艾灸诊室可吸入颗粒的物理化学特征及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾灸疗法是以艾绒为施灸材料点燃后熏熨或温灼体表腧穴的一种外治法,是中国传统医学的主流疗法之一。此法具有温经通络、消瘀散结等作用,临床适应症范围广,尤其在预防保健方面及慢性病、疑难病的治疗方面具有疗效显著。传统艾灸过程产生大量的烟雾,随着人类文明的进步和对环境健康的关注,不少人对艾灸过程中产生烟雾的安全性提出质疑。
     可吸入颗粒物污染已经成为影响健康的主要危害因素之一,其中研究可吸入颗粒物污染与呼吸系统疾病的关系及其对健康危害效应评价是一个热点。关于艾烟的可吸入颗粒缺乏相关研究报道,临床上施灸产生的艾烟是否像传统观念中的可吸入颗粒一样对人们健康造成不良影响,或具有治疗效应,有待深入研究。
     本文以艾灸燃烧生成物的可吸入颗粒物(PM10)为研究对象,分别对2011年夏季和冬季的艾灸诊室和非艾灸诊室及室外的可吸入颗粒物(PM10)的空气质量浓度、颗粒物的显微形貌特征、粒度分布、单颗粒物的特征及化学组成、微量元素组成特征进行了系统研究,并且开展了质粒DNA氧化性损伤试验,对其安全性进行了研究。具体内容如下:
     1.艾灸诊室的PM10质量浓度水平分析结果表明,夏季和冬季的空气质量浓度水平:艾灸诊室>室外>非艾灸诊室,艾灸诊室的空气质量浓度较高。就两个不同季节比较而言,艾灸诊室的空气质量浓度较高。室内/室外PM1。的浓度比值(I/O)进行分析,结果发现艾灸诊室I/O比值大于1,说明艾灸过程中产生的艾烟是艾灸诊室内PM10升高的主要来源。
     2.使用场发射扫描电镜(FESEM)对PM10单颗粒物的显微形貌特征进行了深入的分析,艾灸诊室内PM10颗粒物类型主要包括:球形颗粒、矿物颗粒、烟尘集合体、超细未知颗粒物。发现无论夏季或冬季,艾灸诊室的球形颗粒含量比例最高。同时观察到,冬季的球形颗粒物的含量比夏季低,这可能与施灸时产生的艾烟本身化学成分及室内湿度有关,粒径主要分布在0.5~0.8μm。对照点室外的PM10中,夏季是球形颗粒物数量含量比例最大,其粒径主要分布在0.5~0.8μu,冬季是超细颗粒物的数量含量比例最大,粒径主要分布在0.2~0.3μm。
     艾灸诊室和室外体积分布为1~2.5μm的矿物颗粒物的体积比例最大。数量分布上艾灸诊室的其粒子比非艾灸诊室和室外大,但按PM10数量来判断,艾灸诊室的超细粒子分布比非艾灸诊室和室外低。
     3.艾灸诊室微量元素分析表明,无论全样还是水溶性,夏季艾灸诊室内微量元素总质量浓度最低,冬季艾灸诊室的全样微量元素总质量浓度为艾灸诊室最低,水溶性为室外最低。夏季艾灸诊室和非艾灸诊室及室外的PM10全样微量元素中Fe、Mg、Zn、Na、Al等元素浓度比较高;水溶样品中Zn、Na的元素含量比较高,夏季艾灸PM10中水溶性Ni、Pb、Cd等元素占全样比例最高,非艾灸诊室内和室外的Zn、Cd、Cs等元素全样比例最高;冬季样品中Fe、Mg、Zn、Na、Al等重金属元素浓度比较高;其中艾灸诊室、非艾灸诊室的Na元素浓度最高,室外的Zn浓度最高。冬季艾灸PM10中水溶性Fe元素占全样比例明显高,非艾灸诊室内Zn、Cd、Pb和室外的Ni、Zn、Cs等元素全样比例最高。
     富集因子分析(EF分析)结果显示,艾灸诊室、非艾灸诊室的PM10微量元素都存在不同程度的富集现象,特别是Zn、Cd、Pb、Cu等存在明显富集现象。Co、Ni、Mn、Mg、Na等元素的富集现象比较低。艾灸诊室的富集因子分析的结果显示,不同季节的艾灸诊室PM10中其元素的主要影响因素来源于艾烟和人类活动,其次为地面扬尘。
     4、质粒DNA损伤试验表明,夏季和冬季采集的样品中,艾灸诊室PM10对质粒DNA的损伤率最低,无论全样还是水溶性的TD40值,艾灸诊室和其他采样点的TD40相差比较大,艾灸诊室的颗粒物毒性远小于其他环境。而观察其他室内或室外的PM10样品内加注艾灸PM10后其损伤率变化,艾灸PM10加注后质粒DNA的其损伤率降低。分析TD40值与空气质量浓度的关系,艾灸PM10空气质量浓度与TD40值之间有相关性,其结果与其他两个采样点相反。结果说明,艾灸诊室的PM10对质粒DNA抗氧化性能力很强,具有空气消毒作用。
     结论:
     1.艾灸诊室空气中PM10含量明显增高,主要由来源于艾燃烧产生。
     2.颗粒形貌特征及微量元素特征研究表明,艾灸诊室内的PM10成分与其它环境中的PM10有着本质不同,这可能是造成其生物活性差别的根本原因。
     3.从质粒DNA损伤试验可以看出,艾烟中的PM10具有一定的抗氧化损伤的作用。
     本课题首次从艾烟可吸入颗粒PM,。研究艾燃烧生成物的安全性,研究初步证明艾烟PM10的氧化性损伤低,并且具有一定的抗氧化性作用,证明了艾烟的安全性,研究具有一定的创新性。
Moxibustion therapy is a conventional therapy of traditional Chinese medicine, which uses ignited moxa wool as the material to stimulate acupuncture points by warming. Moxibustion has the effects of warming channels and collaterals, dispelling stasis and promoting blood circulation. It has a broad range of clinical applications and is widely used as a form of external therapy to treat and prevent diseases, especially in the treatment of chronic and complicated diseases.
     Most current studies on moxibustion are focused on clinical trials and on understanding the thermal properties of moxibustion. However, as the usage of moxibustion increases along with improvements in living standards, people are becoming more concerned about the safety aspects of moxa smoke generated during moxibustion. Few studies have been done on moxa smoke and to date, no study has been found regarding the effects of inhalable particulate matter (PM10) of moxa smoke on human health.
     This dissertation studies the pollution level, morphological characteristics of particles, particle size distribution, morphological and chemical characteristics of single particles and composition of trace elements using PM10 samples collected during moxibustion in moxibustion consulting rooms. The safety aspects are investigated by studying the oxidative damage to plasmid DNA.The results are as follows:
     1. Samples for PM10w ere collected from moxibustion consulting rooms during summer and winter in 2011. The mass concentration of PM10 showed that particulate matter concentration was the highest in moxibustion consulting room, followed by the outdoor and non-moxibustion indoor samples. Moxibustion consulting rooms have a higher particulate matter concentration that is independent of the season. Analysis of the indoor/outdoor (I/O) PM10 concentration ratio showed that the I/O ratio of moxibustion consulting rooms was greater than 1, which may be attributed to the combustion products generated during the moxibustion process.
     2. Field emission scanning electron microscopy (FESEM) was used to analyze the morphological characteristics of PM10. Four types of major particles were identified, namely spherical particles, mineral particles, soot aggregates and ultrafine unidentified particles. The proportion of spherical particles in winter was lower than that in summer; however it had the highest proportion in moxibustion consulting rooms both in summer and winter. This may be due to the chemical reactions that occurred during moxibustion and also with the indoors humidity level. The size of the spherical particles in moxibustion consulting rooms was between 0.5~0.8μm. The analysis of PM10 for outdoors showed that the spherical particles constituted the largest proportion in the summer sampling, with a size distribution between 0.5~0.8μm; while ultrafine unidentified particles constituted the largest proportion in the winter sampling, with a size distribution between 0.2~0.3μm. Mineral particles contributed the most in terms of volume in the sampling for outdoors and moxibustion consulting rooms, with a size distribution between 1~2.5μm.
     3. The analysis of trace elements showed that the concentration of trace elements for both whole and water-soluble samples was the lowest in moxibustion consulting rooms for summer. For winter, the concentration of trace elements for whole samples was the lowest in moxibustion consulting rooms, while that for water-soluble trace elements was the lowest in the outdoor samples. The concentration of heavy metal elements such as Fe, Mg, Zn, Na and Al was higher in the PM10 analysis of whole samples collected in summer for all three sampling points of moxibustion consulting rooms, non-moxibust ion indoors and outdoors. Zn and Na elements had a higher concentration in water-soluble samples. The concentration of water-soluble Ni, Pb and Cd were the highest in the whole samples collected from moxibustion consulting rooms in summer, while the concentration of Zn, Cd and Cs were the highest in the whole samples collected from non-moxibustion indoor and outdoor samples. For winter samples, the concentration of heavy metals such as Fe, Mg, Na and Al was relatively higher, of which the concentration of Na was the highest in the samples for moxibustion consul ting rooms and non-moxibustion indoors, while Zn was the highest for outdoor samples.
     Enrichment factor (EF) analysis showed that the trace elements of Zn, Cd, Pb and Cu in the PM10 of moxibustion consulting rooms, non-moxibustion indoor and outdoor samples had EF values greater than 10, while the EF values of Co, Ni, Mn, Mg and Na were smaller than 10. The differences in metallic trace elements in the PM10 of moxibustion consulting rooms at different seasons may be due primarily to moxa smoke and secondarily to air composition such as dust. The sources of the particulate matter in moxibustion consulting rooms come from a combination of moxibustion combustion products, human activities and lastly from the earth's crust.
     4. The tests for plasmid DNA damage showed that the PM10 of moxibustion consulting rooms caused the least damage to plasmid DNA for both whole and water-soluble samples. The TD40 value was bigger for the samples collected from moxibustion consulting rooms, which meant that the toxicity of the particulate matter in moxibustion consulting rooms was smal ler than that inother environments. The PM10 of moxibustion consulting rooms was added to the non-moxibustion indoor and outdoor samples and it was found that the plasmid DNA damaging effects were lowered. Analysis was done between TD40 values and air quality, and it showed a correlation between TD40 values and PM10 air quality for moxibustion consulting rooms, which had differing results as compared to the other two sampling points. The results showed that the PM10 of moxibustion consulting rooms have antioxidant effects towards plasmid DNA and air disinfection effects.
引文
[1]邹瑜,林贵美,韦华芳,等.四种方法对组培室空气消毒效果的研究[J].北方园艺,2009(8):117-119.
    [2]张萍,艾叶薰蒸对门诊注射室空气消毒的探讨[J].实用护理杂志,1996,12(11):490.
    [3]蔡彩萍.母婴同室病房艾叶消毒效果观察[J].温州医学院学报,2006,36(3):296-297.
    [4]丁丽,尹莲蓉.福利机构婴儿室艾叶熏蒸空气消毒剂量的探讨[J].中国民康医学,2006,18(4):300-301.
    [5]崔培立.艾烟熏灸加凤凰衣贴敷治疗褥疮25例[J].中国民间疗法,1999,7(4):13-14.
    [6]姚玉芳,吴劲松.烟熏法临床应用举隅[J].针灸临床杂志,1998,14(1)33-35.
    [7]刘兴德.陈艾熏法治疗子宫脱垂108例[J].山东医药,1960,4(5):18.
    [8]何斌.艾烟熏治疗浸渍糜烂型足癣78例[J].中医外治杂志,2010,19(5):7-9.
    [9]秦黎虹,王炜.艾熏灸治疗外科感染的临床与实验研究[J].中国中医药信息,2000.7(6):34-35.
    [10]广东省农垦总局慢性气管炎防治组.雄黄艾叶烟治疗慢性气管炎1054例和雄黄艾叶合剂治疗慢性气管炎100例疗效观察[J].广东医学,1975,S1:38-42.
    [11]孟笑男,徐焕芳等.艾燃烧生成物对快速老化模型小鼠大脑SOD、MDA和GSH-Px的影响
    [J].环球中医药,2011,4(6):413-415.
    [12]李强,蒋伯诚等.关于艾灸烟雾化学成分的实验分析[J].黑龙江中医药,1993,4:44-46.
    [13]蒋伯成,魏莉,马春华,等.艾叶挥发成分分析[J].国土与自然资源究,1990,(2):75.
    [14]梅全喜,徐景远.艾烟的化学成分及药理作用研究进展[J].时珍国医国药,2003:2-3
    [15]大西基代.艾燃烧生成物的自由基清除作用研究[J].国外医学:中医中药分册,1992,14(3):60.
    [16]杨梅,江丹等.艾叶燃烧物清除自由基作用的观察[J].中国针灸,2009,29(7):547-549.
    [17]西谷郁子.关于艾的燃烧生成物中含有的抗氧化作用物质[J].国外医学:中医中药分册,1989,11(5):47.
    [18]张文慧,汪国华.含雄黄药艾条烟气中砷及焦油含量的测定[J].中药才,1998,21:23-25.
    [19]王玉琴.艾烟烟雾引起严重过敏反应1例[J].齐鲁护理杂志,1998,4(6):78.
    [20]李晓清,刘明.艾灸过敏1例[J].中国针灸,2000,20(1):63.
    [21]冯祯钰,安静.艾灸过敏1例[J].中国针灸,2005,25(12):899.
    [22]张艳超,杨威.艾灸过敏1例[J].北京中医,2006,25(6):366.
    [23]李红霞,刘世伟.艾灸过敏2例分析[J].中国中医急症,2008,17(6):859-860.
    [24]侯利.艾灸过敏1例[J].中医论坛,2008,5(8):1074.
    [25]李春梅.艾烟烟雾的吸入对针灸师的影响[J].国外医学.中医中药分册,1994,16(4):57-58.
    [1]So K L, Guo H, Li Y S. Long-term variation of PM2.5 levels and composition at rural, urban,and roadside sites in Hong Kong:Increasing impact of regional air pollution. Atmos. Environ.2007,41:9427-9434.
    [2]唐孝炎,李金龙,粟欣,等.大气环境化学[M].北京:高等教育出版社,1990:16-220.
    [3]邵龙义,时宗波.都市大气环境中可吸入颗粒物的研究[J].环境保护,2000,(1):24-26.
    [4]王明星.气候与环境研究[J].气溶胶与气候.2000,5(1):1-5.
    [5]蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态,2001, (1):11-15.
    [6]戴树佳.环境化学[M].北京:高等教育出版社,2001:75-84.
    [7]Allen AG, Nemitz E, Shi JP, et al. Size distributions of trace metals in atmospheric aerosols in the United Kingdom[J]. Atmospheric environment, 2001,35:4581-4591.
    [8]宋宇,唐孝炎,方晨,等.北京市能见度下降与颗粒物污染的关系[J].环境科学学报,2003,23(4):468-471.
    [9]韩毓,白志鹏,孙韧.颗粒物质量浓度对大气能见度水平影响分析[J].环境监测管理与技术,2008,20(4):60-65.
    [10]王鹏.燃煤电厂可吸入颗粒物排放及控制研究[D].浙江大学博士学位论文,2008.
    [11]VanCuren RA, Cliff S S, Perry K D, et al. Asian continental aerosol persistence above the marine boundary layer over the eastern North Pacific:Continuous aerosol measurements from Intercontinental Transport and Chemical Transformation 2002(ITCT 2K2). J. Geophys. Res.-Atmos,2005, 110(D9):Art. No. D09S90.
    [12]办公室内可吸入颗粒物污染初析[J].上海环境科学,1999,18(5):202-204.
    [13]张金萍.室内燃香烟雾空气污染特征研究[J].建筑科学2010,26(6):18-24.
    [14]US EPA, National ambient air quality standards for particulate matter nal rule[J]. Federal Register,1997,62 (138),38:651-38,701.
    [15]Chao CY,Wong KK. Residential indoor PM10 and PM2.5 in Hong Kong and the elemental compos it ion [J].2002,36:265-227.
    [16]刘阳生,沈兴兴等.北京市冬季公共场所室内空气中TSP, PM10, PM2和PM,污染研究[J].环境科学学报,2004,2(3):190-196.
    [17]张永,李心意,姜丽娟等.住宅室内空气颗粒物污染状况及其与大气浓度关系的初探[J].卫生研究,2005,卫生研究,2005,34(4):407-409.
    [18]Lee So-Dam, Kim Yun-Sin, Lee Jong-Ta,et al. Research on the connection between minute dust particles in the workplace and individual health condition [J]. Proceedings of the Korean Environmental Health Society autumn Conference,,2005,11:147-149.
    [19]李慧,邵龙义,孙珍全等.公共场所室内可吸入颗粒物的污染特征[J].环境与可持续发展,2007,2:53-55.
    [20]赵厚银,邵龙义等.北京市冬季室内空气PM10微观形貌及粒度分布[J].中国环境科学2004,24(4):505-508.
    [21]邵龙义,杨书申,时宗波等.城市大气可吸入颗粒物物理化学特征及生物活性研究[M].北京:气象出版社,2006.
    [22]李红,曾凡刚,邵龙义等.可吸入颗粒物对人体健康危害的研究进展[J].环境与健康杂志,2001,19:85-87.
    [23]张大年.城市大气可吸入颗粒物的研究[J].上海环境科学,1999,18:154-157.
    [24]周林,邵龙义等.宣威肺癌高发区冬季室内PM10的微观形貌特征[J].环境科学与技术.2010,33(1):85-88.
    [25]吴禹等.不同来源可吸人颗粒物粒径分布特征.环境与职业医学[J],2007,24(5):528-529.
    [26]史建平,梁丽绒,张燕萍等.太原市室内外空气中颗粒物污染特征[J].环境与健康杂志,2008,2(3):224-226.
    [27]董发勤,代群威,贺小春等.可吸入矿物细颗粒物与微生物的相互作用[J].岩石矿物学志,2009,28(6):611-616.
    [28]唐孝炎,李金龙等.大气环境化学[M].北京:高等教育出版社.1990.
    [29]刘永春,贺泓.大气颗粒物化学组成分析[J].化学进展,2007,19(10):1620-1631.
    [30]Conner TL, Norris GA, Landis MS, et al. Individual particle analysis of indoor, outdoor and community samples from the 1998 Baltimore particulate matter study [J]. Atmospheric Environment,2001,35:3935-3946.
    [31]Park IJ,Jang MS, Lee MH, et al.A Study on Physico-chemical Characteristics of Aerosol in Seoul Using SEM-EDX [J]. Korea,Society for Atmospheric Environment 2008,2A4:144-145.
    [32]邵龙义,杨书申,时宗波等.城市大气可吸入颗粒物物理化学特征及生物活性研究[M].北京:气象出版社,2006.
    [33]李卫军,邵龙义等.城市雾天单个矿物颗粒物理和化学特征[J].环境科学,2008,29(1):253-258.
    [34]邵龙义,赵厚银等.室内PM10对DNA氧化性损伤及其与微量元素组成关系[J].自然科学道展.2005,15(4):417-422.
    [35]庄马展,杨红斌,王坚等.厦门大气可吸入颗粒物离子成分特征研究[J].现代科学仪器,2006,6:92-95.
    [36]Laden F, Schwartz J, Speizer FE, et al. Reduction in fine particulate air pollution and mortality:Extended follow-up of the Harvard Six Cities study [J]. American journal of respiratory and critical care medicine,2006, 173:667-672.
    [37]Chuang KJ,Chan CC,Su TC, et al. Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases[J]. Journal of occupational and environmenta 1 medicine,2007,49:610-617.
    [38]任艳军,李秀央,陈坤等.大气颗粒物污染与脑卒中死亡的病例交叉研究[J].中华流行病学杂志,2008,29(90):226-229.
    [39]Chapman RS,Watkinson WP, Dreher KL,et al. Ambient particulate matter and respiratory and cardiovascular illness in adults:particle--borne transition metals and the heart-lung axis[J]. Environmental Toxicology and Pharmacology,1997,4:331-338.
    [40]Zhao Y,Wang S,Aunan K,et al.Air pollution and lung cancer risks in China a meta-analysis [J].Sci. Total Environ,2006,366:500-513.
    [41]Hong YC, Leem JH, Ha EH, Christiani DC. PM10 exposure,gaseous pollutants and daily mortality in Inchon[J]. South Korea. Envrion Health Perspect,1999; 107(11):873-878.
    [42]Lee JT, Shin D, Chung Y. Air pol lution and dai ly mortality in Seoul and Ulsan, Korea[J]. Environ Health Perspect 1999a; 107:149-154.
    [43]Anne Gulland. Air pollution responsible for 600,000 premature deaths world wide. BMJ,2002,325:1380.
    [44]魏复盛,胡伟,吴国平等.空气污染对儿童肺功能指标影响的初步分析[J].中国环境监测,2001,(7):61-65.
    [45]魏复盛,胡伟.中国四城市空气污染及其对儿童呼吸健康影响的分析[J].世界科技研究与发展.2000,22(3):9-14.
    [46]宋伟民,陆亚松,蒋蓉芳等.室内PM10与气传真菌对大鼠肺巨噬细胞吞噬功能的影响[J].环境与职业医学,2003,20(4):257-260.
    [47]时宗波.北京市大气PM10和PM2.5的物理化学特征及生物活性研究[D].中国矿业大学(北京校区)博士论文.2003.
    [48]郑灿军,王菲菲等.大气PM2.5对原代培养大鼠心肌细胞的毒性[J].环境与健康杂志.2006,23(1):17-20.
    [49]Toseph VR. Hormesis and toxicological risk assessment[J]. Toxicol Sei,2003,71:134-136.
    [50]Pope CA.Epidemiology of fine particulate air pollution and human health:biologic mechanisms and who's at risk[J]. Environ Health Perspect, 2000,108:718-723.
    [51]Graff DW, Cascio WE, Brackhan JA, et al. Metal particulate matter component s affect gene expression and beat frequency of neonatal ratventricular myoctes[J]. Environ Health Perspect,2004,112:792-798.
    [1]沈兴兴,刘阳生,陈睿,等.我国室内空气污染研究及其防治措施[J].应用基础与工程科学学报,2002,10(4):297-303.
    [2]张望英.高层建筑、建筑材料与室内氡污染[J].重庆环境科学,2001,24(2):33-35.
    [3]周林.2010.宣威肺癌高发区室内PM10的理化性质及毒理学研究[D].中国矿业大学(北京校区)博士论文.
    [4]Li YG, Chen ZD. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations[J]. Atmospheric Environment,2003,37:4277-4285.
    [5]Dimitroulopoulou C, Ashmore MR, Byrne MA. Modeling the contribution of Passive Smoking to exposure to PM10 in UK homes[J]. Indoor+Built Environment,2001,10:209-213.
    [6]米虹.成都市医院候诊室的卫生状况调查[J].现代预防医学.2005.5:472-473.
    [7]逢冰洁.北方冬季医院空气质量评价与控制对策[J].中国医院管理.2006,26(7):32-34.
    [8]张金萍.室内燃香烟雾空气污染特征研究[J].建筑科学,2010,26(6):18-24.
    [9]周林.2010.宣威肺癌高发区室内PM10的理化性质及毒理学研究[D].中国矿业大学(北京校区)博士论文.
    [10]付晓娟.2010.医院冬季室内可吸入颗粒物物理化学特征及生物活性研究[D].中国矿业大学(北京校区)硕士论文
    [11]张永,李心意等.住宅室内空气颗粒物污染状况及其与大气浓度关系的初探[J].卫生研究.2005.34(4):407-409.
    [12]赵厚银,邵龙义等.北京市冬季室内空气PM10微观形貌及粒度分布[J].中国环境科学2004,24(4):505-508.
    [1]周林.2010.宣威肺癌高发区室内PM10的理化性质及毒理学研究[D].中国矿业大学(北京校区)博士论文.
    [2]刘阳生等.2004.北京市冬季公共场所室内空气中TSP,PM10,PM2.5和PMl污染研究[J].环境科学学报,24(2):190-196.
    [3]张望英.高层建筑、建筑材料与室内氡污染[J].重庆环境科学,2001,24(2):33-35.
    [4]周林.2010.宣威肺癌高发区室内PM10的理化性质及毒理学研究[D].中国矿业大学(北京校区)博士论文.
    [5]米虹.成都市医院候诊室的卫生状况调查[J].现代预防医学.2005.5:472-473.
    [6]逢冰洁.北方冬季医院空气质量评价与控制对策[J].中国医院管理.2006,26(7):32-34.
    [7]Li YG, Chen ZD. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations [J]. Atmospheric Environment,2003,37:4277-4285.
    [8]Dimitroulopoulou C, Ashmore MR, Byrne MA. Modelling the contribution of Passive Smoking to exposure to PM10 in UK homes [J]. Indoor+Built Environment,2001,10:209-213.
    [9]廖乾初,蓝芬兰.扫描电镜原理及应用技术[J].冶金工业出版社(北京),1990:1-331.
    [10]Welton J E. SEM Petrology At las [J].1984, AAPG:1-6.
    [11]时宗波,邵龙义,李红等.北京市西北城区取暖期环境大气中PM10的物理化学特征[J].环境科学.2002,23(1):30-34.
    [12]吕森林,邵龙义.北京PM10中单个矿物颗粒的研究[J].岩石矿物杂志,2003,22(4):421-424.
    [13]Ebert M, Inerle-Hof M, Weinbruch S, et al. Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles [J]. Atmospheric Environment, 2002,36:5909-5916.
    [14]Buseck P R, P 6 sfai M. Airborne minerals and.related aerosol particles: Effects on climate and the environment[J]. Proceedings of National Academy of Science USA,1999,96:3372-3379.
    [15]吕建燚等,可吸入颗粒物研究现状及发展综述[J].环境保护科学.2005.31(4)5-8.
    [16]陈江峰.准格尔电厂高铝粉煤灰特性及其合成莫来石的实验研究[D].中国矿业大学(北京)博士学位论文,2005
    [17]孙俊民.燃煤飞灰结构演化与元素富集机制[D].中国矿业大学(北京)博士论文,1999.
    [18]刘彦飞,邵龙义,程晓霞.大气可吸入颗粒物(PMl 0)单颗粒硫化特征[J].环境科学,2010,31(11):2555-2562.
    [19]邵龙义,杨书申,时宗波,等.城市大气可吸入颗粒物物理化学特征及生物活性研究[M].北京:气象出版社,2006.
    [20]时宗波.北京市大气PM10和PM2.5的物理化学特征及生物活性研究[D].中国矿业大学(北京)博士学位论文,2003.
    [21]刘彦飞,邵龙义,程晓霞.大气可吸入颗粒物(PM10)单颗粒硫化特征[J].环境科学,2010,31(11):2555-2562.
    [22]李强,蒋伯诚等.关于艾灸烟雾化学成分的实验分析[J].黑龙江中医药,1993:44-46
    [23]蒋伯诚等.国土与自然资源研究.1990,2:75.
    [24]靳然.艾烟及艾灸生成物的化学成分研究[D].北京中医药大学博士学位论文,2010.
    [25]刘彦飞,邵龙义,程晓霞.大气可吸入颗粒物(PM10)单颗粒硫化特征[J].环境科学,2010,31(11):2555-2562.
    [26]Sun, Y., Zhuang, G., Wang, Y., et al.The air-borne particulate pollution in Beijing-concentration, composition, distribution and sources [J]. Atmospheric Environment,2004,38:5991-6004.
    [27]蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态,2001,(1):11-15.
    [28]朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(113):3-5.
    [29]李红,曾凡刚,邵龙义等.可吸入颗粒物对人体健康危害的研究进展[J].环境与健康杂志,2002,19:85-87
    [30]Lange C, Roed J. Particle size specific indoor/outdoor measurement [J]. Journal of Aerosol Science,1995,26 (suppl 1):519-520.
    [31]McMurry P H. A review of atmospheric aerosol measurements[J]. Atmospheric Environment,2000,34:1959-1999.
    [32]付晓娟.医院冬季室内可吸入颗粒物物理化学特征及生物活性研究[D].中国矿业大学(北京校区)硕士论文,2010.
    [33]Line T,Hokkonen J, Jokinierni JK,Saarikoski S, Hillamo R.Electrostatic precipitator collection efficiency and trace clement emissions from co-combustion of biomass and recovered fuel in fluidized-bed combustion[J]. Environ Sci Technol.2003,37(12):2842-2846.
    [34]Venkataraman C, Rao GU. Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion[J]. Environ Sci Technol.2001,15,35 (10):2100-2107.
    [35]Ezzati M, World Health Organization. Comparative quantification of health risks:global and regional burden of disease attributable to selected major risk factors[J]. Geneva:World Health Organization; 2004.
    [36]张大年.城市大气可吸入颗粒唔得研究[J].上海环境科学.1999,18;154-157.
    [37]D.W. Dockery, C. A. Pope III., Annu. Rev. Prblic Health,1994,15:107-132.
    [38]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J]水利学报,2004,4:67-73.
    [39]赵厚银,邵龙义等.北京市冬季室内空气PM10微观形貌及粒度分布[J].中国环境科学2004,24(4):505-508
    [1]Lan Q,He XZ. Molecular epidemiological studies on the relationship between indoor coal burning and lung cancer in Xuan Wei,China [J]. Toxicology,2004,198:301-305
    [2]何兴舟,蓝青,杨儒道等.宣威肺癌危险因素研究概述[J].卫生研究,1995,24(4):203-206.
    [3]岑世宏.京津唐城市群大气PM10和PM2.5物理化学特征及健康效应研究[D].中国矿业大学(北京)博士毕业论文,2011.
    [4]宋晓焱.煤矿区城市大气PM10的物理化学特征和毒性研究[D].中国矿业大学(北京)博士毕业论文,2010.
    [5]李炎强,胡军,等.艾叶及其烟气粒相物挥发性成分的分析[J].烟草科,2005,10(219):15-21.
    [6]唐孝炎,李金龙,粟欣,等.大气环境化学[M].北京:高等教育出版社,1990:16-220.
    [7]张元勋,王荫淞,李德禄,等.上海冬季大气可吸入颗粒物的PIXE研究[J].中国环境科学.2005,25(1):1-5.
    [8]牛生杰,张澄昌.贺兰山地区春季沙尘气溶胶的化学组分和富集因子分析[J].中国沙漠,2000,20(3):264-268.
    [9]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度[J].地质与勘探,1997,33(1):31-37.
    [10]唐孝炎,李金龙,粟欣,等.大气环境化学[M].北京:高等教育出版社,1990:16-220.
    [11]杨丽萍,陈发虎.兰州市大气降尘污染物来源研究[J].环境科学学报,2002,22(4):499-502.
    [12]米红,张文璋.实用现代统计分析方法与SPSS应用[M].北京:当代中国出版社,2000,270-290.
    [13]时宗波,邵龙义,Jones TP等.城市大气可吸入颗粒物对质粒DNA的氧化性损伤研究[J].科学通报,2004,49(7):673-678.
    [14]邵龙义,杨书申,时宗波等.城市大气可吸入颗粒物物理化学特征及生物活性研究[M].北京:气象出版社,2006,209.
    [15]MeNeilly JD, Heal MR, Bever1 and IJ. Solubletransirionmet-alseausethe prinflamrnatoryeffeetsofweldingfumesinvitro[J]. ToxieologyandAppliedPh armaeology,2004,196:95-107.
    [16]王玉秋,张林,戴树桂,等.可吸入颗粒物上铁介导的活性氧产生及其对肺损伤的影响[J].环境科学进展,1998(增刊),5:118-123.
    [17]Landsberger S, Wu D. The impact of heavy metals from environ-mental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis [J]. The Science of the Total Environment, 1995,173/174:323-337.
    [18]Evisken M P, Maistre C A, Newell G R. Health hazards of passive smoking[J]. Annual Review of Public Health,1988,9(1):47-70.
    [19]Higgins M. Risk factors associated with chronic obstructive lung disease[J]. Ann N Y Acad Sci,1991,624:7-17.
    [20]靳然.艾叶及艾灸生成物的化学成分研究[D].北京中医药大学.博士毕业论文,2010.
    [21]付晓娟.医院冬季室内可吸入颗粒物物理化学特征及生物活性研究[D].中国矿业大学(北京)硕士毕业论文,2010.
    [22]周林.宣威肺癌高发区室内PM10的理化性质及毒理学研究[D].中国矿业大学(北京)博士毕业论文,2010.
    [23]李慧.公共场所室内可吸入颗粒物物理化学及生物活性研究[D].中国矿业大学(北京)硕士毕业论文,2007.
    [24]于令达,王广甫,等.2008年北京采暖开始前后大气颗粒物化学成分及来源研究[J].环境科学学报,2010,30(1):204-210.
    [1]曹仲宏,韩天玮,胡伟等.可吸入颗粒物活性氧产生及肺损伤.城市环境空气颗粒物源解析技术国际研讨会,2003:293-302.
    [2]Shao, L. Y., Shi, Z. B., Jones, T. P., et al. Bioreactivity of particulate matter in Beijing air:Results from plasmid DNA assay. Science of the Total Environment,2006,367:261-272.
    [3]Greenwell L L, Moreno T, Jones T, et al.2002. Part icle-induced oxidative damage is ameliorated by pulmonary antioxidants. Free Radical & Medicine,32(9):898-905
    [4]Poli G,Parola M.1996. Oxidative damage and fibrogenesis. Free Radical Biology & Medicine,22:287-305
    [5]吕森林,陈小慧,吴明红,等.上海市PM2.5的物理化学特征及其生物活性研究.环境科学,2007,28(3):472-477.
    [6]李金娟,邵龙义,杨书申.可吸入颗粒物健康效应研究进展.环境与健康杂志,2006,23(2):185-188.
    [7]童永彭,倪新伯,张元勋,等.气溶胶自由基毒理学机制的研究.环境科学学报,2001,21(6):655-659.
    [8]蔡凌霜,曾昭睿等.DNA氧化损伤产物及其检测方法[J].分析测试学报,2001,20(5):88-92
    [9]德利克,埃尔森.田学文编译.烟雾警报.北京:科学出版社,1999:48-53
    [10]邵龙义,李卫军,杨书申,等.2002年春季北京特大沙尘暴颗粒的矿物组成分析.中国科学(D)辑,2007,37(2):215-221.
    [11]Fletcher, R. A. and Small, J. A. Analysis of individual collected particles. In:Willeke, K., Baron, P. A. (Eds.), Aerosol Measurements: Principles, Techniques and Appl ications. Van Norstrand Reinhold, New York, 1993:260-295
    [12]王金海,赵天平等.艾烟临床安全性评价的思考[J],上海针灸杂志.2010,29(1):6-8
    [13]姜文全,崔彩萍等.艾叶熏蒸用于母婴同室空气消毒[J],西北药学杂志.2002,17(2):80-81
    [14]ATSDR (Agency for toxic substances and disease registry). Toxicological profile information sheet,2003
    [15]Amborz H B, Bradshaw T K, Kemp T J, et al. Role of iron ions in damage to DNA; influence of ionizing radiation, UV light and H2O2. Journal of Photochemistry and Photobiology A. Chemistry,2000,142:9-18
    [16]Imrich A, Ning Y Y. Kobzik L. Insouble components of concentrated air particles mediated alveolar macrophage responses in vitro. Toxicity and Applied pharmacology,2000,167:140-150
    [17]兰蕾,张国山等.艾烟的应用和不良反应研究进展[J],中华中医药学刊.2012,30(1):48-51
    [18]王金海,赵天平等.艾烟的安全性思考与评价[J],上海针灸杂志.2010,29(1):6-8
    [19]张国山,兰蕾等.艾烟空气消毒的研究进展[J],世界中西医结合杂志.2011,6(11):1006-1009
    [20]靳然.艾叶及艾灸生成物的化学成分研究[D],北京中医药大学,博士论 文,2010年.