也门共和国西北地区Wadi Sharas造山型金矿床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造山型含金石英脉系统构成一类后生贵金属矿床,他们形成于太古代至新生代的同构造和附近的峰期变质俯冲增生杂岩中,有超过3亿年的地球历史跨越。这一类金矿床是典型变形,变质的中成地壳块体,特别是在空间上与主要地壳构造有关。
     Wadi Sharas造山型金矿位于也门西北部,哈杰区东北部,新元古代的阿拉伯-努比亚地盾(ANS)西北部的哈杰绿岩带,目前正在勘探中。区域上包含了大量的后生金矿床,赋存在变质地体变形绿片岩内,构造走向NNW,倾向NE。控矿的去域信构造带变质火山沉积组合和变质火山组合之间的接触部位带。Wadi Sharas地区被为倾向NE的俯冲带之后的残余的新元古代岛弧或大陆边缘弧。这些层序中侵入了钙碱性和碱性的泛非(600Ma)岩体,包括辉长岩、伟晶岩、花岗岩。研究的矿床(WadiSharas1,Wadi Sharas2和Alharirah)金成矿作用在变质火山沉积岩中发生。成矿出现在后峰期变质,受构造控制。
     哈杰绿岩带是新元古代Afif地块(Nabitah造山带)金矿成矿作用的关键地区。新元古代,阿拉伯-努比亚地盾的岩石基本上都是年轻的,在性质上,是来自地幔源产生的新大陆地壳。
     在阿拉伯和非洲东北部新元古代阿拉伯-努比亚地盾的特点是有两个主要类型的变形带。老的变形带是东至北东向蛇绿岩的弧弧缝合线,是在大约800至700Ma之间,由洋内岛弧和弧后地体发生碰撞的过程中形成的。唯一的例外是阿拉伯地盾东部缝合线为NW向。年轻的变形带,被称为后增生的结构,N至NW向构构造,横切弧弧缝合线。这些变形带缩短了阿拉伯-努比亚地盾与冈瓦纳古陆的东、西交汇部分。在阿拉伯-努比亚地盾后增生构造包括(包括其他构造)由于670-610Ma E至W定向缩短发育的N向缩短直立褶皱,以及形成于约640-560Ma的NW向左旋的走滑断层(Abdelsalam,1994)。这项工作涉及老的缝合构造上叠加的N向缩短区和NW向走滑断层。
     阿拉伯地盾西部Afif地块和Hijaz-Asir洋弧地块的碰撞产生了Nabitah造山运动(Nabitah造山带),于约640Ma结束。绿片岩和角闪岩相Wadi Sharas1,Wadi Sharas2和Alharirah中的镁铁质和长英质岩石是拉斑至钙碱性的,具有典型的弧地球化学特征。
     哈杰绿岩带代表一个古老的火山岛弧,演化历史复杂,其中包括两期区域变质作用,三次主要的花岗岩浆侵入,以及与两大变形事件有关的四世构造。主要的区域变质作用是低P-T事件,一般属于绿片岩-角闪岩相。
     剪切带与早期的区域变形事件(D1)有关,这也造成了NW面理和E-W向的褶皱。第二次区域变形阶段(D2)导致了在NNE向发育弱的右旋剪切带和NS向寄生褶皱。NW向的脆性断裂形成于D1和D2韧性构造之后。
     区域和岩相学观察表明,变质火山岩局部受青磐岩化和绢云母蚀变影响。变沉积岩普遍发育硅化,绢云母化,碳酸盐化。变质火山沉积岩和岩脉/岩床也被矿化带中的方解石±石英细脉切割。
     角闪岩,黑云石英片岩的地球化学特征表明至少有两个不同的前碰撞构造环境,在阿拉伯地盾的碰撞时期并置。这一新的证据提出至少有一个明显的新构造意味着Wadi Sharas碰撞前的历史。在哈杰蛇绿岩岩石年龄和地球化学特征基础上,认为WadiSharas中洋(MO)在新元古代时期是一个成熟的大洋。
     矿物学研究上,建立了共生序列由四个热液阶段组成(D2和D3),基本符合Wadi Sharas金矿主要变形事件。D2阶段金沉淀的主要时期,随后,D3阶段,它的特点是更加多样化矿石矿物,包括贱金属和硫化物矿物。富As的黄铁矿受控于陡倾矿体,很可能在各个深度构造连接是以通道的方式,通过富As(D3)热液向上迁移。
     在上述地质研究的基础上,结合流体包裹体的研究结果和围岩的年龄,我们认为,Wadi Sharas主要成矿作用是属于造山型金矿成矿作用。与断裂带和剪切带有关的Wadi Sharas造山型金矿,处于地壳中等深度的新元古代变质沉积和变质火山沉积内,约2.3-1.3Ga,在绿片岩相条件下,联合褶皱和变质。我们相信,这些矿床的形成是沿Afif体增生或碰撞的会聚边缘,与板块俯冲相关。金低于在Wadi Sharas黄铁矿中Au的溶解度而存在被认为金成矿作用是后生起源的证据。
     Wadi Sharas表壳岩由黑云母石英片岩,透闪石,绿泥石片岩,角闪片岩,蛇纹岩,大理石,石墨片岩和镁铁质-超镁铁质岩组成,是强烈变形的近N–S向近直立剪切带。矿床主要赋存在哈杰群中元古代变质岩中,由两套韧性剪切带构造控制。
     与金矿化密切相关的是沿韧性剪切带强烈的热液蚀变,具有典型的绿片岩相蚀变组合,绢云母+绿泥石+方解石+黑云母+石英。从矿体至围岩的蚀变带为,内部毒砂-绢云母带,中间碳酸盐带,外部黑云母-绿泥石带。矿化位于剪切带变质沉积岩内,在空间上接近岩脉/岩床。形成于脆性条件下。硫化物组成主要为毒砂,黄铁矿,磁黄铁矿,闪锌矿,方铅矿和黄铜矿。
     我们认为,目前哈杰绿岩带金矿化主要由三种类型组成:1)脉状、浸染状分布的硫化物和金,2)剪切带中含金石英脉,3)方解石硫化物石英细脉。金为细粒(2μm),与毒砂,黄铁矿和磁黄铁矿密切伴生。在毒砂,黄铁矿中以裂隙金和包裹金存在。在围岩的硅酸盐基质中也可见细粒金。金通常与毒砂,磁黄铁矿和黄铁矿共存,且局限在各种伸展的石英硫化物±碳酸盐脉中,位于近NW-SE和NS向,陡倾的剪切带内,围岩为角闪岩相变质火山沉积岩。哈杰花岗岩包围表壳岩的狭长地带。
     我们的初步观察表明,在三个研究矿床中(Wadi Sharas1,Wadi Sharas2,Alharirah),矿体有着类似的构造,共生组合和热液蚀变特征。矿体由白色的石英脉(>60vol%),碳酸盐(铁白云石),电气石,绢云母和硫化物组成。
     矿体延长南至Wadi Sharas,北至WadiAlharirah,超过30公里的距离。Wadi Sharas造山型金矿热液蚀变的特点,包括钙硅酸盐蚀变,硫化,不明显的硅化,电气石化,碳酸盐化。
     蚀变矿物组合表明矿床形成在绿片岩和角闪岩变质相环境,表明成矿作用在中成深度。大约90%的金矿形成在Alharirah约5km宽的接触变质带,而在Wadi Sharas1和Wadi Sharas2约2km范围内,其中大多数都集中在含硫化物石英脉中。
     本文测试6个流体包裹体,使用吉林大学地球科学学院地质流体实验室LinkamTHSM-600型冷热台。我们得到了成矿流体均一温度,盐度,密度和压力,并计算出的典型矿床的成矿深度。
     通过观测含二氧化碳气泡(密度达0.98g/cm3)的包裹体,石英晶体中的流体包裹体形成的PT条件为温度180-380°C和压力达400-600MPa。假设静岩负载,估计的结晶压力约6-7公里深。盐度范围从1到22wt%。Wadi Sharas矿床,碳酸盐-石英-金脉中,主要为含水包裹体,有少量含CO2流体包裹体。单个流体包裹体组合内的CO2包裹体均一温度的一致性,被解释为水占主导地位,少量CO2流体是碳酸盐脉和金成矿作用的成矿流体。
     Wadi Sharas矿床富砷,钡,汞,钼,硫,锑,碲,铊和钒。它的经济金浓度与硫化矿物的同位素组成有关,但不与其总丰度相关。
     矿化显示富集钙,总硫,砷,银,金,锑,锡,钨,铅,铋,镉,硒和汞,而钾,钠略亏损,近端矿带的热液蚀变组合是透辉石,钙质角闪石,黑云母,电气石。
     本论文讨论了Wadi Sharas金矿的地质背景,岩相学,矿物学,构造,地球化学,流体包裹体分类及测试结果,这些特征支持另一种解释。以往的研究已建立的地质学,矿物学,岩石学,地球化学(浓度金属),构造和分布,但金矿物学性质和成因模型仍不完善。
     本次研究的结果表明,Wadi Sharas地区金矿成因类型为造山型金矿,虽然与造山后的岩脉/岩床空间密切,但与该区的造山后岩浆活动无关。
My Ph.D program is planned to be done in Wadi Sharas gold deposit atHajjah city, northwestern Republic of Yemen. The orogenic gold depositoccurs in Neoproterozioc Hajjah metamorphic belt (Nabitah orogenic belt).Gold minerals are found mainly as native metale into types of ore zones.i.e.
     1) Gold deposit in quartz veins;2) Gold deposit in disseminated sulfidesand quartz veinlets and3) Gold deposit in disseminated to massivebase-metal sulphide.
     The aims of this study are to:(1) address the geochemistry and origin ofthe ore fluids involved in the Group of the Sharas gold deposit; in order toexplain the geochemistry of the ore bearing fluids,(2) determine theparagensis sequence and characterize ore minerals in the deposits,(3) providedata on ore depositional conditions,(4) characterize each mineralizing eventand the evolution of Au-bearing ore fluids,(5) to establish genesis models forthe deposits, emphasising structural control, hydrothermal alteration andcharacteristics of the mineralizing fluids, and (6) identify the distribution ofgold, its chemistry, paragenesis and mineralogy to provide a mineralogicalbasis of ore processing. Meeting these aims will help to identify differencesbetween mineralized and barren systems and to constrain the favorableenvironment for localization of similar gold mineralization.
引文
[1] Abdelsalam A G, Liégeois, J P, Stern R J. The Saharan metacraton. Journal of AfricanEarth Sciences,2002,34:119-136.
    [2] Agar R A. Stratigraphy and paleogeography of the Siham group: direct evidence for alate Proterozoic continental microplate and active continental margin. London Journalof Geological Society,1985,142:1205–1220.
    [3] Al-Saleh A M, Boyle A P. Neoproterozoic ensialic back arc spreading in the easternArabian Shield; geochemical evidence from the Halaban Ophiolite. African Journal ofEarth Sciences,2001a,33(1):1-15.
    [4] Al-Saleh A M, Boyle A P. Structural rejuvenation of the eastern Arabian Shield duringcontinental collision:40Ar/39Ar evidence from the Ar Ridayniyah ophioliticm′elange.African Journal of Earth Sciences,2001b,33(1):135-141.
    [5] Barley M E, Groves D I. Supercontinent cycles and the distribution of metal depositsthrough time. Geology,1992,20:291-294.
    [6] Berger B R. Descriptive model of low-sulphide Au–quartz veins. In: Cox, D.P., Singer,D.A. Eds. Mineral Deposit Models. U.S. Geological Survey, Bull,1986,1693:183-186.
    [7] Bohlke J K. Orogenic metamorphic-hosted gold–quartz veins. U.S. Geological Survey,Open-file Rep.,1982,795:70-76.
    [8] Bonavia F F, and Chorowicz J. Neoproterozoic structures in the Mozambique orogenicbelt of south Ethiopia. Precambrian Research,1993,62:307-322.
    [9] Boullier A. M, Firdaous K, and Robert F. On the significance of aqueous fluidinclusions in gold-bearing quartz veins deposits from the southeastern Abitibisubprovince (Quebec, Canada): Economic Geology,1998,216-223.
    [10] Bowers T S, and Helgeson H C. Calculation of the thermodynamic and geochemicalconsequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations ingeologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and
    [11] Caby R. Petrological and structural observations from the Nuqrah area and someremarks concerning the crustal history of the northern Najd Province, Saudi Arabia. In:Pan-African Crustal Evolution in Arabia and northeast Africa.(Edited by AI Shanti, A.M.) Precambrian Research,1982,16: A11-A12.
    [12] Charvet J, Shu L S, Shi Y S, Guo L Z, Faure M. The building of South China:collision of Yangtze and Cathaysia blocks, problems and tentative answers. JSoutheast Asian Earth Sciences,1996,13:223-225.
    [13] Collins A S, Pisaversky S A. Amalgamating eastern Gondwana: the evolution of theCircum-Indian Orogens. Earth Sciences. Rev.,2005,71:229-270.
    [14] Colvine A C, Fyon J A, Heather K B, Marmont S, Smith P M, Troop D G. Archeanlode gold deposits in Ontario. Geological Survey Ontario Miscellaneous Paper,Ontario, Canada, vol.,1988,139.
    [15] Colvine A C. An empirical model for the formation of Archean gold deposits.Products of final cratonization of the Superior Province, Canada. In: Keays, R.R.,Ramsay, W.R.H., Groves, D.I. Eds. The Geology of Gold Deposits: The Perspective in1988. Economic Geology Monogr,1989,6:37-53.
    [16] Cook N J, Chryssoulis S L. Concentration of “Invisible gold” in the commonsulfides. Can Mineral,1990,28:1-16.
    [17] Cox S F, Sun S S, Etheridge M A, Wall V J and Potter T F. Structural andgeochemical controls on the development of turbidite-hosted gold quartz vein deposits,Wattle Gully mine, Central Victoria, Australia. Economic Geology,1995,1722-1746.
    [18] Danyushevsky L, Robinson P, McGoldrick P, Large R, Gilbert S. LA-ICPMS ofsulphides: evaluation of an XRF glass disc standard for analysis of different sulphidematrixes. Geochim Cosmochim Acta,2003,67:A73.
    [19] DeRonde C E J, Spooner E T C, de Wit M J, Bray C J. Shear zone-related, Au quartzvein deposits in the Barberton greenstone belt, South Africa: field and petrographiccharacteristics, fluid properties and light stable isotope geochemistry. EconomicGeology,1992,87:366-402.
    [20] Doebrich J L, Zahony S G., Leavitt J D, Portacio J r, J S, Siddiqui A A, Wooden J L.,Fleck R J, Stein H J. Ad Duwayhi, Saudi Arabia: geology and geochronology of aNeoproterozoic intrusion-related gold system in the Arabian shield. EconomicGeology.,2004,99:713-741.
    [21] Dunai T J, Baur H. Helium, neon and argon systematic of the Europeansubcontinental mantle: implications for its geochemical evolution. GeochimCosmochim Acta,1995,59:2767-2783.
    [22] Eilu P, Mikucki E J. Alteration and primary geochemical dispersion associated withthe bulletin lode-gold deposit, Wiluna, Western Australia. Journal of GeochemicalExploration,1998,63:73-103.
    [23] Elder D, Cashman S M. Tectonic control and fluid evolution in the Quartz Hill,California, Lode Gold Deposits. Economic Geology,1992,87:1795-1812.
    [24] Elmer F L, Powell R, White R W, and Phillips G N. Timing of gold mineralizationrelative to the peak of metamorphism at Bronzewing, Western Australia: EconomicGeology,2007,379-392.
    [25] Fleet M E, Mumin H. Gold-bearing arsenian pyrite and marcasite and arsenopyritefrom Carlin Trend gold deposits and laboratory synthesis. Am Mineral,1997,82:182-193.
    [26] Fleet M E, Chryssoulis S L, MacLean P J, Davidson R, Weisener C G. Arsenianpyrite from gold deposits: Au and As distribution investigated by SIMS and EMP,and color staining and surface oxidation by XPS and LIMS. Can Mineral,1993,31:1-17.
    [27] Genkin A D, Bortnikov N S, Cabri LJ, Wagner F E, Stanley C J, Safonov Y G,McMahon G, Friedl J, Kerzin AL, Gamyanin GN. A multidisciplinary study ofinvisible gold in arsenopyrite from four mesothermal gold deposits in Siberia,Russian Federation. Econ Geol,1998,93:463-487.
    [28] Goldfarb R J, Leach D L, Pickthorn W J and Paterson C J. Origin of lode-golddeposits of the Juneau gold belt, southeastern Alaska: Geology,1988,16:440-443.91.
    [29] Goldfarb R J, Leach D L, Rose S C, Landis G P. Fluid inclusion geochemistry ofgold-bearing quartz veins of the Juneau Gold Belt, southeastern Alaska: implicatiosfor ore genesis. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of golddeposits: the perspective in1988. Economic Geology Monogr,1989,6:363-375
    [30] Goldfarb RJ, Miller LD, Leach DI, Snee LW. Gold deposits in metamorphic rocks ofAlaska. Mineral deposits of Alaska. Econ Geol Monogr,1997,9:151–190.
    [31] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a globalsynthesis. Ore Geology Review,2001,18:1-75.
    [32] Goldfarb R J, Baker T, Dubé B, Groves D I, Hart C J and Gosselin P. Distribution,character, and genesis of gold deposits in metamorphic terranes. In Hedenquist, J.W.,Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology100thAnniversary Volume,2005,407-450.
    [33] Groves D I. The crustal continuum model for late-Archean lode gold deposits of theYilgarn Block, Western Australia. Mineralium Deposita,1993,28:366-374.
    [34] Groves D I, Ridley J R, Bloem E M J, Gebre-Mariam M, Hagemann S G, Hronsky JM A, Knight J T, McNaughton N J, Ojala J, Vielreicher R M, McCuaig T C, HolylandP W. Lode gold deposits of the Yilgarn Block: products of late-Archean crustal-scaleoverpressured hydrothermal systems. In: Coward, M.P., Ries, A.C.(Eds.), EarlyPrecambrian Processes. Geological Society of London, London,1995,155-172.
    [35] Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. Orogenic golddeposits: a proposed classification in the context of the crustal distribution andrelationship to other gold deposit types. Ore Geology Reviews,1998,13:7-27.
    [36] Groves D I, Goldfarb R J, Robert F, Hart C J R. Gold deposits in metamorphic belts:overview of current understanding, outstanding problems, future research, andexploration significance. Economic Geology,2003,98:1-29.
    [37] Haeberlin Y. Geological and structural setting, age, and geochemistry of the orogenicgold deposits at the Pataz province, Eastern Andean Cordillera, Peru. PhD thesis,Université dé Genéve, Terré et Environment,2002,182
    [38] Haeberlin Y, Moritz R and Fontboté L. Paleozoic orogenic gold deposits in theeastern Central Andes and its foreland, South America: Ore Geology Reviews,2003,22:41–59.
    [39] Haeberlin Y, Moritz R and Fontboté L. Carboniferous orogenic gold deposits at Pataz,Eastern Andean Cordillera, Peru: Geological and structural framework, paragenesis,alteration, and40Ar/39Ar geochronology. Economic Geology, v.,2004,99:73-112.92
    [40] Harris N B W, Gass I G and Hawkesworth C J. A geochemical approach toallochthonous terranes: a Pan-African case study. Philosophical Transactions RoyalSociety London A,1990,331:533-548.
    [41] Hedenquist J W, Lowenstern J B. The role of magmas in the formation ofhydrothermal ore deposit. Nature,1994,370:519-527.
    [42] Henley R W and Brown K L. A practical guide to the thermodynamics ofgeothermal fluids and hydrothermal ore deposits. In Reviews in Economic Geology,Geology and Geochemistry of Epithermal systems. Berger B R and Bethke P M eds.Society of Economic Geologists,1985,25-44.
    [43] Hua R M, Li X F, Zhang K P, Qiu D T, Yang F G. Geochemical features ofore-forming fluid in the Jinshan gold deposit, Jiangxi province. J Nanjing University(Natural Sciences),2002,38(3):408-417.
    [44] Jia Y, Li, X Kerrich R. A fluid inclusion study of Au-bearing quartz vein systems inthe Central and North Deborah deposits of the Bendigo gold field, central Victoria,Australia: Constraints on the origin of ore-forming fluids: Economic Geology,2000,95:467-496.
    [45] Jia Y, Li X and Kerrich R. Stable isotope (O, H, S, C, and N) systematics of quartzvein systems in the turbidite-hosted Central and North Deborah gold deposits of theBendigo gold field, central Victoria, Australia: Constraints on the origin ofore-forming fluids: Economic Geology,2001, v.96:705-721.
    [46] Jia Y, Li X and Kerrich R. Metamorphic origin of ore-forming fluids for orogenicgold-bearing quartz vein systems in the North American Cordillera: Constraints froma reconnaissance study of δ15N, δD, and δ18O: Economic Geology,2003,98:109–123.93.
    [47] Jiang S H, Nie F J, Liu Y. Gold Deposits in Beishan Mountain, Northwestern China.Resource Geology,2004,325-340.
    [48] Johan Z, Marcoux E, Bonnemaison M. Arsénopyrite aurifère: mode de subsitutionde Au dans la structure de FeAsS. C R AcadSci (Paris),1989,308:185-191.
    [49] Johnson P R, Stewart I C F. Magnetically inferred basement structure in central SaudiArabia. Tectonopysics,1995,245:37-52.
    [50] Johnson P R, Woldehaimanot B. Development of the Arabian-Nubian Shield;perspectives on accretion and deformation in the northern East African Orogen andthe assembly of Gondwana; Proterozoic East Gondwana; supercontinent assemblyand breakup, vol.206. Geological Society Special Publications,2003,289-325.
    [51] Kerrich R. The stable isotope geochemistry of Au-Ag vein deposits in metamorphicrocks: Mineralogical Association of Canada Short Course Handbook,1987,13:287-336.
    [52] Kerrich R, Goldfarb R, Groves D and Garwin S. The geodynamics of world-classdeposits: Characteristics, space-time distribution, and origins. S G. Hagemann and PE. Brown eds. Gold in2000: Society of Economic Geologists, Reviews inEconomic Geology,2000,501-551.Kendrick MA, Burgess R, Pattrick RAD, TurnerG. Fluid inclusion noble gas and halogen evidence on the origin of Cuporphyrymineralizing fluids. Geochim Cosmochim Acta,2001,65:2651-2668.
    [53] Kozlowski A, Metz P. Fluid inclusion studies in quartz from the reportedlygold-bearing veins from Lower Silesia, SW Poland. Proc. International Symp. onGold Geology and Exploration, Shenyang,1989,731-735.
    [54] Kroè ner, A. Ophiolites and the evolution boundaries in the Late ProterozoicArabian-Nubian Shield of Northeast Africa and Arabia. Precambrian. Res.,1985,27,277-300.
    [55] Lang J R. Fluid inclusion study of the La Herradura deposit, Caborca, Sonora,Mexico: Petrography and microthermometry results. Report prepared for MineralPenmont S.A.,2003,29.
    [56] Leitch C H B, Godwin C I, Brown T H and Taylor B E. Geochemistry of mineralizingfluids in the Bralorne-Pioneer mesothermal gold vein deposits, British Columbia,Canada: Economic Geology,1991,86:318-353.
    [57] Lenoir J J, KQster D, Li~geois J P, Utke A, Haider A and Matheis G. Origin andregional significance of Late Precambrian and early Palaeozoic granitoids in the PanAfrican Belt of Somalia. Geo/ogische Rundschau,1994,83:624-641.
    [58] Li X F, Hua R M, Mao J W, Ji J F. A study of illite Kübler Indexes and chloritecrystallinities with respect to shear deformation and alteration, Jinshan gold deposit,East China. Resource Geology,2003,53(4):283-292.
    [59] Li X F, Mao J W, Wang C Z, Watanabe Y. The Daduhe gold district at the easternmargin of the Tibetan Plateau: He, Ar, S, O and H isotopic data and theirmetallogenic implications. Ore Geol Rev,2007,30:244-256.
    [60] Liou J G, Wang, X, Coleman R G, Zhang Z M, Narytana S. Blueschists in majorsuture zones of China. Tectonics,1989,8:609-619.
    [61] Liu H T, Liu J M, Sun S H, Zhai M G. Shear-hosted mesothermal vein system in theJiapigou goldfield, northeastern China: implication for subsequent exploration.Resource Geology,2003,53:1-10.
    [62] Maddox L M, Bancroft G M, Scaini M J, Lorimer J W. Invisible gold: comparisonof Au deposition on pyrite and arsenopyrite. Am Mineral,1998,83:1240-1245.
    [63] McClenaghan S H, Lentz D R, Cabri L J. Abundance and speciation of gold inmassive sulfides of the Bathurst mining camp, New Brunswick, Canada. CanMineral,2004,42:851-871.
    [64] McCuaig T C, Kerrich R. P-T-t-deformation-fluid characteristics of lode golddeposits: evidence from alteration systematics. Ore Geol Rev,1998,12:381-453.
    [65] Meert J G. A synopsis of events related to the assembly of eastern Gondwana.Tectonophysics,2003,362:1-40.
    [66] Meert, J.G., Torsvik, T.H. The making and unmaking of a supercontinent Rodiniarevisited. Tectonophysics,2003,375,261–288.
    [67] Mengist Teklay, Kr6ner A and OberhAnsli R. Reconnaissance Pb Pb zircon ages fromthe Precarnbrian rocks in eastern and southern Ethiopia and an attempt to definecrustal provinces. In: Geoscientific Research in Northeast Africa.(Edited byThorweise, U. and Schandelmeier, H.) Balkema, Rotterdam,1993,133-158.
    [68] Mernagh T P, Heinrich C A, Mikucki E J. Temperature gradients recorded by fluidinclusions and hydrothermal alteration at the Mount Charlotte gold deposit,Kalgoorlie, Australia. Can Mineral,2004,42:1383-1403.
    [69] Mikucki E J. Hydrothermal transport and depositional processes in Archeanlode-gold systems: a review. Ore Geol Rev,1998,13:307-321.
    [70] Morey A A, Tomkins A G, Bierlein F P, Weinberg R F, Davidson G J. Bimodaldistribution of gold in pyrite and arsenopyrite: examples from the Archean Booraraand Bardoc shear systems, Yilgarn Craton, Western Australia. Econ Geol,2008,103:599-614.
    [71] Mumin AH, Fleet ME, Chryssoulis SL. Gold mineralization in As-rich mesothermalgold ores of the Bogosu–Prestea mining district of the Ashanti Gold Belt, Ghana:remobilization of “invisible” gold. Mineral Deposits,1994,29:445–460.
    [72] Neumayr P, Cabri L J, Groves D I, Mikucki E J, Jackman J A. The mineralogicaldistribution of gold and relative timing of gold mineralization in two Archeansettings of high metamorphic grade in Australia. Can Mineral,1993,31:711-725.
    [73] Nie F J. Type and distribution of gold deposits along the northern margin of the NorthChina Craton, People’s Republic of China. International Geology Review,1997,39:151-180.
    [74] Nugus M, Blenkinsop T, Biggam J, Doyle M. The role of early-formed structure inlode gold mineralisation: the Sunrise Dam gold Mine, Yilgarn Craton, WA. In:Hancock H et al (eds) Best practice and innovation in global mine geology,29May–3June. Publication64. Economic Geology Research Unit, School of EarthSciences, James Cook University, Townsville, Queensland,2005a,99.
    [75] Nugus M, Blenkinsop T, McLeod T, Doyle M, Kent M. Structural control of goldmineralisation by reactivation of back thrusts at Sunrise Dam Gold Mine, YilgarnCraton, WA. In: Hancock H et al (eds) Best practice and innovation in global minegeology,29May–3June. Publication64. Economic Geology Research Unit, Schoolof Earth Sciences, James Cook University, Townsville, Queensland,2005b,99.
    [76] Oberthür T, Mumm A S, Vetter U, Simon Kand Amanor J A. Gold mineralization inthe Ashanti belt of Ghana: Genetic constraints of the stable isotope geochemistry:Economic Geology,1996,91:289-301.
    [77] Oberthür T, Weiser T, Amanor J A, Chryssoulis S L. Mineralogical sitting anddistribution of gold in quartz veins and sulfide ores of the Ashanti mine and otherdeposits in the Ashanti belt of Ghana: genetic implications. Mineral Deposits,1997,32:2-15.
    [78] Pals D W, Spry P G. Telluride mineralogy of the low-sulfidation epithermal Emperorgold deposit, Vatukoula, Fiji. Mineral Petrol,2003,79:285-307.
    [79] Pallister J S, Stacey J S, Fischer L B Premo W R. Arabian Shield ophiolites and LateProterozoic micro-plate accretion. Geology,1987,15:320-323.
    [80] Pallister J S, Stacey J S, Fischer L and Premo W R. Precambrian ophiolites of Arabia:Geologic settings, U-Pb geochronology, Pb-isotope characteristics, and implicationsfor continental accretion. Precambrian Research,1988,38:1-54.
    [81] Pokrovski G S, Kara S, Roux J. Stability and solubility of arsenopyrite, FeAsS, incrustal fluids. Geochim Cosmochim Acta,2002,66:2361-2378.
    [82] Prudishly. C. Interpretation of a seismic refraction survey across the Arabian Shield inwestern Saudi Arabia. Tectonics,1985,111:247-282.
    [83] Putnis A. Mineral replacement reactions: from macroscopic observations tomicroscopic mechanisms. Mineral Mag,2002,66:689-708.
    [84] Qiu, Y.M., McNaughton, N.J., Groves, D.I., Miao, L.C., Guan, K., Luo, Z.K., Qiu,Y.S. Regional geological controls and genesis of the gold mineralization in thenorthern marginal zone of the North China Craton, China. Unpublished WA-Chinacollaborative project report: Key Centre, Department of Geology and Geophysics,University of Western Australia,1999,110.
    [85] Quick J E. Late Proterozoic transpression on the Nabitah fault system±implicationsfor the assembly of the Arabian Shield. Precambrian Research.,1991,53:119-147.
    [86] Robert F and Poulsen K H. Vein formation and deformation in greenstone golddeposits: Society of Economic Geologists, Reviews in Economic Geology,2001,14:111-155.95
    [87] Robert F, Poulsen K H, Cassidy K F and Hodgson C J. Gold metallogeny of theSuperior and Yilgarn cratons. In Hedenquist J W, Thompson, J F H, Goldfarb R J andRichards J P, eds., Economic Geology100th Anniversary,2005,1001-1033.
    [88] Roedder E, and Bodnar R J. Geologic pressure determinations from fluid inclusionsstudies. Annual Reviews in Earth and Planetary Science,1980,8:263-301.
    [89] Rushton R W, Nesbitt B E, Muehlenbachs K and Mortensen J K. A fluid inclusionand stable isotope study of Au quartz veins in the Klondike district, Yukon TerritoryCanada--a section through a mesothermal vein system: Economic Geology,1993,88:647-678.
    [90] Shackleton J M, Spry P G, Bateman R. Telluride mineralogy of the Golden Miledeposit, Kalgoorlie, Western Australia. Can Mineral,2003,41:1503-1524.
    [91] Shelton K L, McMenamy T A, Van Hees E H P and Falck H. Deciphering thecomplex fluid history of a greenstone-hosted gold deposit: Fluid inclusion and stableisotope studies of the Giant mine, Yellowknife, Northwest Territories, Canada:Economic Geology,2004,99:1643-1663.
    [92] Shu L S. The late Proterozoic terrane tectonics and collision orogenic belt in thenorth Jiangxi, eastern China. Ph.D. thesis, Nanjing University,1991,212.
    [93] Shu L S, Shi Y S, Guo L Z. Plate and terrane tectonics in the middle segment ofJiangnan orogenic belt and its collision orogenic dynamics. Nanjing UniversityPublishing House, Nanjing,1995,236.
    [94] Sibson R H. Earthquakes and rock deformation in crustal fault zones. Ann Rev EarthPlanet Sci,1986,14:149-175.
    [95] Sibson R H, Robert F A, Poulsen K H. High-angle reverse faults, fluid-pressurecycling, and mesothermal gold-quartz deposits. Geology,1988,16:551-555.
    [96] Silberman M L. Characteristics and complex history of gold-bearing quartz veinsalong the Mojave-Sonora megashear zone, northern Sonora, Mexico. In Geology andmineral resources of northern Sierra Madre Occidental, Mexico; Guidebook for the1992Field Conference, El Paso Geological Society,1992,331-336.
    [97] Silberman M L and Giles D A. Characteristics of gold deposits in northern Sonora,Mexico: A preliminary report. Economic Geology,1988,83:1966-1974.96
    [98] Simmons S F, Sawkins F J, Schlutter B T. Mantle-derived helium in two Peruvianhydrothermal ore deposits. Nature,1987,329:429-432.
    [99] Simon G, Kesler S E, Chryssoulis S. Geochemistry and textures of gold-bearingarsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold inCarlin-type deposits. Econ Geol,1999b,94:405-422.
    [100] Stacey J S, Agar R A. U–Pb isotopic evidence for the accretion of a continentalmicroplate in the Zalm region of the Saudi Arabian shield. London Journal ofGeological Society,1985,142:1189-1203.
    [101] Stern R J. Crustal evolution in the East African Orogen: a neodymium isotopicperspective. Journal of African Earth Sciences,2002a,34:109-117.
    [102] Stern R J. The Assembly and Continental Collision in the Neoproterozoic EastAfrican Orogen: Implications for the consolidation of Gondwana. Annual ReviewEarth Planetary Sciences,1994,22,319-333.
    [103] Stoeser D B and Camp V E. Pan-African microplate accretion of the Arabian Shield.Bull. Geological Society of America.1985,36:817-826.
    [104] Stoeser, D. B. Distribution and tectonic setting of plutonic rocks of the ArabianShield. Journal African Earth Sciences,1986,4,21-46.
    [105] Stoeser, D.B., Stacey, J.S. Evolution, U–Pb geochronology, and isotope geology ofthe Pan-African Nabitah orogenic belt of the Saudi Arabian shield. In: El-Gaby, S.,Greiling, R.O.(Eds.). The Pan-African Belt of Northeast Africa and Adjacent Areas.Vieweg and Sohn, Braunschweig/Weisbaden,1988, pp.227–288.
    [106] Stoeser D B, Frost C D. Nd, Pb, Sr, and O isotopic characterization of SaudiArabian shield terranes. Chemical Geology,2006,226:163-188.
    [107] Tarnocai C A, Hattori K, Cabri L J.“Invisible” gold in sulfides from the Campbellmine, Red Lake greenstone belt, Ontario: evidence for mineralization during thepeak of metamorphism. Can Mineral,1997,35:805–815.
    [108] Vail J R. Panafrican (Late Precambrian) tectonic terranes and the reconstruction ofthe Arabian-Nubian Shield. Geology,1985,13:839-842.
    [109] Vaughan J P. The process mineralogy of gold: the classification of ore types. JOM,2004,56:46-48.
    [110] Windley B F, Razafiniparany A, Razakamanana T and Ackermand D. Tectonicframework of the Precambrian of Madagascar and its Gondwana connections: areview and reappraisal. Geologische Rundschau,1994,83:642-659.
    [111] Windley B F, Whitehouse M J, Mahfood A O and Ba-Bitat M A O. EarlyPrecambrian gneiss terranes and Pan-African island arcs in Yemen: crustal accretionof the eastern Arabian Shield. Geology,1996,24:131-134.
    [112] Wu X, Deldove F. Hydrothermal synthesis of gold-bearing arsenopyrite. EconomicGeology,1989,84:2029-2032.
    [113] Xia F, Zhou J, Brugger J, Ngthai Y, O’Neill B, Chen G, Pring A. A novel route tosynthesize complex metal sulfides: hydrothermal coupled dissolution-reprecipitation reactions. Chemical Material,2008,20:2809-2817.
    [114] Xia F, Brugger J, Chen G, Ngothai Y, O’Neill B, Punis A, Pring A. Mechanism andkinetics of pseudomorphic mineral replacement reactions: a case study of thereplacement of pentlandite by violarite. Geochim Cosmochim Acta,2009,73:1945-1969.
    [115] Yang S, Blum N, Rahders E, Zhang Z. The nature of invisible gold in sulfides fromthe Xianxi Au–Sb–W ore deposits in northwestern Hunan, People’s Republic ofChina. Can Mineral1998,36:1361–1372.
    [1116] Zhao G C, Wilde S A., Cawood P A, Sun M. Archean blocks and their boundariesin the North China craton: lithological, geochemical, structural and P–T pathconstraints and tectonic evolution. Precambrian Research,2001,107:45-73.
    [117] Zhou XM, Zhu Y H. Late Proterozoic collisional orogen and geosuture insoutheastern China: petrological evidence. Chin J Geochem,1993,12(3):239-251.
    [118] Zhu Y F, Zeng Y S, Jiang N. Geochemistry of the ore-forming fluids in golddeposits from the Taihang Mountains, Northern China. International GeologyReview,2001,43:457-473.