用户名: 密码: 验证码:
压电加速度计有限元模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对国内外压电加速度计研发现状充分调研的基础上,应用有限元分析方法建立了压电加速度计典型结构的有限元模型。仿真与实验研究验证了有限元仿真在压电传感器研发中的可行性和有效性。
     在压电加速度计中,压电元件将机械振动产生的应力转换成电荷输出,通常以单自由度弹簧质量系统作为其解析模型,利用压电学的机电耦合理论分析压电结构的静动态性能。通过解析—实验验证相结合的方法完成性能指标的修正。
     有限元法已经成为一种高效、准确、经济的设计手段。以变分原理和剖分插值为基础,将连续的无限自由度问题变为离散的有限自由度问题。有限元分析法对于处理耦合场问题有更独到的优势,在以压电材料作为主要研究对象的压电声学换能器以及智能材料研究领域,有限元法快速发展成一种新型实用的研究机电耦合效应的数值处理方法。
     本文在研究压电有限元模型在压电换能器和智能结构研究与应用文献的基础上,运用压电有限元模型对压电加速度计性能进行仿真分析,给出了利用有限元仿真软件ANSYS的建模步骤和计算方法,对压电有限元分析方法在压电加速度计技术指标仿真的应用进行了深入研究。构建了压电加速度计的有限元模型。
     通过对三角剪切结构,压缩式结构和平面剪切结构压电加速度计的仿真与实验研究,用数值仿真结果与标定数据进行了比对分析,仿真结果与实际标定数据有良好的一致性,验证了有限元仿真在压电传感器的研发中的可行性和有效性。尤其是对压电加速度计频率特性的分析与预测,达到了准确的数值化水平,仿真误差均小于10%。
     对典型结构压电加速度计的结构和结构元件以及压电元件性能参数因素进行了仿真研究,分析了压电结构的应力分布、电荷分布、谐振特性,有限元模型可以为压电加速度计设计指标给出定性和定量的仿真结果。
     压电结构有限元模型能对压电加速度计的设计性能进行更准确的预测,对技术指标进行更细致的仿真,并且仿真结果完全实现可视化,证明有限元法可以作为解决机械应力和应变‐电场耦合问题的强有力工具,可以成为压电加速度计的快速和柔性化设计手段,对压电加速度计研究与设计和技术指标优化具有较大的实用价值。
On the basis of full investigation on R & D status of piezoelectric accelerometer, thefinite element models of the typical structure of the piezoelectric accelerometer isestablished. Through simulation and experimental research, it shows that finite elementsimulation is valid and effective in piezoelectric sensor.
     The piezoelectric element of an accelerometers converts the stress generated byvibration into charge output. The Generally piezoelectric accelerometers have beenusing analytical model to research the single degrees of freedom spring-mass system. Thecoefficient of elasticity of the piezoelectric material and positive piezoelectric effectparameters to evaluate piezoelectric accelerometer sensitivity and frequency responsecharacteristics. The analytical and combined analytical-experimental methods are used todesign piezoelectric accelerometer and modify its specification.
     The finite element method(FEM) is an efficient, accuracy and economical method forstructure design. Based on the theory of elastic mechanics and variational andinterpolation principle , the contiguous region in the real model can be discretized intogroups of finite elements using technique, The FE analysis for the coupled field problem ismore sophisticated. FEM have become a new practical numerical simulation in the field ofacoustics and smart structure research.
     Forward electromechanical coupling piezoelectricity finite element model wasproposed to simulate the performance of piezoelectricity accelerometer and then FEM forpiezoelectric accelerometer is constructed. Modeling procedure and the calculationmethod is given in accordance with the finite element simulation software ANSYS, andexploratory study is making to the finite element analysis method which applys to thesimulation of technical indicators in the piezoelectric accelerometer. Compare numericalsimulation results with the measured data indicate that verify the practicality andeffectiveness of the finite element model of the piezoelectric accelerometer.
     Simulative and experimental research is accomplished for Delta shear mode,compressive mode and planar shear mode accelerometer respectively. The numerical simulation result and calibration data is compared and study. Good agreement is achievedbetween simulated results and calibration. It is proved that the FE modeling can beeffectively used to predict the specifications of the accelerometer. Especilly to evaluateand anlysis the frequency characteristics of piezoelectric accelerometer, its numericalresult can reach the exact level, the all simulation error is less than 10%.
     Simulative study of typical sensor structure and metal material property, piezoelectricparameter is made in the dissertation. The resonance modes, stresses and chargedistributing of piezoelectric structures are analysed. The FE model can give the results ofqualitative and quantitative analysis for the specification of the accelerometer.
     Accurate finite element computer model provides a powerful assistant for traditionalmethods. The finite element method gives more accurate forecasts to the designperformance of the piezoelectric accelerometers, and more detailed simulation tospecification, the simulation results are visualized entirely. It is proved that the FEM canbe effectively used to resolve the problem of electromechanical coupling field.The FEdeveloping technology forms the bases of fast responsiveness and flexible design ofpiezoelectric accelerometers. This study has great practical value to the piezoelectricaccelerometer design and the optimization specification.
引文
[1] Serridge M, Licht T R. Piezoelectric Accelerometer and Vibration Preamplifier Handbook[M].Denmark: Brüel&Kj rr, 1987.
    [2]扬学山.工程振动测量仪器和测量技术[M].北京:中国计量出版社, 2001: 88-99, 192-217.
    [3]董高庆.压电加速度计的原理、结构及其使用[J].测试技术学报. 1997, 11(4): 52-62.
    [4] Anthony Chu. Accelerometers Selection Based on Application. http://www.endevco.com/support/technical-support/ TP291.
    [5] Licht T. R., Scheeper P. R. Historical Perspective of Accelerometer Technologies. Transaction ofthe Institute of Electrical Engineers of Japan, 1996, 166-E(7):256-267.
    [6]俞寿鹏.航空发动机整机测振技术的发展[J].测控技术, 1984, (1): 1-6.
    [7]张福学.传感器在航空航天中的应用[J]航空电子技术. 1990, 4(2): 1-9.
    [8]高金方.振动计量测试基础[J].宇航计测技术. 1988, (4): 69-81.
    [9]董显铨,于仲敏,李京胜.标准压电加速度计研制中的若干问题[J].力学与实践,1981, (1):58-61.
    [10]于梅.石英平面剪切型标准加速度计的研制[J].现代计量测试, 1994, (6): 29-33.
    [11]王佐民.噪声与振动测量[M].北京:科学出版社, 2009: 124-138.
    [12] Stein P K A Brief History of Bonded Resistance Strain Gage from Conception toCommercialization[J]. Experimental Techniques, 1990, 14(5): 13-19.
    [13] Stein P K. The Early Strain Gage Accelerometers: the Inventors and Their Times[C]. Proceedingsof the 67th Shock and Vibration Symposium, SAVIAC, 1996, 2; 111-116.
    [14] Patrick L. Walter. Review: Fifty Years Plus of Accelerometer History for Shock and Vibration(1940–1996)[J]. Shock and Vibration, 1999, 6(4): 197-207.
    [15] Licht T R. Five Decades of Accelerometer Development at Bruel and Kjaer[C]. Proceedings ofthe 67th Shock and Vibration Symposium, SAVIAC, 1996, 2: 155-164 .
    [16] Dranetz A I. The Early Years at Gulton Manufacuring Corporation, Commercializing the FirstPiezoelectric Accelerometers in the U.S.[C]//Proceedings of the 67th Shock and VibrationSymposium, SAVIAC, 1996, 2: 93-110.
    [17] Kubler J M. Evolution of Integrated Circuit Technology in the Accelerometer[C] //Proceedings ofthe 67th Shock and Vibration Symposium, SAVIAC, 1996, 2: 137-144.
    [18] Lally J F. Evolution of Sensors for Modal Analysis[C]//Proceedings of the 67th Shock andVibration Symposium, SAVIAC, 1996, 2: 165-174.
    [19] Maier L. Evolution of Miniaturized Piezoelectric Accelerometers at Endevco[C] //Proceedings ofthe 67th Shock and Vibration Symposium, 1996, 2: 129-135.
    [20] IEEE Standard for A Smart Transducer Interface for Sensor and Actuators-Mixed-ModeCommunication Protocols and Transducer Electronic Date Sheet (TEDS) Formats. TC-9,2004http://ieee1451.nist.gov/.
    [21]美国国家仪器有限公司. Sensors Plug & Play——智能传感器测量的新标准.国外电子测量技术[J], 2004, (4): 39-41.
    [22]谭祖根.振动测量仪器[J].力学, 1976, (1): 60-66. (2): 121-127.
    [23]齐士群.振动、冲击加速度计[J].强度与环境, 1978, (2): 43-45.
    [24]何克让.美国的振动传感器——访美考查报告摘录[J].振动、测试与诊断, 1982, (1): 14-18.
    [25]桂世功.压电加速度计与压电材料[J].测控技术, 1986, (2): 41-54.
    [26]俞寿鹏.航空发动机用振动传感器的横向响应[J].测控技术, 1982, (4): 16-22.
    [27]高金芳.振动计量测试基础(二)[J].宇航计测技术, 1988, (6): 59-77.
    [28]党克,张卫红.基于一种压电式速度传感器的测振系统[J].仪器仪表学报, 2001, 22(4):168-172.
    [29]严普强,乔陶鹏.工程中的低频振动测量与其传感器[J].振动、测试与诊断, 2002, 22(4):247-253.
    [30]宋玉龙.压电加速度地震检波器及其频率响应特性分析[J].石油仪器, 2004, (4): 36-38.
    [31]卓敏.基于压电式加速度计的振动测量原理及应用[J].航空精密制造技术, 2004, 40(3):31-41.
    [32]路炜,刘黎.压电式加速度计在供水管道泄漏定位中的应用[J].传感器技术, 2005, 24(12):83-85.
    [33]陆兆丰,曹源文,秦旻.压电是加速度计在工程测振中的研究[J].重庆交通大学学报, 2008,27(4): 643-646.
    [34]牟爱霞,李东晶,李荔侠.基于压电式加速度传感器的车削过程振动故障分析[J].电工技术,2009, (10): 37-38.
    [35]孙立国,周玉文,谢文峰.城市供水管网泄漏频谱与预警参数研究[J].北京工业大学学报,2010, 36(10): 1381-1388.
    [36]邵志常.震级计及人体的振动测量概述[J].振动测试与诊断, 1983, (3): 35-43.
    [37]刘振田,宋宜.振动对人体影响的测量与分析[J].南京工学院学报, 1985, (2): 103-111.
    [38]董显铨,王觉文,李京胜.预紧力对压电加速度计性能的影响[J].力学与实践, 1980, (1):51-52.
    [39]洪文学,郭振芹.压电加速度计特性的研究[J].传感器技术, 1983, (1-2): 38-43.
    [40]洪文学.传感器数学模型[J].仪器仪表学报, 1984, 5(3): 280-285.
    [41]刘正士.压电式传感器工作时的测量误差分析[J].合肥工业大学学报, 1987, (6): 19-22.
    [42]邵志常,方启文,徐礼至.具有低瞬变温度的低频压电加速度计[J].同济大学学报,1980, (2):107-114.
    [43]刘润林.应展宽压电加速度传感器的使用频率上限[J].传感器技术, 1993, (1): 50-51.
    [44]吴来政,刘小玲.弹性敏感元件与压电传感器的精度[J].传感器技术, 1985, (1): 19-21.
    [45]庞景力.减小压电加速度计横向灵敏度的方法[J].振动与冲击., 1987, (1): 78-80.
    [46]鲁敏.一种自校准压电加速度计[J].宇航计测技术, 1995, 15(2): 57-60.
    [47]王玉田,王树山.压电式三向加速度传感器的数学模型[J].东北重型机械学院学报, 1985, (3):35-39.
    [48]王玉田,史锦珊,李志全.三维压电加速度传感器[J].传感器技术学报, 1989, (2): 49-56.
    [49]高伟,汪洋.集成探头型压电式加速度传感器研究[J].传感技术学报, 1997, (3): 65-68.
    [50]何仑.内置电路加速度计的应用研究[J].振动、测试与诊断, 1999, 19(2):.144-152
    [51]曹永上,沈其栋.内装集成芯片的压电加速度传感器[J].机电一体化, 1998, (1): 22-25.
    [52]胡子俭.低输出阻抗压电加速度计[J].传感器世界, 1997, (7): 9-14.
    [53]毕冬青,范庚森.减小压电加速度传感器横向灵敏度的有效途径[J].测试技术学报, 1996,10(2,3): 295-298.
    [54]朱目成,赵海云.压电加速度计的幅值非线性度研究[J].传感器技术, 2001, 20(9): 33-35.
    [55]张望重,李国荣,郑嘹赢,等.新型高灵敏度压电陶瓷多层膜结构加速度传感器[J].功能材料, 2004, 35(5): 624-626.
    [56]史锦珊,王玉田,李志全.一种新型压电式加速度计的设计[J].传感器技术, 1989, (2): 19-21.
    [57]李科杰.新编传感器技术手册[M].北京:国防工业出版社, 2002. 638-671
    [58] Patrick L W. The History of the Accelerometer[J]. Sound and Vibration, 2007, (1): 84-92.
    [59]袁弘义.关于测量冲击和振动的电气传感器的校准和试验之选择的美国国家标准[J].强度与环境, 1974, (3): 20-38.
    [60]于梅. 0.1Hz~50kHz直线振动幅值和相位国家计量基准系统的研究[J].振动与冲击,2007,26(7): 54-58.
    [61] Levinzon F A. Noise of Piezoelectric Accelerometer with Integral FET Amplifier[J]. IEEESensors Journal, 2005, 5(6): 1235- 1242.
    [62] Levinzon F A, Fundamental Noise Limit of Piezoelectric Aaccelerometer[J]. IEEE SensorsJournal, 2004, 4(1): 108-111.
    [63] Kollias A T, Avaritsiotis J N. A Study on the Performance of Bending Mode PiezoelectricAccelerometers[J]. Sensors and Actuators A: Phsical, 2005, 121(2): 434-442.
    [64] Wlodkowski P A, Deng K, Kahn M. The Development of High-sensitivity, Low-noiseAccelerometers Utilizing Single Crystal Piezoelectric Materials[J]. Sensors and Actuators A:Physical, 2001, 90(1-2): 125-131.
    [65] Stein1 G J, Chmúrny R, Rosík V. Compact Vibration Measuring System for In-vehicleApplications[J]. Measurement Science Review, 2011, 11(5): 154-159.
    [66] Patrick L W. Accelerometer Limitations for Pyroshock Measurements[J]. Sound and Vibration,2009, (6): 17-19.
    [67] Crescini D, Marioli D, Sardini E, et al. Large Bandwidth and Thermal Compensated PiezoelectricThick-film Acceleration Transducer[J]. Sensors and Actuators A: Physical, 2001, 87(3): 131-138.
    [68] Zhang Z C, Yang L M, Cheng Y S. Design of a Large Measurement Range PiezoelectricAccelerometer[C]//Proceedings of the World Congress on Engineering, 2009, 1: 403-406.
    [69] Choy S H, Wang X X, Chan H L W, et al. Study of Compressive Type Accelerometer Based onLead-free BNKBT Piezoceramics[J]. Applied Physics A: Materials Science & Processing, 2006,28(4): 715-718.
    [70] Hindrichsen C C, Larsen J, Thomsen E V, et al. Circular Piezoelectric Accelerometer for HighBand Width Application[J]. IEEE Sensors, 2009: 475-478.
    [71] http://www.bksv.com/AboutUs/AboutBruelAndKjaer.aspx.
    [72] http://www.kistler/accelerometer_en.
    [73] http://www.pcb.com/products/product_modifications.html.
    [74] http://www.endevco. products/custom-products/.
    [75] Licht T R, Andersen H, Jensen H B. Recent Developments in Accelerometer Design[R]. Brüel &Kj r Technical Review, 1987, (2): 1-22.
    [76] Bogue R, Doe S. Understanding the Frequency Response of Piezoelectric Accelerometers[J].Noise & Vibration Control Worldwide, 1983, 14(3): 71-74.
    [77]张中才,杨黎明,程永生.压电加速度传感器的建模方法研究[J].传感器世界, 2008, (12):16-18.
    [78]张中才,杨黎明,程永生.压电加速度传感器的固有频率计算方法研究[J].传感器与微系统,2008, 27(8): 19-22.
    [79]包绍明,胡子俭.压电加速度计结构与其输出灵敏度之间的关系[J].传感器世界, 2005, (5):26-29.
    [80]于治会.压缩式压电传感器轴向灵敏度的幅值线性度问题[J].强度与环境, 2001, (2): 62-65.
    [81]钟万思,程耿东.跨世纪的中国计算力学[J].力学与实践, 1999, 21(1): 11-16.
    [82]唐倩,易树平,詹捷.虚拟原型实验仿真技术及应用[J].重庆大学学报, 2001, 24(5): 11-13.
    [83]陈锡栋,杨婕,赵晓栋,等.有限元法的发展现状及应用[J].中国制造业信息化, 2010, 39(11):6-12.
    [84] Allik H, Hughes T J R. Finite Element Method for Piezoelectric Vibration[J]. International Journalfor Numerical Methods in Engineering, 1970, 2(2): 151-157.
    [85] Allik H, Webman K M, Hunt J T. Vibrational Response of Sonar Transducers Using PiezoelectricFinite Elements[J]. Journal of the Acoustical Society of American, 1974, 56(6): 1782-1791
    [86] Benjeddou A. Advances in Piezoelectric Finite Element Modeling of Adaptive Structural Elements:a Survey[J]. Computers and Structures, 2000, 76(1-3): 347-363.
    [87] Lerch R. Simulation of Piezoelectric Devices by Two- and Three-Dimensional Finite Elements[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1990, 37(3): 233-247.
    [88] Dalessandro L, Rosato D. Finite-Element Analysis of the Frequency Response of a MetallicCantilever Coupled With a Piezoelectric Transducer[J]. IEEE Transactions on Instrumentation andMeasurement, 2005, 54(5): 1881-1890.
    [89] Wang S Y. A Finite Element Model for the Static and Dynamic Analysis of a PiezoelectricBimorph[J]. International Journal of Solids and Structures, 2004, 41(15): 4075-4096.
    [90] Piefort V, Preumont A. Finite Element Modeling of Piezoelectric Structures[J]. ISMA, 2000,13(9): 1-17.
    [91] Varadan V V, Chin L C, Varadan V K. Finite-element Modeling of Flex Tensional ElectroacousticTransducers[J]. Smart Materials and Structures, 1993, 2: 201-207.
    [92] Hou X Y. Analysis of a Bimorph Accelerometer Using Analytical and Finite ElementModeling[J]. Sensors & Transducers Journal, 2008, 98(11): 69-82.
    [93] Gabbert U, Lefevre J, Laugwitz F, et al. Modelling and Analysis of Piezoelectric Smart Structuresfor Vibration and Noise Control[J]. International Journal of Applied Electromagnetics andMechanics, 2009, 31(1): 29-39.
    [94] Juang L H. Finite Element Modelling for a Piezoelectric Ultrasonic System[J]. Measurement,2000, 43(10): 1387-1397.
    [95] Wang B T, Chen P H. Finite Element Model Verification for the Use of Piezoelectric Sensors inStructural Model Analysis[J]. Journal of Mechanics, 2006, 22(2): 235-242.
    [96] Becker J, Fein O, Maess M, et al. Finite Element-based Analysis of Shunted PiezoelectricStructures for Vibration Damping[J]. Computers and Structures, 2006, 84(31-32): 2340-2350.
    [97] Jiana K, Friswell M I. Designing Distributed Modal Sensors for Plate Structures Using FiniteElement Analysis[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 2290-2304.
    [98] Goldberg R L, Jurgens M J, Mills D M, et al. Modeling of Piezoelectric Multilayer CeramicsUsing Finite Element Analysis[J]. IEEE Transactions. on Ultrasonics, Ferroelectrics andFrequency Control, 1997, 44(6): 1204-1214.
    [99] Lerch R. Finite Element Analysis of Piezoelectric Transducers[C]//Proceedings of IEEEUltrasonics Symposium, 1988, 2:643-654.
    [100] Cao W W. Transducer Design Simulation Using Finite Element Method[C]//Proceedings of theSPIE International Society for Optical Engineering, 1997, 3037: 103-110.
    [101] Abatan A O, Malluck J F, Tang Z B. Using Coupled-Field Finite Elements to CharacterizePiezoceramic Materials[J]. Sensors, 1998, 15(6): 46-52.
    [102] Joo H W, Lee C H, Jung H K. Identification of the Piezoelectric Material Coefficients Using theFinite Element Method with an Asymptotic Waveform Evaluation[J]. Ultrasonics, 2004, 43(1):13-19.
    [103] Elhadrouz M, Zineb T B, Patoor E. Finite Element Analysis of a Multilayer PiezoelectricActuator Taking into Account the Ferroelectric and Ferroelastic Behaviors[J]. InternationalJournal of Engineering Science, 2006, 44(15-16): 996-1006.
    [104] Xu S X, Koko T S. Finite Element Analysis and Design of Actively Controlled PiezoelectricSmart Structures. Finite Elements in Analysis and Design, 2004, 40(3): 241-262.
    [104] Lowrie F, Cain M, Stewart M. Finite Element Modelling of Electroceramics[R]. NPL Report,1999.
    [105]赵世瑛,石志飞.压电材料的一组广义变分原理[J].北方交通大学学报, 1997, 21(4):389-391.
    [107]邹贵平.压电陶瓷材料的Hamilton体系与辛正交模型[J].计算物理, 1997, 14(6): 736-739.
    [108]丁皓江,池毓蔚,国凤林,等.压电材料轴对称有限元分析[J].计算力学学报, 2000, 17(1):1-7.
    [109]曲磊.多场耦合电磁弹性体的基本理论与计算方法研究[D].合肥:合肥工业大学博士学位论文, 2011.
    [110]梁磊,王少萍,曹锋.基于ANSYS的压电陶瓷PLZT特性仿真分析[J].北京航空航天大学学报, 2008, 34(7): 853-856.
    [111]肖孙圣,张金铎,栾桂冬.压电陶瓷水听器加速度响应的有限元分析[J].应用声学, 1997,16(6): 8-13.
    [112]许欣然,葛辉良,孟洪.基于双压电晶片的矢量水听器加速度特性研究[J].声学与电子工程, 2009, (1): 37-40, 46.
    [113]莫喜平. ANSYS软件在模拟分析声学换能器中的应用[J].声学技术, 2007, 26(6): 1279-1290.
    [114]吕胜利,吕国志.压电结构的有限元分析方法[J].机械科学与技术, 1996, 15(5): 755-758.
    [115]丁根芳.层合压电智能结构的数值模拟和振动控制研究[D].合肥:合肥工业大学博士学位论文, 2008.
    [116]姜德义,郑拯宇,李林.压电陶瓷片耦合振动模态的ANSYS模拟分析[J].传感技术学报,2003, (4): 452-456.
    [117]尹林,沈亚鹏.压电类智能结构的力学行为和工程应用[J].力学进展, 1998, 28(2): 163-172.
    [118]王光灿,林宇,王丽坤,等. Cymbal换能器的有限元动力学分析[J].压电与声光, 2003,25(5): 418-421.
    [119]郭彤,李江雄,柯映林.槽钹形压电复合换能器理论建模及有限元分析[J].浙江大学学报,2005, 39(4): 569-573.
    [120]雷辉,周双娥.用ANSYS软件分析压电陶瓷的振动状态[J].湖北大学学报, 2008, 30(1):29-33.
    [121]陈晟,刘友志.基于ANSYS的PLZT圆柱状水听器分析[J].计算机仿真, 2009, 26(1):331-334.
    [122]杨新峰,苑秉成,陈立纲.压电换能器机电特性的有限元分析及实验研究[J].压电与声光,2010, 31(3): 392-398.
    [123]蔡金标,陈勇,严蔚.基于三维有限元分析的压电阻抗模型及其应用[J].浙江大学学报,2010, 44(12): 2343-2347.
    [124]赵国忠.压电材料结构优化控制方法及结构屈曲优化设计[D].大连:大连理工大学博士学位论文, 2001.
    [125]刘正兴,杨耀文,蔡炜,等.机电耦合有限单元及动力方程[J].上海交通大学学报, 1997,31(7): 54-67.
    [126] The International Society of Automation. Electrical Transducer Nomenclature andTerminology[R]. the Instrument Society of America, the ANSI MC 6.1, 1975.
    [127]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社, 2006: 320-350.
    [128]王伯雄.现代测试技术[M].北京:清华大学出版社, 2003: 419-432.
    [129] Wilson J S. Sensor Technology Handbook[M]. USA: Newnes, 2005: 137-155.
    [130] Fraden J. Handbook of Modern Sensors: Physics, Designs, and Applications[M]. USA:Springer-Verlag Inc., 2003: 301-321.
    [131] Tressler J F, Alkoy S, Newnham R E. Piezoelectric Sensors and Sensor Materials[J]. Journal ofElectroceramics, 1998, 2(4): 257-272.
    [132] Sirohi J, Chopra I. Fundamental Understanding of Piezoelectric Strain Sensors[J]. Journal ofIntelligent Material Systems and Structures, 2000, 11: 246-257.
    [133]张福学.现代压电学[M].北京:科学出版社, 2002.
    [134]盖学周.压电材料的研究发展方向和现状[J].中国陶瓷, 2008, 44(5): 9-13.
    [135]刘爽.锆钛酸铅(PZT)陶瓷材料相关技术与应用研究[D].合肥:中国科学技术大学博士学位论文, 2009.
    [136]李庆利,曹建新,赵丽媛,等. PNiTa-PZT三元系压电陶瓷性能[J].电子元件与材料, 2009,28(1): 1-3.
    [137] Kim K, Zhang S J, Salazar G, et al. Design, Fabrication and Characterization of HighTemperature Piezoelectric Vibration Sensor Using YCOB Crystals[J]. Sensors and Actuators A:Physical, 2010.
    [138] Choy S H, Wang X X, Chan H L W, et al. Electromechanical and Ferroelectric Properties of(Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 Lead-free PiezoelectricCeramics for Accelerometer Application[J]. Applied Physics A: Materials Science & Processing,2007, 89(3):775-781.
    [139] Shrout T R, Zhang S J. Lead-free Piezoelectric Ceramics: Alternatives for PZT?[J]. Journal ofElectroceramics, 2007, 19(1): 113-126.
    [140] Robert D. Sill. Minimizing Measurement Uncertainty in Calibration and Use of Accelerometers,Endevco Technical Paper TP 299.
    [141] Gabrielson T B. Mechanical-Thermal Noise in Micromachined Acoustic andVibration Sensors[J].IEEE Transactions on electron devices, 1993,(40): 903-909.
    [142] PCB,“TechSupport”, http://www.pcb.com/tech_accel.html.
    [143] T. Meydan. Recent trends in linear and angular accelerometers[J]. Sensors and Actuators1997 (A 59):43-50.
    [144] Mark Serridge, Torben R. Licht. Piezoelectric Accelerometer and Vibration PreamplifierHandbook[M]. 1987
    [145] Liu Bin. A New Single Mass Triaxial Accelerometer Modal Analysis[C]. IMAC-XXI-Conf,s8p07: 1009-1014.
    [146] B. T. Wang, P. H. Chen. FINITE ELEMENT MODEL VERIFICATION FOR THE USE OFPIEZOELECTRIC SENSOR IN STRUCTURAL MODAL ANALYSIS[J]. Journal ofMechanics, 2006, 22, (2): 235-242.
    [147] Young-Hun Lim, Senthil V Gopinathan. Finite element simulation of smart structures using anoptimal output feedback controller for vibration and noise control[J]. Smart Mater. Struct. 1999,8: 324-337.
    [148]吴浪,滕元成,李玉香.钛酸钡基无铅压电陶瓷研究的新进展[J].材料导报, 2010, 24(10):34-38.
    [149] Shufrin I, Eisenberger M. Vibration of shear deformable plates with variable thickness firstorder and higher order analyses[J]. Sound and Vibration, 2006, (290) : 465-489.
    [150] Marura S R, Prathap G. Consistency and correctness evaluation of shear deformableanisoparametric formulations[J]. International Journal of Solids and Structures 2000(37):701-713.
    [151] ANSYS公司. ANSYS动力学分析指南[M].北京:美国ANSYS公司北京办事处, 2000.
    [152]刘丽娟,董春敏.有限元分析——ANSYS理论与应用.北京:电子工业出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700