用户名: 密码: 验证码:
基于飞秒激光Z-scan技术的纳米复合材料非线性光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合材料是具有较大应用前景的非线性光学材料,其特有的尺寸效应和可裁剪性一直以来得到广泛关注。但如何对纳米复合材料进行深入非线性光学特性研究,仍然缺乏有力的工具。为了解决这个问题,本文针对Z-scan测试技术,在光学信号的分析提取和高精度、高效率测试系统构建方面进行了系统研究。并且利用改进的Adomian算子推导出饱和吸收的理论模型,归纳了双光子吸收,三光子吸收,多光子吸收的理论模型,在此基础上采用matlab语言实现完整的Z-scan测试数据分析软件。
     利用搭建的Z-scan测试系统和数据分析软件研究金属纳米粒子及复合纳米粒子的非线性光学特性。观察发现纳米粒子的非线性光学特性受形态、尺寸、组分及表面修饰等因素的影响,通过对测试结果定量分析总结调控纳米复合粒子非线性光学特性的设计规律,为纳米复合成为新型的非线性光学功能材料奠定基础。
     具体工作分为以下几个部分:
     1、通过选择稳定的飞秒激光光源、高精度的大面积硅光电探测器(S1337-1010BR)以及专业数字示波器的采集方案,建立飞秒Z-scan测试系统。既提高了Z-scan测试系统的测试精度,又保证了系统工作的稳定性。同时,在数字示波器的操作系统上实现Z-scan测试程序的方案,节省了PC机与测试仪器通信所消耗的实验时间。利用标准非线性吸收样品和非线性折射样品对搭建的系统进行评价,测试效率较采用PC机控制方案提高了10倍,归一化测试曲线精度达到0.01。
     2、目前Z-scan研究样品多样,测试结果存在多种非线性吸收过程。而现有的理论分析方法较为单一,无法定量分析含有饱和吸收以及多非线性吸收过程共存的样品。因此,本文从现有开孔Z-scan测试理论模型出发,利用Adomian改进算子详细推导了饱和吸收发生情况下的理论模型,并给出数值解;并归纳了双光子吸收、三光子吸收和多光子吸收收情况下的理论分析模型,以及同时存在两种不同非线性吸收过程的分析方法。采用matlab语言编写Z-scan数据分析程序,为定量分析非线性吸收样品提供了可行的解决方案。
     3、采用上述工具研究有机小分子材料的非线性吸收特性。文中选择易于与金属纳米粒子组装且非线性吸收截面较大的三种卟啉类衍生物5,10,15,20-Tetraphenyl-21H,23H-porphine,5,10,15,20-Tetrakis (4-methoxyphenyl)-21H,23H-porphine和Porphine-5,10,15,20-tetrakis,在相同的实验条件下测量他们的非线性吸收系数,发现Porphine-5,10,15,20-tetrakis的双光子吸收截面最大。希望采用表面修饰的方法,利用Porphine-5,10,15,20-tetrakis包裹金属纳米粒子,进一步增加纳米复合粒子材料的非线性吸收特性。
     4、利用Z-scan测试方法研究不同形态银纳米粒子和金棒的非线性光学特性。发现金属纳米粒子的非线性吸收特性不仅和以往报道的尺寸效应有关,同时受到其形态的调控。研究发现,粒径约为75nm的三角形银纳米粒子的SPR峰在700nm处,而粒径为35nm的圆盘形纳米粒子的SPR峰在495nm处。三角形银纳米粒子的SPR峰更接近于飞秒Z-scan探测光束波长,因此其非线性吸收随光强的增加表现为由饱和吸收向多光子吸收过渡的过程,其原因为表面等离子漂泊和带间跃迁竞争的结果。而SPR峰在495nm处的圆盘形银纳米粒子,仅发生带间跃迁引起的多光子吸收现象。随后又研究了粒径为46nm,SPR峰在710nm处金棒的非线性吸收特性,发现与三角形银纳米粒子情况相似,随探测光强增强由饱和吸收向三光子吸收变化。
     5、利用分子工程的方法分别用SiO2和聚合物PSS包裹尺寸相同的金棒,研究核壳结构对金属纳米粒子非线性吸收特性的影响。SiO2壳层引起SPR峰相对于金棒红移,PSS壳层使复合金纳米粒子的SPR峰蓝移更接近飞秒Z-scan的探测波长800nm。根据前面对金属纳米粒子的研究可以推测SiO2结构的饱和吸收现象最强。实际测量结果表明SiO2核壳结构的饱和吸收光强比包裹PSS的金棒提高了两个数量级,证实表面修饰方法能够灵敏调控纳米复合材料的非线性吸收特性。
The nanocomposites are new nonlinear optical materials with great application prospects.Because of their unique size effect and assemble easily, they have been received extensiveattention. But how to research on the nonlinear optical properties of nanocomposites deeply isstill lacks a powerful tool. To solve this problem for the Z-scan technique in optical signalanalysis extraction and high-precision, high efficiency we set up the femtosecond z-scan testsystem in this thesis. Then using the improved Adomian operator to deduce the analyticalmodels of saturable absorption and summarizes the theoretical models of two-photonabsorption, three photon absorption, multiphoton absorption. Based on these works, wedesigned software on matlab to analysis the Z-scan test results, acquired relative nonlinearoptical parameters.
     At last, by using the femtosecond Z-scan technology and the Z-scan data analysissoftware we have researched the nonlinear optical properties of metal nanoparticles and metalnanocomposites. Then we founded that the nonlinear optical properties of these nanoparticleswere influenced by the morphology, size, constituent and surface modification, et al. Throughquantitative analysis of the experiment results, we came to the summery about how to designmetal nanocomposites for control their nonlinear optical properties which make metalnanoparticles as a good candidate for new optical nonlinear materials.The detail work divided into the following several parts:
     1、For build an accurate and stable femtosecond Z-scan measurement we choose stablefemtosecond laser light source, large area silicon photoelectric detector (S1337-1010BR)with relatively high precision, and efficient collection plan with professional digitaloscilloscope which can not only enhance the precision of Z-scan measurements and ensure the stability of the system. Simultaneously, the control strategy, realize the Z-scancontrol program on the operating system of digital oscilloscope, saves the communicationtimes to transfer test data between PC and collecting instrument. This method improvedthe test efficiency by10times than using PC as controller. The Z-scan system we builtwas tested by measuring the nonlinear refraction standard sample CS2and nonlinearabsorption samples Rhodamine6B. The test results proved that the femtosecond Z-scanmeasurement works stable and correctly.
     2、With the research of diversity of materials, some other nonlinear absorption processes,which even appeared simultaneously, were observed form open aperture Z-scan traces.However, the existing analytical model is relatively homogeneous. Therefore we establishan improved modeling regarding Z-scan technique for charactering a nonlinear opticalthin absorber with saturable absorption. Subsequently we summarized analytical model oftwo-photon absorption, three-photon absorption, multi-photon absorption and saturableabsorption and according these theories the Z-scan data process program was implement.
     3、The nonlinear absorption properties of small organic molecules were characterized by thefemtosecond Z-scan system we built and analyzed by the Z-scan data process program. Inthe thesis, porphyrin derivatives, which easy assemble with metal nanoparticles, include5,10,15,20-Tetraphenyl-21H,23H-porphine,5,10,15,20-Tetrakis(4-methoxyphenyl)-21H,23H-porphine and Porphine-5,10,15,20-tetrakis were investigated. At the sameexperimental conditions, we have measured the two-photon absorption crossection ofthese three samples and chose Porphine-5,10,15,20-tetrakis, which has the largesttwo-photon absorption coefficients, as a good candidate for wrap up the metalnanoparticles in order to improve the nonlinear absorption crossection of nanocomposits.
     4、the nonlinear absorption properties of silver nanocrystals with different shape and Aunanorods were investigated. Not only the size effect the nonlinear optical properties ofmetal nanoparticles as previous reported, but also the morphology. The Ag nanoprismswith75nm size show700nm SPR peak and exhibit both negative and positive nonlinearabsorption. The nonlinear absorption process is considered to generated by ground-stateplasmon bleaching,free-carrier absorption, and interband transitions. The Ag nanodiskswith35nm show495nm SPR peak. However, Ag nanodisks displayed only positivenonlinear absorption process. The different nonlinear absorption process is attributed to the morphology influence by the Ag nanocrystals.
     5、Molecular engineering method was used to cover the same size of Au nanorods withSiO2and polymer PSS respectively. The influence of core-shell structure on the nonlinearabsorption properties of metal nanopaticles was researched. The SPR peak of SiO2structure was moved to the red direction relative to the Au nanorods, which more close tothe wavelength of laser beam and the SPR peak of PSS structure turn to the direction ofblue light. The Z-scan experimental results of the SiO2structure, Au nanorods and PSSstructure preserved that the saturable absorption process in SiO2was the most notable inthe three samples. Saturable absorption indensity of SiO2structure is two orders ofmagnitude than the PSS’s. Surface modification can change the nonlinear opricalproperties of metal nanocomposits.
引文
[1]钱世雄,王恭明.非线性光学原理与进展[M].上海:复旦大学出版社,2001.
    [2] Robert W B. Nonlinear Optics[M]. London: Academic Press,2003.
    [3] Govind Agrawal. Applications of Nonlinear Fiber Optics[M]. New Jersey: AcademicPress,2001.
    [4] Harper P, Wherrett B. Nonlinear Optics[M]. New York: Academic Press,1977.
    [5] Saleh B E A, Teich M C. Fundamentals of Photonics[M]. New York: Wiley,1991.
    [6] Chemla D S, Zyss J. Nonlinear Optical Properties of Organic Molecules and Crystals[M].Qrlando: Academic Press,1987.
    [7] Marder S R, Sohn J S, Stucky G D. Materials for Nonlinear Optics: ChemicalPerspectives[M]. ACS Symp,1991.
    [8] Zyss J. Molecular Nonlinear Optics: Materials, Physics and Devices[M]. Boston:Academic Press,1994.
    [9] Verbiest T, Houbrechts S, Kauranen M, et al. Strong Enhancement of Nonlinear OpticalProperties Through Supramolecular Chirality [J]. Science,1998,282:913-915.
    [10] Campagnola P J, Loew L M. Second-harmonic imaging microscopy for visualizingbiomolecular arrays in cells, tissues and organisms [J]. Nature Biotechnology,2003,21:1356-1360.
    [11] Alain V, Redoglia S, Blanchard-Desce M, et al. Elongated push-pull diphenylpolyenesfor nonlinear optics: molecular engeering of quadratic and cubic optical nonlinearities viatuning of intramolecular charge transfer [J]. Chemical Physics,1999,245:51-71.
    [12] Xu-Lin Zhang, Jing Feng, Jun-Feng Song, et al. Grating amplitude effect onelectroluminescence enhancement of corrugated organic light-emitting devices [J]. Opt.Lett.,2011,36:3915-3919.
    [13] Dong Wu, Si-Zhu Wu, Qi-Dai Chen, et al. Curvature-driven reversible in-situ switchingfrom pinned to roll-down surperhydrophobic states for water droplet transportation [J].Adv. Mater.,2011,23:545-549.
    [14] Ye Tian, Yong-Lai Zhang, Jin-Feng Ku, et al. High performance magneticallycontrollable microturbines [J]. Lab Chip,2010,10:2902-2906.
    [15] Hong Xia, Juan Wang, Ye Tian, et al. Ferrofluids for fabrication of remotely controllablemicro-nanomachines by two-photon polymerization [J]. Adv. Mater.,2010,22:3204-3209.
    [16] Zipfei W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in thebioscience [J]. Nature Biotechology,2003,21:1369-1377.
    [17] Coe B J. Molecular Materials Possessing Switchable Quadratic Nonlinear OpticalProperties [J]. Chem. Eur. J.,1999,5:2464-2471.
    [18] Coe B J, Foulon J D, Hamor T A, et al. Nonlinear optical materials containingmolybdenum or tungsten mononitrosyl redox centres: diaromatic azo derivatives [J]. J.Chem. Soc., Dalton Trans.,1994,23:3427-2439.
    [19] Turro N J. Molecular photochemistry [J]. Chem. Eng. News,1967,45:84-95.
    [20] Murov S L, Carmichael I, Hug G L. Handbook of Photochemistry [M]. New York:Marcel Dekker,1993.
    [21] Henglein A. Physicochemical properties of small metal particles in solution:“microelectrode” reactions, chemisorption, composite metal particles, and theatom-to-metal transition [J]. J. Phys. Chem.,1993,97:5457-5471.
    [22] Charles A W, Alexander I B. Potential Energy Surface and Vibrational Frequencies ofCarbonic Acid [J]. J. Phys. Chem.,1995,99:12125-12130.
    [23] Wang Y, Herron N. X-Ray Photoconductive Nanocomposites [J]. Science,1996,273:632-634.
    [24] Nirmal M, Dabbousi B, Bawendi M, et al. Fluorescence intermittency in single cadmiumselenide nanocrystals [J]. Nature,1996,383:802-804.
    [25] Marie P P. Optical properties of nanosized particles dispersed in colloidal solutions orarranged in2D or3D superlattices [J]. J. Chem.,1998,22:693-702.
    [26] Henglein A, Meisel D. Radiolytic control of the size of colloidal gold nanoparticles [J].Langmuir,1998,14:7392-7396.
    [27] Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical andphysical applications [J]. New J. Chem.,1998,22:1179-1201.
    [28] Link S, EI-Sayed M A. Size and temperature dependence of the plasmon absorption ofcolloidal gold nanoparticles [J]. J. Phys. Chem. B,1999,103:4212-4217.
    [29] Gomez-Romero P. Hybrid Organic-Inorganic Materials in search of synergic activity [J].Adv. Mater.2001,13:163-174.
    [30] Hichman J J, Ofer David, Laibinis P E, et al. Molecular self-assembly of two-terminal,voltammetric microsensors with internal references [J]. Sciences,1991,252:688-691.
    [31] Chen S, Ingram R S, Hostetler M J, et al. Gold nanoelectrodes of varied size: transitionto molecule-like charging [J]. Science,1998,280:2098-2101.
    [32] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science,1997,277,1078-1081.
    [33] Markovich G, Collier C P, Henrichs S E, et al. Tuning a crystal through a metal-insulatortransition [J].Acc. Chem. Res.,1999,32:415-421.
    [34] Willner I, Willner B. Molecular and biomolecular optoelectronics [J]. Pure Appl. Chem.,2001,73:535-542.
    [35] Watanabe T, Gerischer H. et al. Photoelectrochemical studies on gold electrodes withsurface oxide layer: Part II. Discrimination between the surface photoprocess andphotohole emission [J]. Journal of electroanalytical chemistry and interfacialelectrochemistry,1981,122:73-91.
    [36] Yang L, Osborne D H, Haglund R F, et al. Probing interface properties ofnanocomposites by third-order nonlinear optics [J]. Appl. Phys. A,1996,62:403-415.
    [37] Moran M J, She C Y, Carman R L, et al. Interferometric measurements of the nonlinearrefractive-index coefficient relative to CS2in laser-system-related materials [J]. IEEE J.Quanum electronics,1975, QE11:259-263.
    [38] Friberg S R, Smith P W. Nonlinear optical grasses for ultrafast optical switches [J]. IEEEJ. Quanum electronics,1987, QE23:2089-2094.
    [39] Adair R, Chase L L, Payne SA, et al. Nonlinear refractive index measurement ofglasses using three-wave frequency mixing [J]. J. Opt. Soc. Amer. B.,1987,4:875-881.
    [40] Qwyoung A. Elipse rotations studies in laser host materials [J]. IEEE J. Quantumelectron.,1973, QE-9:1064-1069.
    [1] Pendry J B. Negative Refraction Makes a Perfect Lens [J]. Physical Review Letters,2000,85:3966-3969.
    [2] Sirringhaus H, Brown P J, Friend R H, et al. Two-dimensional charge transport inself-organized, high-mobility conjugated polymers [J]. Nature,1999,401:685-688.
    [3] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science,1990,248:73-76.
    [4] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots [J]. Nature Biotechnology,2004,22:969-976.
    [5] Wu D, Wu S Z, Chen Q D, et al. Facile creation of hierarchical PDMS microstructureswith extreme underwater superoleophobicity for anti-oil application inmicrofluidic-channels [J]. Lab Chip,2011,11:3873-3879.
    [6] Xu B B, Ma Z C, Wang H, et al. A SERS-active microfluidic device with tunable surfacePlasmon resonances [J]. Electrophoresis,2011,32:3378-3384.
    [7] Ouyang X H, Zeng H P, Ji W. Synthesis, Strong Two-Photon Absorption, and OpticalLimiting Properties of Novel C70/C60Derivatives Containing Various Carbazole Units[J]. J. Phys. Chem. B,2009,113,14565-14573.
    [8] Naga Srinivas N K M, Rao S V, Rao D N. Saturable and reverse saturable absorption ofRhodamine B in methanol and water [J]. J. Opt. Soc. Am. B,2003,20:2470-2479.
    [9] Liu Z B, Wang Y, Zhang X L, et al. Nonlinear optical properties of grapheme oxide innanosecond and picosecond regimes [J]. Appl. Phys. Lett.,2009,94:021902.
    [10] Dawson A, Kamat P V. Semiconductor-Metal Nanocomposites. Photoinduced Fusionand Photocatalysis of Gold-Capped TiO2(TiO2/Gold) Nanoparticles [J]. J. Phys. Chem.B,2001,105:960-966.
    [11] Tekin S, Kurum U, Durmus M, et al. Oprical limiting properties of zincphthalocyanines in solution and solid PMMA composite films [J]. OpticsCommunications,2010,283:4749-4753.
    [12] Gu B, Wang Y, Ji W, et al. Observation of a fifth-order optical nonlinearity inBi0.9La0.1Fe0.98Mg0.02O3Ferroelectric thin films [J]. Appl. Phy. Lett.,2009,95:041114.
    [13] Sheik-Baha M, Said A A, Van S E W. Sensitive Measurement of Optical Nonlinearities[J]. Journal of Quantum Electronics,1990,26:760-769.
    [14] Gaskill J D. Linear Systems, Fourier Transforms, and Optics [M]. New York: Wiley,1978.
    [15] Weaire D, Wherrett B S, Miller A B, et al. Effect of low-power nonlinear refraction onlaser beam propagation in InSb [J]. Opt. Lett.,1974,4:331-333.
    [16] Tanaka K, Tanaka M, Sugiyama T. Creation of Strongly Localized and StronglyEnhanced Optical Near-field on Metallic Probe-tip with Surface Plasmon Polaritons [J].Optics Express,2006,14:833-846.
    [17]Oulianov D A, Tomov I V, Dvornikov A S, et al. Observations on the Measurement ofTwo-photo Absorption Cross-section [J]. Optics Communications,2001,191:235-243.
    [1] Fang H H, Chen Q D, Yang J, et al. Two-photon excited highly polarized and directionalupconversion emission from slab organic crystals [J]. Opt. Lett.,2010,35:441-443.
    [2] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science,1990,248:73-76.
    [3] Fang H H, Xu B, Chen Q D, et al. Two-photon absorption and spectral-narrowed lightsource [J]. IEEE Journal of Quantum Electronics,2010,46:1775-1780.
    [4] Fan Y X, He J L, Wang Y G, et al.2-ps passively mode-locked Nd:YVO4laser using anoutput-coupling-type semiconductor saturable absorber mirror [J]. Appl. Phys. Lett.,2005,86:101103-101106.
    [5] Medintz I L, Uyeda H T, Goldman E R. Quantum dot bioconjugates for imaging,labelling and sensing [J]. Nature materials,2005,4:435-446.
    [6] He G S, Signorini R, Prasad P N. Two-photon-pumped frequency-upconverted blue lasingin coumarin dye solution [J]. Appl. Opt.,1998,37:5720-5726.
    [7] Ehrlich J E, Wu X L, Lee I Y S, et al. Two-photon absorption and broadband opticallimiting with bis-donor stilbenes [J]. Opt. Lett.,1997,22:1843-1845.
    [8] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearitiesusing a single beam [J]. IEEE J. Quantum Electron,1990,26:760-769.
    [9] Gao Y C, Zhang X R, Li Y L, et al. Saturable absorption and reverse saturable absorptionin platinum nanoparticles [J]. Opt. Commum.,2005,251:429-433.
    [10] Ma G H, Sun W, Tang S H, et al. Size and dielectric dependence of the third-ordernonlinear optical response of Au nanocrystals embedded in matrices [J]. Opt. Lett.,2002,27:1043-1045.
    [11] Zheng C, Ye X Y, Cai S G, et al. Observation of nonlinear saturable andreverse-saturable absorption in silver nanowires and their silica gel glass composite [J].Appl. Phys. B,2010,101:835-840.
    [12] Richard D A, Sarah L W, Naomi J H, et al. Linear optical properties of gold nanoshells[J]. J. Opt. Soc. Am. B,1999,16:1824-1832.
    [13] Gu B, Huang X Q, Tan S Q, et al. Z-scan analytical theories for characterizingmultiphoton absorbers [J]. Appl. Phys. B,2009,95:375-381.
    [14] Wang J., Gu B, Wang H T, et al. Z-scan analytical theory for material with saturableabsorption and two-photon absorption [J]. Opt. Commun.,2009,283:3525-3528.
    [15] S. Wolfram, Mathematica4.0[M](Wolfram Research, Champaign,1999)
    [16] Wazwaz A M. A reliable modification of the Adomian decomposition method [J].1999,102:77-86.
    [17] Matlab help[M].
    [1] Smith K M. Porphyrins and Metalloporphyrins[M]. Elsevier,1975, Amsterdam.
    [2] Boulton. Retinal photodamage[J]. J. Photochem.&Photobio. B: Biology,2001,65:144-151.
    [3] Sagun E I, Zenkebich E I, Knyukshto V N, et al. Interaction of multiporphyrin systemswith molecular oxygen in liquid solutions: extra-ligation and screening effects[J]. Chem.Phys.,2002,275:211-230.
    [4] Milgrom L R. The colous of life [M]. Oxford University Press,1997.
    [5] Moore M R. Historical introduction to porphyrins and porphyries in biosynthesis ofheme and chlorophylls [M]. McGraw-Hill, New York,1990.
    [6] The Oxford English Dictionary, Vol. XII,2ndEd., Clarendon Press, Oxford,1989.
    [7] Gouterman M. Optical spectra and electronic structure in porphyrins [M]. D. Dolphin,Academic Press, New York,1978.
    [8] Kuster W. Hoppe-seyler’s[J]. Z. physiol. Chem.,1912,82:463-470.
    [9] Yamashita K, Harima Y, Matsubayashi T, et al. Conductance control of porphyrin solidsby molecular design and doping [J]. J. Phys. Chem.,1989,93:5311-5315.
    [10] Stegeman G. Nonlinear optical materials and devices for applications in informationtechnology, Kluwer, The Netherlands,1995.
    [11] Fang H H, Xu Bin, Chen Q D,et al. Two-photon absorption and spectral-narrowed lightsource [J]. IEEE J. Quantum Electron.,2010,46:1775-1780.
    [12] Zheng Q D, Gupta S K, He G S, et al. Synthesis, characterization, two-photonabsorption, and optical limiting properties of ladder-type oligo-p-phenylene-coredchromophores [J]. Adv. Funct. Mater.,2008,18:2770-2779.
    [13] Daniel P F, Tomomi K, Yu X D, et al. Phenolic bis-stryrylbenzenes as β-Amyloidbinding ligands and free radical scavengers [J]. J. Med. Chem.,2010,53:7992-7999.
    [14] Suja S, Bharat R B, Bhooshan K, et al. Derivatives od1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors withhypoglycemic activity [J]. Bioorg. Med. Chem.,2008,16:8643-8652.
    [15] Jitapa S, Paul M L. A water-solubilized, segmented, alternating block copolymer of a1,4-bis-styrylbenzene with polyethylene glycol [J]. Polymer,2007,48:5514-5519.
    [16] Kabe R, Nakanotani H, Sakanoue T, et al. Effect of molecular morphology onamplified spontaneous emission of bis-styrylbenzene derivatives [J]. Adv. Mater.,2009,21:1-5.
    [17] Liu J., Mao Y., Huang M J, et al. J. Three-Photon Absorption Cross-SectionEnhancement in Two Symmetrical Fluorene-Based Molecules [J]. Phys. Chem. A [J],2007,111:9013-9018.
    [18] Timothy T E, Lewis J N. Surface Plasmon Studies of Thin Silver/Gold BimetallicFilms [J]. Langmuir,1995,11:4177-4179.
    [19] Lee B. Review of the present status of optical fiber sensors [J]. Optical FiberTechnology,2002,9:57-79.
    [20] Gaugiran S, Getin S, Fedeli J, et al. Optical manipulation of microparticales and cellson silicon nitride waveguides [J]. Optics Express,2005,13:6956-6963.
    [21] Hache F, Richard D, Flytzanis. Optical nonlinearities of small metal particlessurface-mediated resonance and quantum size effects [J]. J. Opt. Soc. Am. B,1986,3:1647-1657.
    [22] Qu S L, Zhang Y W, Li H J, et al. Nanosecond nonlinear absorption in Au and Agnanoparticles precipitated glasses induced by a femtosecond laser [J]. Optical Materials,2006,28:259-265.
    [23] Qu S L, Gao Y C, Jiang X W, et al. Nonlinear absorption and optical limiting ingold-precipitated glass induced by a femtosecond laser [J].Optics Communications,2003,224:321-327.
    [24] Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of Gold Nanorods(NRs) Using Seed-Mediated Growth Method [J]. Chem. Mater.,2003,15:1957-1962.
    [25] Elim H I, Yang J, Lee J Y. Observation of saturable and reverse-saturable absorption atlongitudinal surface Plasmon resonance in gold nanorods [J]. Appl. Phys. Lett.,2006,88,083107.
    [26] Hache F, Richard D, Flytzanis C, et al. The optical Kerr effect in small metal particlesand metal colloids: the case gold [J]. Appl. Phys. Lett.,1988,47:347-357.
    [27] Ren L, Wang D, Sun G T, et al. Photonic Bandgap Properties of Atom-latticePhotonic Crystals in Polymer [J]. Chem. Res. Chinese Universities,2011,27:113-116.
    [28] Gu B, Huang X Q, Tan S Q, et al. Z-scan analytical theories for characterizingmultiphoton absorbers [J]. Appl. Phys. B,2009,95:375-381.
    [29] Jin R C, Gao Y W, Mirkin C A, et al. Photoinduced Conversion of Silver Nanospheresto Nanoprisms [J]. Science,2001,294:1901-1903.
    [30] Gao Y C, Zhang X R, Li Y I, et al. Saturable absorption and reverse saturableabsorption in platinum [J]. Opt. Commun.,2005,251:429-433.
    [31] Seo J T, Yang Q G, Kim W J, et al. Optical nonlinearities of Au nanoparticles andAu/Ag coreshells [J]. Opt. Lett.,2009,34:307-309.
    [32] Tang B J, Zheng X L, Xu S P, et al. J. Sculpturing effect of chloride ions in shapetransformation from triangular to discal silver nanoplates Phys. Chem. C,2008,112:18361-18367.
    [33] Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueoussolution and their SERS enhancement [J]. Langmuir,2008,24:10407-10413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700