三废锅炉智能控制系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三废锅炉技术是近些年来在国内发展应用起来的一种新型、节能、环保、高效、低污染的清洁燃烧技术,是国家循环经济所支持的节能环保项目。它将生产过程中产生的工艺废气(吹风气、放空气等)、废渣(造气炉渣等)、除尘器细灰等掺入部分煤矸石在三废流化混燃炉内燃烧,达到制取高位热能蒸汽的目的,产生的中压蒸汽经背压可发电,背压后的低压蒸汽可供生产使用,混燃炉渣则可以作为生产高档水泥的原料。
     对于使用锅炉的高耗能高污染行业,我们必须尽可能地节能减排,才符合国家低碳经济、可持续发展战略,而要想实现节能减排,先进技术和控制系统是关键。本文首先对三废锅炉工艺流程进行了较为详实的分析,主要介绍了三废锅炉的工作过程及节能原理,分析了三废锅炉控制系统中存在的问题。针对三废锅炉控制系统存在的问题,本文采用滑模控制和预测控制的方法用于三废锅炉的建模与控制优化,并在实践上,给出了三废锅炉的整个控制工艺设计,实际应用效果表明该工艺设计及控制系统具备良好的推广价值和应用前景。主要工作和创新点如下:
     1.考虑一类受扰非线性系统,设计了非线性干扰观测器在线逼近外部干扰,并分析了非线性干扰观测器参数的选择方法,证明了其收敛特性;针对输入不确定的情况设计了基于非线性干扰观测器自适应滑模控制,并对其性能进行了分析。通过一个倒立摆的数值仿真验证了所设计方法的有效性;针对三废锅炉的床温控制系统,设计了基于干扰观测器的自适应滑模控制方案,采用Lyapunov方法严格证明了闭环系统的稳定性,对闭环系统进行数值仿真,结果表明该方法收敛速度快,鲁棒性强,能够满足控制需求。
     2.基于模糊干扰观测器设计了SISO非线性不确定系统的自适应滑模控制,详细分析了动态观测系统和闭环系统的性能,证明了闭环信号的有界性;并将结论推广,针对MIMO非线性不确定系统,设计了自适应滑模控制,在参数自适应中引入了动态干扰观测误差和切换函数,严格证明了闭环系统各信号的有界性。以三废锅炉主蒸汽温度控制为对象,设计了基于模糊干扰观测器的自适应滑模控制,在所有干扰未知的情况下,实现了温度的跟踪控制,仿真结果表明该方法控制效果良好。
     3.将LS-SVM作为预测模型应用于三废锅炉汽包水位预测控制,进一步对其进行反馈校正控制、滚动优化。有效地解决了三废锅炉汽包水位预测在线滚动优化和非线性系统建模方面的困难。通过仿真实验结果,验证了该方法的有效性。
     4.对玉溪银河化工厂的55t/h三废锅炉控制系统进行总体设计;进而对控制系统的具体设计做了详细描述;再以三废锅炉汽包水位自动控制系统为例采用PID算法进行了设计与实现,最终给出了系统的运行实现界面。通过实际系统的运行结果表明,本文设计的三废锅炉控制效果良好,节能效果明显。作者将在进一步的研究中,把本论文的理论研究成果和实际相结合,进一步提高和改进控制系统性能和节能效果。
In the national energy-saving emission reduction, low carbon economy sustainable development strategy, waste boiler technology is a new type of environmental protection, high efficiency, energy saving, low pollution clean combustion technology, more and more widely, its development potential is tremendous. The technology will burn the waste gas (air blowing, etc.), waste residue (slag etc.), fine gray dust produced in production process in mixed waste stream of the burner added with portion of coal gangue to produce high heat steam. Medium pressure steam produced by back pressure can generate electricity, after the low pressure steam is available for production use, mixed combustion slag can be used as the production of high-grade cement raw material.
     For high-energy high-pollution industries that use boiler, we must do everything to energy saving, that can consistent with the national sustainable development strategy of low-carbon economy, in order to achieve energy conservation, advanced technology and control systems is the key.This thesis first to give a more detailed analysis for three waste boiler craft flow, it mainly introduced the waste boiler work process and energy saving principle, and analysis the problems. For the problems of three waste boiler control system, this thesis using sliding mode control and predictive control for boiler control algorithm design. Through practice, give the whole craft design process of three waste boiler, practical application shows that the process design and control system has good prospects and have good promotion and application value. Main work and innovation are as follows:
     1. Considering a class of perturbed nonlinear systems, designing nonlinear disturbance observer online approaching external interference, and analysis of the nonlinear disturbance observer parameter selection method, prove the convergence property; According to the input is uncertain, nonlinear disturbance observer is designed based on adaptive sliding mode control, and its performance is analyzed. Through a handstand pendulum of numerical simulation results prove that the validity of the method of design; According to "three wastes" boiler bed temperature control system, design based on disturbance observer adaptive sliding mode control scheme, the use of strict Lyapunov method to prove the stability of the closed-loop system, numerical simulation of the closed-loop system, the results show that the method converges fast, robust, able to meet the control requirements.
     2. To design SISO system based on fuzzy disturbance observer based adaptive sliding mode control system, a detailed analysis of the dynamic observation system and the performance of the closed loop system proved that the closed-loop signals are bounded. And promotes the conclusion, in view of the MIMO system, design of adaptive sliding mode control system, the adaptive parameter is introduced in the dynamic interference observation error and the switching function is strictly proved the closed loop system, the signals are bounded. Take three wastes boiler host vapor temperature as the control object, designing sliding mode control based on the Fuzzy disturbance observer, under the situation of all disturbance unknown, realizing the temperature follow-up control, the simulation result shows this control method good.
     3. The LS-SVM used in Drum water level predictive control of the three waste boiler, the least squares support vector machine as a predictive model to its feedback correction control strategy, rolling optimization. It can effectively solve the difficulties in rolling optimization and nonlinear systems built mode online. Simulation results verify the method is effective.
     4. The overall design for the 55T/h three waste boiler in Yuxi Galaxy chemical, and then detailed description for the specific design of the control system; then take waste boiler drum water level control system for example, using PID algorithm to design and implementation. Finally gives the operation interface of the system. Through the actual operation of the system, the results showed that the thesis design of the waste boiler control and energy-saving effect are both well. The author further study should do the combination of the results of theoretical studies in this thesis and the reality, to further enhance and improve control system performance and energy efficiency.
引文
[1]王淅芬.基于炉内温度场可视化的燃烧优化控制方法研究:[博士学位论文].华中科技大学,2005
    [2]丁黎明.玉溪银河化工厂55t/h三废锅炉DCS系统的设计与实现:[硕士学位论文].昆明理工大学,2010
    [3]陈亮.循环流化床锅炉建模及其智能控制系统的研究:[博士学位论文].浙江大学,2005
    [4]马强.循环流化床锅炉燃烧系统建模与控制系统研究:[博士学位论文].华北电力大学,2009
    [5]孙剑.大型循环流化床锅炉燃烧系统特性与建模研究:[博士学位论文].华北电力大学,2010
    [6]许荣政.Q130/850-35-3.82/450型三废混燃余热锅炉的设计.余热锅炉,2006,1:5-7
    [7]Utkin V I. Variable structure systems with sliding modes [J]. IEEE Transactions Automatic Control,1977,22(2):212-222
    [8]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [9]K B Park.Terminal sliding mode control of second-order nonlinear uncertain systems [J].Int. J. Robust Nonlinear Control,1999,9:769-780
    [10]庄开宇.变结构控制理论若干问题研究及其应用[D].杭州:浙江大学,2002
    [11]Man Z H, Paplinski A P, Wu H R, A robust MIMO terminal sliding mode control scheme for rigid robot manipulators [J]. IEEE Transaction on Automatic Control,1994,39:2464-2469
    [12]Shuanghe Yu, Xinghuo Yu, Robust global Terminal sliding mode control of SISO linear uncertain systems [A]. Proceeding of the 35th Conference on Decision and Control[C], Sydney, Australia, Dec,2000
    [13]Xinghuo Yu, Zhihong Man, Fast Terminal sliding mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2004,49(2):261-265
    [14]Utkin A, Guldner J, Shi J X, Sliding mode control in electromechanical system[M]. Taylor & Francis,1999
    [15]D Munoz, D Sbarbaro, An adaptive sliding mode controller for discrete nonlinear systems[J]. IEEE Trans. on Industrial Electronics,2000,47(3):574-581
    [16]J M Carrasco, Sliding mode control of a DC/DC PWM converter with PFC implemented by neural networks[J]. IEEE Trans. on Circuits and Systems A:Fundamental Theory and Applications,1997,44(8):743-749
    [17]Zhou D, Mu CD, Xu WL, Adaptive silding mode guidance of a homing missile[J], Journal of Guidance, Control and Dynamics,1999,22(4):589-592
    [18]McGeoch DJ, McGookin EW, Houston SS, MIMO Sliding Mode Attitude Command Flight Control System For A Helicopter [A]. In:AIAA Guidance, Navigation, and Control Conference and Exhibit [C], San Francisco:AIAA,2005:1-15
    [19]张德江,张袅娜,冯勇.参数不确定柔性机械手的快速终端滑模控制[J].控制与决策,2010,25(3):433-436.
    [20]袁雷,吴汉松.船舶航向控制的多滑模鲁棒自适应设计[J].控制理论与应用,2010,27(12):1618-1622
    [21]郑雪梅,李琳,徐殿国.双馈风力发电系统最大风能追追踪踪滑模变结构控制[J].控制理论与应用,2010,27(7):923-926
    [22]米阳,潘伟,井元伟.一类不确定时滞系统的模糊滑模控制[J].控制与决策,2006,21(11):1280-1284
    [23]吴立刚,凌明祥,王常虹,曾庆双.自适应滑模控制具有状态和输入时滞的不确定系统[J].电机与控制学报,2005,9(5):443-448
    [24]唐功友,吕杉杉,董瑞.双馈风力发电系统最大风能追追踪踪滑模变结构控制[J].控制理论与应用,2010,27(7):923-926
    [25]逢海萍,刘成菊,庄克玉,刘建芳.同时含状态和输入时滞系统的最优滑模控制[J].系统仿真学报,2006,18(2):727-730
    [26]丁虎,张健沛.船用锅炉蒸汽压力系统的滑模预测控制[J].哈尔滨工程大学学报,2010,31(8):1039-1042
    [27]刘欣然,高峰.锅炉汽包水位系统的AFSMC—PID串级控制研究[J].华北电力大学学报,2009,36(3):87-91
    [28]杜兴阳,陶世成.循环返烧式三废混燃炉的技术特点及经济效益[J].革新与综述,2008,98(6):13-14
    [29]张武,管恩运.双速床三废流化混燃炉运行总结[J].小氮肥,2008,36(4):18-19
    [30]白林波.造气炉三废混燃余热发电技术[J].中国特种设备安全,2007,23(5):45-47
    [31]丁黎明,周支元.基于PCS7的化工厂三废锅炉控制系统[J].计算技术与自动化,2010,29(4):40-43
    [32]Richalet J. and Rault A. Model predictive heuristic control awlication to industrial process. Automatica,1978,VOL.14,No.1:413-428
    [33]Rouhani R. and Mehra R. K. Model algorithmic control(MAC):basictheorytical properties. Automatica,1982,VOL.18,No.4:401-414
    [34]Culter C. R. and Ramaker B. L. Dynamic matrix control a computer controlalgorithm. Proc. JACC,San FanciSCO,1980
    [35]张庆武,吴刚,凌青等.并列运行电站锅炉主蒸汽温度先进控制[J].中国科学技术大学学报,2006,36(8):840-844
    [36]丁虎,张健沛.船用锅炉蒸汽压力系统的滑模预测控制[J].哈尔滨工程大学学报,2010,31(8):1039-1042
    [37]向立志,张喜东,李荣等.多变量预测控制在锅炉燃烧系统中的应用[J].化工自动化及仪表,2006,33(2):20-24
    [38]黄磊,梁绍华,李秋白等.锅炉在线燃烧优化系统设计特点及应用[J].中国电力,2008,41(1):60-62
    [39]赵清明,孔令君,郭蓓等.锅炉智能吹灰优化系统研发与应用[J].中国电力,2007,40(2):36-39
    [40]张铁军,吕剑虹,华志刚等.机炉协调系统的模糊增益调度预测控制[J].中国电机工程学报,2005,25(4):158-165
    [41]弓岱伟,孙德敏,郝卫东等.基于多模型切换阶梯式广义预测控制的电站锅炉主汽温控制[J].中国科学技术大学学报,2007,37(12):1488-1493
    [42]FEI Hong-ju,张广明,QIU Chun-ling等.基于改进型Elman网络的锅炉预测控制算法研究[J].计算机工程与设计,2008,29(15):3987-3988,4063
    [43]董陵,沈炯,李益国等.基于免疫原理的模型预测控制方法及其在过热汽温控制中的应用[J].自动化与仪器仪表,2005,1:27-31
    [44]黄超,徐向东.基于全局动态模型的锅炉主汽温GPC优化控制[J].清华大学学报(自然科学版),2008,48(2):228-231
    [45]许丽佳,龙兵,王厚军等.基于LSSVM-HMM的发射机故障预测研究[J].仪器仪表学报,2008,29(1):21-26
    [46]唐春霞,阳春华,桂卫华等.基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究[J].仪器仪表学报,2010,31(3):689-693
    [47]江田汉,束炯.基于LSSVM的混沌时间序列的多步预测[J].控制与决策,2006,21(1) :77-80
    [48]王宇红,黄德先,高东杰等.基于LS-SVM的非线性预测控制技术[J].控制与决策,2004,19(4):383-387
    [49]孙丽萍,范宇,张冬妍等.基于LSSVM的木材干燥在线建模研究[J].仪器仪表学报,2009,30(9):1991-1995
    [50]李春茂,肖建,张玥等.基于LS-SVM的网络化控制系统自适应预测控制[J].系统仿真学报,2007,19(15):3494-3498,3502
    [51]李炜,石连生,梁成龙等.基于粒子群优化的VB-LSSVM算法研究辛烷值预测建模[J].仪器仪表学报,2009,30(2):335-339
    [52]周开军,阳春华,牟学民等.基于泡沫特征与LS-SVM的浮选回收率预测[J].仪器仪表学报,2009,30(6):1295-1300
    [53]王晓兰,张万宏,王慧中等.基于小波变换和AR-LSSVM的非平稳时间序列预测[J].控制与决策,2008,23(3):357-360
    [54]姚宁杰,王爱华.提高工业锅炉效率的新课题——“锅炉房三废的零排放”[J].京铁科技通讯(太原刊),2002,1
    [55]白林波.造气炉三废的处理与综合利用[J].节能,2006,11:47-49
    [56]徐文伟.合成氨—造气三废流化混燃炉开车运行总结[J].小氮肥,2006,1:10-13
    [57]彭思尧等.合成氨造气“三废”流化床混燃炉的可行性研究和推广价值[J].小氮肥,2001,7:14-15
    [58]宋锦海,陆继东,林志杰等.模糊控制在循环流化床锅炉中的应用[J].工程热物理学报,1998,19(5)
    [59]易扬,易飞,郎文鹏等.模糊控制在循环流化床锅炉床层温度控制中的应用[J].工业仪表与自动化装置,1995,19(5)
    [60]马宝萍,司凤琪,徐治皋等.基于遗传算法的循环流化床锅炉床温控制模糊控制系统[J].中国电机工程学报,2001,21(11)
    [61]赵日晖,边立秀.PID参数模糊自整定循环流化床床温控制系统[J].自动化技术与应用,2003,22(8)
    [62]唐世明.引进410曲循环流化床锅炉床温控制[J].四川电力技术,1998(2)
    [63]马昱.基于干扰观测器的终端滑模控制研究[J],自动化仪表,2011,32(2):19-22
    [64]Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8:338-353.
    [65]Zadeh L A. Outline of a new approach to the analysis ofcomplex systems and decision processes[J]. IEEE Tran. Systems, Man,and Cybernetics,1973,3(1):28-44.
    [66]Mamdani E H. Applications of fuzzy algorithms for simple dynamic plant[J]. Proc. IEE Control and Science,1974,121(12):1585-1588.
    [67]Sugeno M and Nishida M. Fuzzy control of model car[J]. Fuzzy Sets and Systems,1985, 16(2):103-113.
    [68]Yasunobu S and Miyamoto S. Automatic train operation system by predictive fuzzy control[M]. Industrial Application of Fuzzy Control. North—Holland,1985,1-18.
    [69]檀文原,杨平.自由度PID锅炉过热汽温调节系统的研究[J].太原理工大学学报,1995,26(2).
    [70]陈博川.采用KMM对纯延迟系统实现Smiht控制的研究[J],湖南电力技术,1995,(2)
    [71]牛培峰.循环流化床锅炉汽温控制自适应解祸控制系统[J].自动化学报.1999,25(1)
    [72]L. X. Wang, Fuzzy systems are universal approximators[A], Proceedings of IEEE Conference on Fuzzy Systems [C], San Diego,1982:1163-1170
    [73]Kim E. A fuzzy disturbance observer and its application to control[J], IEEE Transactions on Fuzzy Systems,2002,10(1):77-84
    [74]J. E. Slotine and W. Li. Applied nonlinear control [M], Upper Saddle River, NJ: Prentice-Hall,1991
    [75]曹小玲.基于水位晃荡的余热锅炉汽包水位动态仿真建模研究:[博士学位论文].上海交通大学,2006
    [76]程萍.基于最小二乘支持向量机的非线性广义预测控制[D].太原理工大学,2010
    [77]刘涵,李琦,刘丁等.基于最小二乘支持向量机的电站锅炉空预器热点检测系统研究[J].中国电机工程学报,2005,25(3):147-152
    [78]相征,张太镒,孙建成等.基于最小二乘支持向量机的非线性系统建模[J].系统仿真 学报,2006,18(9):2684-2687
    [79]司利云,林辉,刘震等.基于最小二乘支持向量机的开关磁阻电动机建模[J].中国电机工程学报,2007,27(6):26-30
    [80]阎威武,朱宏栋,邵惠鹤等.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496
    [81]冯志刚,信太克规,王祈等.基于最小二乘支持向量机预测器的传感器故障检测与数据恢复[J].仪器仪表学报,2007,28(2):193-197
    [82]高异,杨延西,刘军等.模糊遗传滚动优化的LS-SVM预测控制研究[J].系统仿真学报,2007,19(6):1277-1280
    [83]郭辉,刘贺平,王玲等.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报,2006,18(7):2033-2036,2051
    [84]穆怀萍,刘石,李志宏等.最小二乘支持向量机可视化燃烧/排放关联特性的研究[J].中国电机工程学报,2006,26(12):161-165
    [85]刘斌,苏宏业,褚健等.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402
    [86]J.A.K. Suykens Vandewalle J.. Chaos control using least-squares support vector machines. International Journal of circuit theory and applications,1999,27:605-615
    [87]J.A.K. Suykens, J. De Brabanter, L. Lukas, et al. Weighted least squares support vector machines:robustness and sparse approximation. Neurocomputing,2002,48:85-105
    [88]Yan Weiwu, Zhu Hongdong, Shao Huihe. Soft Sensor Modeling Based on Support Vector Machines. Journal of System Simulation (China),2003,15(10):1494-1496
    [89]华志刚.先进控制方法在电厂热工过程控制中的研究与应用:[博士学位论文].东南大学,2006
    [90]朱齐丹,冷欣.基于约束预测控制的增压锅炉汽包水位系统研究[J].哈尔滨工程大学学报,2009,30(11):1246-1250
    [91]向立志,史运涛,高东杰等.基于支持向量机N4SID辨识模型的非线性预测控制[J].控制与决策,2007,22(5):549-553
    [92]李玉军,汤晓君,刘君华等.粒子群优化算法在改善传感器稳定性中的应用[J].仪器仪表学报,2010,31(8):1756-1762
    [93]刘向杰,殷冲,侯国莲等.联合循环电厂余热锅炉的监督预测控制策略[J].中国电机 工程学报,2007,27(20):52-58
    [94]王应应,林红权,高东杰等.燃气锅炉燃烧系统的预测控制[J].控制工程,2007,14(21):11-14
    [95]冯冬青,徐学红,费敏锐等.神经网络广义预测控制在锅炉燃烧系统中的应用[J].自动化仪表,2006,27(6):18-21
    [96]李春茂,肖建,张玥等.网络控制系统的时延估计和自适应预测控制[J].西南交通大学学报,2007,42(2):175180
    [97]张荫芬,史运涛,孙德辉等.一种基于输出模型的预测控制器工业实现途径[J].仪器仪表学报,2008,29(8):1761-1766
    [98]段黎明,周艳君,石红武等.一种注汽锅炉蒸汽干度控制方法[J].控制与决策,2006,21(9):1077-1080
    [99]朱玉璧,程相利,陶新建等.智能控制在锅炉燃烧优化中的应用[J].中国电机工程学报,2008,28(11):82-86
    [100]段黎明,周艳君,石红武等.注汽锅炉蒸汽干度的模糊前馈-反馈控制[J].仪器仪表学报,2006,27(7):720-724
    [101]Xu L, Krzyzak A, Suen C Y. Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition [J], IEEE Transactions on Systems,1992,22(3): 418-435
    [102]Zhu Jiayuan, Yang Yun, Zhang Hengxi, Wang Zhuojian. Data Prediction with Few Observation Based on Optimized Least Squares Support Vector Machines. Acta Aeronautical et Astronautica Sinaca (China),2004,25(6):565-568
    [103]Zheng Xiaoxia, Qian Feng. Application of Least Squares Support Vector Machine within Evidence Frame Work in PTA Process. Journal of Chemical Industry and Engineering (China), 2006,57(7):1612-1616
    [104]Liu Han, Liu Ding, Zheng Gang, Liang Yanming, Song Nianlong. Natural Gas Load Forecasting Based on Least Squares Support Vector Machine. Journal of Chmical Industry and Engineering (China),2004,55(5):828-832
    [105]李明.循环流化床锅炉控制系统[J].清华大学学报(自然科学版),2002,42(5):665—668
    [106]郭广颂,张松炜.基于DCS的循环流化床锅炉床温模糊控制技术[J].自动化与仪表, 2008,23(10):39-40