system, which provides theoretical support to the development of multi-exciter vibration test control system.
     Identification of multi-exciter vibration test control system. To identify system and understand system characteristics should be finished before achieving effective system control. Control system for multi-exciter vibration test is complicated in algorithm, it is confirmed that frequency response function model is a suitable way in indentifying control system of multi-exciter vibration test based on the investigation to system identification model and consideration to the system characteristics. Partial coherence residual method is proposed to conduct frequency response estimation, meanwhile, calculation procedure of frequency response matrix estimation for the control system is also summarized and applied into system control. Compared with traditional way, frequency response function estimated by making use of the Partial coherence residual method is achieved through calculating inverse matrix to the upper triangular matrices, which leads to less calculation works and therefore is suitable to multi-exciter vibration test where harshly requires real-time capability, furthermore, more coherent information between input and output of the control system is provided by the method mentioned above.
     Optimal control strategies of multi-exciter sine vibration test. An optimal control strategy is proposed so that the drawbacks in traditional multi-exciter sine control algorithm adopting constant iterative step length and no updating for frequency response function can be avoided. The optimal control strategy whose iterative step length and frequency response function can update in real time according to system characteristic is able to speed up convolution speed of the control system on the basis of guaranteeing stability of the system, the way to estimate the amplitude and phrase of the multi-exciter sine signal is investigated in this thesis, the least square method is adopted to estimate the amplitude and phrase of the multi-exciter sine signal.
     Control strategies of multi-exciter random vibration test. The way to generate the multi-exciter random drive signal is studied, the true random signal which satisfies the requirement of the system is generated by using time domain randomization technology. Setting conditions to the reference spectrum matrix of the multi-exciter random vibration test is explored, and whether the reference spectrum setting is reasonable or not can be judged by analyzing positive definiteness of the spectrum matrix. Control algorithm of the multi-exciter random vibration test is investigated, a comprehensive equalization control algorithm is proposed based on the analysis to the traditional control algorithm, which contributes to overcome the shortages existed in traditional control strategy and improve the performance of control system. Non-Gaussian random vibration test has become the hot field in vibration test since it can simulate realistic environment better, Concurrent control strategy research for non-Gaussian random vibration test is proposed, which achieves independent control to the kurtosis control and power spectrum control respectively. Generation algorithm of non-Gaussian random signal is investigated, and no-Gaussian random signal generation algorithm based on the Poisson process is given in paper.
     Control system building and its experiment for multi-exciter vibration test. In conclusion, the whole system design is finished in this study, and hardware and software platform of the control system are built on the basis of the critical technology of the control system in multi-exciter random vibration test. The experiments concerned are conducted. The experiments including multi-exciter sine vibration test and multi-exciter random vibration test as well as non-Gaussian vibration test are carried out on the mentioned platforms. The comparison between optimal control strategy and traditional control algorithm in the same experimental conditions is made in multi-exciter sine vibration test, the former has better control performance and bears less fluctuation than latter in singular points nearby. self-closed loop control for multi-exciter random vibration test indicates that dynamic range for control system reaches 90dB, and control response power spectrum in multi-exciter random vibration test is under control within±1.5dB. Self-closed loop control for non-Gaussian random vibration test indicates that dynamic range for control system reaches 90dB, and all the points contained in the range of frequency for control response power spectrum in non-Gaussian random vibration test is also under control within±1.5dB. Non-Gaussian random kurtosis value is fluctuating nearby target, the amplitudes of non-Gaussian random signal collected from the shaker changes dramatically and bears distinct non-Gaussian characteristics.
引文
[1]王一临.军用包装与武器装备的环境适应性[J].装备环境工程.2004,1(1):51-55.
    [2]陈文华,崔杰,潘骏,等.航天电连接器振动可靠性试验与分析[J].航空学报.2003,24(4):342-345.
    [3]于海昌.航天器振动试验的最新进展[J].导弹与航天运载技术.1999(4):35-41.
    [4]Lin R M, Lim M K. Derivation of structural design sensitivities from vibration test data[J]. Journal of Sound and Vibration.1997,201(5):613-631.
    [5]戴诗亮.随机振动实验技术[M].北京:清华大学出版社,1984.
    [6]胡志强.随机振动试验应用技术[M].北京:中国计量出版社,1996.
    [7]吴家驹.振动试验中的多台并激技术[J].强度与环境.1992(1):1-5.
    [8]吴家驹,荣克林.多维振动环境试验方法[J].导弹与航天运载技术.2003(4):27-32.
    [9]Pinson G T. Multiple axis vibration test platform[Z]. United States Patents, 1989.
    [10]Laya S, Treichel T H. Reliability analysis of solder joint quality on J-Lead ceramic oscillators using highly accelerated life testing (HALT) with lead and lead-free compositions.[Z].20071-7.
    [11]Sohn H, Czarnecki J A, Farrar C R. Structural health monitoring using statistical process control[J]. Journal of Structural Engineering.2000,126(11): 1356-1363.
    [12]Keller T, Underwood M A. An application of MIMO techniques to satellite testing[J]. Proc. Institute of Environmental Sciences and Technology.2001:1-12.
    [13]Underwood M A. Adaptive control method for multiexciter sine tests[Z]. United States Patents,1994:5299459.
    [14]Underwood M A. Apparatus and method for adaptive closed loop control of shock testing system[Z]. U.S.:United States Patents,1996:5517426.
    [15]韩俊伟,李玉亭.大型三向六自由度地震模拟振动台[J].地震学报.1998,20(3):327-331.
    [16]赵于鉴,马栋.多点控制在导弹随机振动试验中的应用[J].国外电子测量 技术.2005,24(10):37-40.
    [17]Mcconnell K G. Vibration testing:theory and practice[M]. Wiley-Interscience, 1995.
    [18]Marshall P. Vibration test fixture[Z]. United States Patents,1994.
    [19]陈章位,于慧君.振动控制技术现状与进展[J].振动与冲击.2009,28(3):73-77.
    [20]王述成.振动试验实时控制系统的研究[D].浙江大学,2006.
    [21]Sloane E A. Vibration testing environment or apparatus[Z]. United States Patents,1973.
    [22]Plummer A R. Control techniques for structural testing:a review[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering.2007,221(2):139-169.
    [23]Caldicott P J. Distribution testing—sine or random?[J]. Packaging Technology and Science.1991,4(5):287-291.
    [24]Wilson J C, Liu T. Ambient vibration measurements on a cable-stayed bridge.[J]. Earthquake Engineering & Structural Dynamics.1991,20(8):723-747.
    [25]贺旭东.多输入多输出振动试验控制系统的理论,算法及实现[D].南京航空航天大学,2006.
    [26]Varoto P S, de Oliveira L P R. Interaction between a vibration exciter and the structure under test[J]. Sound and Vibration.2002,36(10):20-26.
    [27]Varoto P S, de Oliveira L P R. On the force drop off phenomenon in shaker testing in experimental modal analysis[J]. Shock and Vibration.2002,9(4):165-175.
    [28]蒋培,温熙森,陈循,等.非高斯随机应力载荷频域疲劳寿命估计方法水[J].机械工程学报.2006,1(2):51-56.
    [29]Hillsley K L, Yurkovich S. Vibration control of a two-link flexible robot arm[J]. Dynamics and Control.1993,3(3):261-280.
    [30]Ishida K. Dynamic characteristics of soil-foundation interaction system detected from forced vibration test and earthquake observation[J]. Earthquake engineering & structural dynamics.1985,13(6):799-825.
    [31]Kim C Y, Jung D S, Kim N S, et al. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration[J]. Earthquake Engineering and Engineering Vibration.2003,2(1):109-115.
    [32]Lang G F. An introduction to shaker thermodynamics[J]. Sound and Vibration. 2004,38(8):14-19.
    [33]Underwood M A, Keller T. Recent system developments for multi-actuator vibration control[J]. Sound and Vibration.2001,35(10):16-23.
    [34]Stroud R C, Hamma G A, Underwood M A. A review of multiaxis/multiexciter vibration technology[J]. Sound and Vibration.1996,30(4):20-27.
    [35]Stroud R C, Hamma G A. Multiexciter and multiaxis vibration exciter control systems[J]. Sound and Vibration.1988,22(4):18-28.
    [36]De Cuyper J, Verhaegen M, Swevers J. Off-line feed-forward and H ∞ feedback control on a vibration rig[J]. Control engineering practice.2003,11(2): 129-140.
    [37]Cubano L A, Lewis M L. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)[J]. Journal of Leukocyte Biology.2001,69(5):755-761.
    [38]于慧君.电液振动试验系统长时间历程复现控制技术研究[D].浙江大学,2009.
    [39]于慧君,陈章位.道路模拟试验自适应时域复现控制方法研究[J].振动工程学报.2007,20(5):498-501.
    [40]Sudo S, Ise K, Ikohagi T. Dynamics of magnetic fluid-permanent magnet system subjected to vertical vibration[J]. Journal of Intelligent Material Systems and Structures.2002,13(7):539-543.
    [41]Gizatullin A O, Edge K A. Adaptive control for a multi-axis hydraulic test rig[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering.2007,221(2):183-198.
    [42]Vaes D, Engelen K, Anthonis J, et al. Multivariable feedback design to improve tracking performance on tractor vibration test rig[J]. Mechanical Systems and Signal Processing.2007,21(2):1051-1075.
    [43]Stoten D P, Hyde R A. Adaptive control of dynamically substructured systems: the single-input single-output case[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering.2006,220(2):63-79.
    [44]Stoten D P, Gomez E G. Adaptive control of shaking tables using the minimal control synthesis algorithm[J]. Philosophical Transactions A.2001,359(1786): 1697-1723.
    [45]Fisher D. Theoretical and practical aspects of multiple-actuator shaker control[J].43rd Shock amd Vibration Bulletin.1973,3:153-174.
    [46]Tebbs J D, Hunter N F. Digital control of random vibration tests using a Sigma V computer[J]. Proceedings of the IES.1974:36-43.
    [47]Smallwood D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration.2005,39(10):18-23.
    [48]Smallwood D O. Generation of time histories with a specified auto spectral density, skewness, and kurtosis[R]. Sandia National Labs., Albuquerque, NM (United States),1996.
    [49]Smallwood D O. Multiple shaker random vibration control--an update[R]. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US),1999.
    [50]Smallwood D O. Generation of stationary non-Gaussian time histories with a specified cross-spectral density[J]. Shock and Vibration.1997,4(5):361-378.
    [51]Smallwood D O. Random vibration control system for testing a single test item with multiple inputs[R]. Sandia National Labs., Albuquerque, NM (USA),1982.
    [52]Smallwood D O. Generation of partially coherent stationary time histories with non-Gaussian distributions[R]. Sandia National Labs., Albuquerque, NM (United States),1996.
    [53]Smallwood D O, Paez T L. A frequency domain method for the generation of partially coherent normal stationary time domain signals[J]. Shock and Vibration. 1993,1(1):45-53.
    [54]Smallwood D O, Woodall T, Buksa E J. Minimum drive requirements for a multiple input multiple output linear system[C].1986.
    [55]Stroud R C, Hamma G A. Three-dimensional vibration control system [J]. Environmental integration technology today for a quality tomorrow.1984:474-477.
    [56]Staszewski W J. Structural and mechanical damage detection using wavelets[J]. The Shock and Vibration Digest.1998,30(6):457-472.
    [57]Sohn H, Law K H. Extraction of Ritz vectors from vibration test data[J]. Mechanical Systems and Signal Processing.2001,15(1):213-226.
    [58]Rouillard V. Generating road vibration test schedules from pavement profiles for packaging optimization [J]. Packaging Technology and Science.2008,21(8): 501-514.
    [59]Rana K, Sayann R S K S. Fuzzy control of a vibration actuator[J]. International Journal of Intelligent Control and Systems.2009,14(4):228-243.
    [60]Underwood M A, Keller T. Rectangular control of multi-shaker systems:theory and practical results[J]. Journal of the IEST.2004,47(1):80-86.
    [61]Underwood M A, Keller T. Applying coordinate transformations to multi-DOF shaker control[J]. Sound and Vibration.2006,40(1):14-27.
    [62]Underwood M, Keller T. Testing civil structures using multiple shaker excitation techniques[J]. Sound and Vibration.2008,42(4):10-15.
    [63]叶建华.多点激励随机振动试验控制技术及实现的研究[D].北京:北京航空航天大学,2004.
    [64]袁宏杰,李传日.正弦振动控制技术的研究[J].电气自动化.2001,23(2):25-27.
    [65]袁宏杰,李传日.VCS振动控制系统控制算法研究[J].仪器仪表学报.2002(S2):846-847.
    [66]袁宏杰,唐环,李传日.多点随机振动试验的最小驱动[J].船舶力学.2008,12(2):319-322.
    [67]齐华.单轴多点激励正弦振动控制算法研究及其实现[D].北京:北京航空航天大学,2001.
    [68]陆勇星,陈怀海,曹立娟.多点随机振动控制试验中随机相位双谱恢复方法[J].振动工程学报.2010,23(4):420-424.
    [69]游伟倩,陈怀海,贺旭东,等.随机振动功率谱的H_∞双自由度跟踪控制研究[J].振动工程学报.2010,23(3):317-323.
    [70]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨工业大学,2007.
    [71]Adams D E, Allemang R J. A new derivation of the frequency response function matrix for vibrating non-linear systems[J]. Journal of Sound and Vibration. 1999,227(5):1083-1108.
    [72]Helmuth J G. Multiple shaker control system[Z]. United States Patents,1969.
    [73]Trubert M R. Structural and electromechanical interaction in the multiple exciter technique for random vibration testing[J]. The Journal of the Acoustical Society of America.1966,39(6):1238.
    [74]Lund R A. Environmental simulation with digitally controlled servo-hydraulics[Z].1976,65-70.
    [75]Hamma G A, Smith S, Stroud R C. Simulation of dynamic loads by multichannel digital control(computerized structural response prediction with application to multishaker testing)[C]. Bethesda, MD:1978.
    [76]Hamma G A, Stroud R C. Digital-control system for 3-axis vibration testing[C]. San Diego, CA:1985.
    [77]Spencer Jr B F, Nagarajaiah S. State of the art of structural control[J]. Journal of Structural Engineering.2003,129(7):845-856.
    [78]Spectral Dynamics I. Multiple Input-Multiple Output VCS[Z]. http://www.spectraldynamics.com/,2010.
    [79]Data Physics I. Dynamic signal analyzers, vibration controllers[Z]. http://www.dataphysics.com/,2010.
    [80]Lms I. Vibration Control Introduction[Z]. http://www.lmsintl.com/,2010.
    [81]Imv I. Vibration Controller[Z]. http://www.imv.co.jp/e/,2010.
    [82]李玲珠.BH14A振动,冲击数控系统总体方案设计[J].环境条件与试验.1991(1):25-30.
    [83]杭州亿恒科技有限公司.振动控制器,Super VT-系列[Z].http://www.econ-group.com.cn/,2010.
    [84]叶凌云.多轴向多激励随机振动高精度控制研究[D].杭州:浙江大学,2006.
    [85]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [86]贝达特J.S.,皮尔索A.G.,凌福根.随机数据分析方法[M].北京:国防工业出版社,1976.
    [87]周传荣,赵淳生.机械振动参数识别及其应用[M].北京:科学出版社,1989.
    [88]季文美,方同,陈松淇.机械振动[M].北京:科学出版社,1985.
    [89]Tomasel F G, Laura P. Assessing the healing of mechanical structures through changes in their vibrational characteristics as detected by fiber optic Bragg gratings[J]. Journal of sound and vibration.2002,253(2):523-527.
    [90]Amick H. On generic vibration criteria for advanced technology facilities:With a tutorial on vibration data representation[J]. Journal of the Institute of Environmental Sciences.1997,40(5):35-44.
    [91]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [92]叶建华,李传日.多点随机振动试验控制技术[J].系统工程与电子技术.2008,30(1):124-127.
    [93]杨志东,关广丰,丛大成,等.基于Hv方法的三轴液压振动系统频响函数估计的研究[J].地震工程与工程振动.2007,27(3):83-87.
    [94]纽兰D.E.,方同.随机振动与谱分析概论[M].北京:机械工业出版社,1980.
    [95]贝达特J.S.,皮索尔.相关分析和谱分析的工程应用[M].北京:国防工业出版社,1983.
    [96]薛年喜. MATLAB在数字信号处理中的应用[M].清华大学出版社,2003.
    [97]胡广书.数字信号处理:理论,算法与实现[M].北京:清华大学出版社,2003.
    [98]程佩青.数字信号处理教程[M].北京:清华大学出版社,2001.
    [99]航空制造工程手册总编委员会.航空制造工程手册:机载设备实验[G].北京:航空工业出版社,1995:3-45.
    [100]Udwadia F E, Trifunac M D. Time and amplitude dependent response of structures[J]. Earthquake Engineering & Structural Dynamics.1973,2(4):359-378.
    [101]Jaishi B, Ren W X. Structural finite element model updating using ambient vibration test results[J]. Journal of structural engineering.2005,131(4):617-628.
    [102]Alvandi A, Cremona C. Assessment of vibration-based damage identification techniques[J]. Journal of Sound and Vibration.2006,292(1-2):179-202.
    [103]Birdsong C. An integrated measurement to road vibration simulation system[J]. Journal-South African Institute of Electrical Engineers.2004,21(5):19-23.
    [104]Fisher D K, Posehn M R. Digital control system for a multiple-actuator shaker'[J].47th Shock and Vibration Bulletin, NM, Albuquerque.1977:79-96.
    [105]贺旭东,陈怀海,申凡,等.多点简谐振动响应控制下的频响矩阵测试[J].航空学报.2006,27(5):869-872.
    [106]朱银龙,陈怀海,贺旭东,等.多输入多输出正弦振动试验控制系统算法研究及实现[J].振动工程学报.2008,21(1):62-65.
    [107]邱汉平,冯咬齐.双振动台正弦振动同步控制新方法研究[J].航天器环境 工程.2006,23(6):355-358.
    [108]陈宝林.最优化理论和算法(第2版)[M].北京:清华大学出版社,2005.
    [109]袁亚湘,孙文瑜.最优化理论和方法[M].北京:科学出版社,1999.
    [110]徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,1995.
    [111]杨志东,丛大成,韩俊伟,等.基于扩展型准牛顿优化算法的单轴正弦扫频振动控制[J].振动与冲击.2008,27(3):99-103.
    [112]杨志东,丛大成,韩俊伟,等.正弦扫频振动控制中的信号综合与信号分析[J].振动工程学报.2008,21(3):309-313.
    [113]Ungar E E, Sturz D H, Amick C H. Vibration control design of high technology facilities[J]. Sound and Vibration.1990,24(7):20-27.
    [114]Lai C Y, Liao W H. Vibration control of a suspension system via a magnetorheological fluid damper[J]. Journal of Vibration and Control.2002,8(4): 527.
    [115]Lang G F. Electrodynamic shaker fundamentals[J]. Sound and Vibration.1997, 31(4):14-23.
    [116]Harris C M, Piersol A G, Paez T L. Harris'shock and vibration handbook[M]. McGraw-Hill Professional,2009.
    [117]樊世超,冯咬齐.多维动力学环境模拟试验技术研究[J].航天器环境工程.2006,23(1):23-28.
    [118]吴家驹.多维振动环境试验控制策略的分析基础[J].强度与环境.2008,35(4):1-6.
    [119]Freeman M T.3-axis vibration test system simulates real world[J]. Test Engineering and Management.1991:10-14.
    [120]Ammanagi S, Poornima V, Sera A, et al. Development of a digitally-controlled three-axis earthquake shake table[J]. Current Science.2006,91(2):190-203.
    [121]Horiuchi T, Nakagawa M, Kametani M. Method and system for vibration test[Z]. United states Patents,1995.
    [122]Liaw C M, Yu W C, Chen T H. Random vibration test control of inverter-fed electrodynamic shaker[J]. Industrial Electronics, IEEE Transactions on.2002,49(3): 587-594.
    [123]Uchiyama Y, Mukai M, Fujita M. Robust control of electrodynamic shaker with 2dof control using H [infinity] filter[J]. Journal of Sound and Vibration.2009, 326(1-2):75-87.
    [124]方同.工程随机振动[M].北京:国防工业出版社,1995.
    [125]沈国重,路甬祥.多分辨随机振动控制算法[.J].机械工程学报.2001,37(10):14-18.
    [126]贺旭东,陈怀海,申凡,等.双振动台随机振动综合控制研究[J].振动工程学报.2006,19(2):145-149.
    [127]贺旭东,陈怀海.一种多点随机振动试验控制的新方法研究[J].振动工程学报.2004,17(1):49-52.
    [128]王述成,陈章位.随机振动试验中时域随机化技术的研究[J].机械工程学报.2005,41(5):230-233.
    [129]贺旭东,陈怀海.利用FIR滤波器生成随机振动试验驱动信号的新方法[J].航空学报.2003,24(3):220-222.
    [130]贺旭东,陈怀海.多点随机振动控制中的互谱矩阵研究[J].南京航空航天大学学报.2004,36(6):744-747.
    [131]洪宝林.随机振动试验谱形参数计算方法[J].航空计测技术.1995,15(5):12-15.
    [132]Garg D P, Zikry M A, Anderson G L, et al. Health monitoring and reliability of adaptive heterogeneous structures[J]. Structural Health Monitoring.2002,1(1):23-29.
    [133]Fugate M L, Sohn H, Farrar C R. Vibration-based damage detection using statistical process control[J]. Mechanical Systems and Signal Processing.2001,15(4): 707-721.
    [134]Turner J D, Pretlove A J. A study of the spectrum of traffic-induced bridge vibration[J]. Journal of Sound and Vibration.1988,122(1):31-42.
    [135]Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibration energy harvesting[J]. Journal of Micromechanics and Microengineering. 2007,17:1257-1265.
    [136]Qiu X, Li X, Ai Y, et al. A waveform synthesis algorithm for active control of transformer noise:implementation[J]. Applied Acoustics.2002,63(5):467-479.
    [137]Steinwolf A. Closed-loop shaker simulation of non-Gaussian random vibrations[J]. Test Engineering and Management.2006,68(3):10-16.
    [138]Steinwolf A. Random vibration testing beyond PSD limitations[J]. Sound and Vibration.2006,40(9):12-21.
    [139]Steinwolf A. Shaker simulation of random vibration with a high kurtosis value[J]. Journal of the institute of environmental sciences.1997,40(3):33-43.
    [140]Steinwolf A. Shaker random testing with low kurtosis:Review of the methods and application for sigma limiting[J]. Shock and Vibration.2010,17(3):219-231.
    [141]Van Baren J, Macmillan B. Vibration test replication of operating environments[J]. Sound and Vibration.2004,38:10-13.
    [142]Van Baren P. The missing knob on your random vibration controller[J]. Sound and Vibration.2005,39(10):58-76.
    [143]Van Baren P D. System and method for simultaneously controlling spectrum and kurtosis of a random vibration[Z]. United States Patents,2008.
    [144]Ying-Yang Y U, Tong-Min J. Generation of non-Gaussian random vibration excitation signal for reliability enhancement test[J]. Chinese Journal of Aeronautics. 2007,27(3):236-239.
    []45]蒋瑜,陈循,陶俊勇.基于时域随机化的超高斯真随机驱动信号生成技术研究[J].振动工程学报.2005,18(4):491-494.
    [146]蒋瑜,陈循,陶俊勇,等.超高斯伪随机振动激励信号的生成技术[J].振动工程学报.2005,18(2):179-183.
    [147]帕普里斯.概率、随机变量与随机过程:第4版[M].西安:西安交通大学出版社,2004:456-528.
    [148]姚金勇,李传日,姜同敏.基于多CPLD/FPGA的多轴振动控制系统设计[Z].宜昌:全国第三届DSP应用技术、第九届信号与信息处理联合学术会议,2005155-162.
    [149]姚金勇,李传日,姜同敏.多轴振动控制系统中基于CPLD的多模式多通道同步采样系统设计[Z1.宜昌:全国第三届DSP应用技术、第九届信号与信息处理联合学术会议,2005:181-185.
    [150]张新运,李传日,姚金勇.基于PCI总线与DSP的振动控制系统数据通信及CPLD实现[Z].宜昌:全国第三届DSP应用技术、第九届信号与信息处理联合学术会议,2005191-196.
    [151]钱国平.基于PXI总线的数据采集模块的研制[D].哈尔滨理工大学,2004.
    [152]严侠,牛宝良,朱长春.三轴六自由度液压振动台随机振动控制分析与仿真[J].机床与液压.2007,35(10):165-168.
    [153]贺惠农,陈章位.多台同步振动控制理论与应用,2007年第九届全国振动理论及应用学术会议论文集,2007:244-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700