超高韧性水泥基复合材料动态力学性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高韧性水泥基复合材料(Ultra-high toughness cementitious composites,简称UHTCC)是由水泥、水、增强纤维、精细骨料、以及粉煤灰和硅灰等活性矿物掺合料组成的新型工程材料,具有拉伸应变硬化能力与多缝开裂特征。该材料的静态力学性能与耐久性十分突出,由此,也寄希望于该材料能够改善地震、车载等动荷载作用环境中的混凝土结构,这就有必要对其动态力学性能进行研究。本文结合国家自然科学基金重点项目(50438010)和南水北调工程建设重大关键技术研究及应用(JGZXJJ2006-13),对UHTCC在冲击与疲劳荷载下的性能进行了试验研究,同时,对其疲劳裂纹扩展性能及理论基础——断裂性能进行了探索性的计算分析。论文主要研究内容如下:
     (1)研究了UHTCC的抗冲击性能,结果显示,UHTCC冲击试件产生的大量裂缝能有效延缓主破坏面的出现,提高其抗冲击能力,防止试件离析。对UHTCC的弯曲疲劳性能进行了试验研究,得出:在弯曲疲劳荷载作用下,UHTCC仍表现出多缝开裂特征,随应力水平的降低,裂缝数目减少,二者之间近似呈双线性关系;UHTCC试件的疲劳破坏为延性破坏,其S-N曲线具有双线性特征,原因是PVA纤维在高应力水平下发挥作用高于低应力水平的情况,且疲劳荷载下纤维的破坏方式与金属质材料类似。
     (2)研究UHTCC在弯曲疲劳荷载下的损伤模型,UHTCC的疲劳损伤为韧性损伤,可采用试件底面塑性应变εp作为损伤变量,计算损伤量D,基于弹塑性各向同性损伤模型,建立UHTCC的疲劳损伤演变方程。
     (3)对预制单边切口UHTCC梁的弯曲断裂性能进行了试验研究,并基于非线性断裂力学,采用J积分方法评价其断裂韧性。结果表明,可用开裂与失效J积分(JIC-JIF)作为评价UHTCC断裂韧性的两个指标,当流入预制切口前端塑性区的能量大于JIC时,初始裂缝出现,随后,裂缝稳定扩展,当流入塑性区的能量大于JIF时,主裂缝出现,材料进入失稳发展阶段。用宏观裂缝覆盖面积发展量△A代替单裂缝的长度扩展量△a作为描述UHTCC裂缝发展的参量,研究其JR阻力曲线:在主裂出现前,UHTCC的J-AA存在两阶段线性关系,分界点即为宏观裂缝出现点;在稳定变形阶段,UHTCC的J-△A呈线性关系,即相同面积的裂纹发展量消耗的能量相同。
     (4)基于描述疲劳裂纹扩展规律的Paris公式,对UHTCC的疲劳裂纹扩展性能进行了探讨性研究,用宏观裂缝覆盖面积A作为描述其裂缝发展的参量,并通过试验验证其适用性。结果表明,疲劳荷载作用下,预制单边切口UHTCC弯曲试件有多条裂缝产生,其位置、形状、长度皆随机分布,破坏时组成一个从切口根部开始发散最终汇集到加载点处的橄榄球形状;UHTCC疲劳裂纹扩展速率的计算公式为dA/dN=C(△J)m,随纤维掺量的增加,其疲劳裂纹扩展速率呈递减趋势,此外,纤维掺量对疲劳裂纹扩展速率的影响随J积分值增大而愈加明显;UHTCC存在疲劳裂纹扩展门槛值,即当疲劳过程中的疲劳荷载产生的断裂能小于某一临界值△Jth时,疲劳裂缝不扩展。
     (5)对UHTCC/混凝土(UC)复合梁进行三点弯曲疲劳试验,有以下发现:疲劳荷载作用下,UC梁跨中截面变形符合平截面假定,高应力水平下UC复合梁的受压区高度要小于低应力水平下相应荷载循环时的受压区高度,同一应力水平下,受压区高度随荷载循环次数的增加而降低,疲劳破坏时的受压区高度约占截面高度的0.05-0.10;复合梁的UHTCC层产生若干条可见裂缝,数目随应力水平降低而减少,混凝土层裂缝数目为1-3条,复合梁的疲劳变形曲线表现出延性特征,随荷载循环率呈现三阶段发展,且变形能力随应力水平减小而降低;分析其疲劳过程可知,UC复合梁的疲劳破坏是由UHTCC层的完全损伤所致,应用文中回归的UHTCC的疲劳损伤方程计算的复合梁变形曲线略小于试验测量值,尤其在低应力水平下吻合良好。
Ultra-high toughness cementitious composites (UHTCC) is a new type of engineering material which is composed of Portland cement, fiber, water, fine aggregate, and active mineral admixtures such as fly ash, silica fume and so on. The static mechanics and durability of this material are outstanding, due to its typical characteristics of strain hardening and multiple cracking under uniaxial tension. Then it is hoped that UHTCC can be used to improve the performance of concrete structures, which are under dynamic and cyclic loads, e.g. seismic load, burials load, vehicle load, et al. As a result, it is necessary to investigate the dynamic mechanics of this material. For this purpose, this thesis took an experimental study on the performances of impact resistance and flexural fatigue of this material. Moreover, exploratory research on its fatigue crack propagation law and the theoretical basis, fracture property, was carried out based on some experiments. The research is supported by the Key Program of the National Natural Science Foundation of China (No.50438010) and the Research and Application Program of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China (JGZXJJ2006-13). The detailed contents of this thesis are as follows
     (1) The impact resistance property of UHTCC was studied. The results showed that multiple cracks were generated in UHTCC impact specimens, which delayed the development of the failure crack, prevented the fragmentation, and improved the whole ability of impact resistance. Four-point fatigue bending tests were conductedto study its flexural fatigue property. Multiple cracks were produced during the fatigue progress, and the total number of cracks dropped with the decrease of fatigue stress levels, for which, a bi-linear relationship was found. Due to these multiple cracks, a ductile fatigue failure exhibited for UHTCC, and its S-N bi-logarithm relation was found to be bi-linear, which proved that the effect of PVA fibers was less obvious at low stress levels.
     (2) The damage mode of UHTCC under flexure fatigue was investigated. A ductile damage happened for UHTCC. The plastic tensile strain, εp, was adopted to calculate the damage quantity, D. Then a fatigue damage evolution function of UHTCC was constructed, on the basis of elastic-plasitic isotropic damage model.
     (3) Three-point flexural fracture tests were carried out on UHTCC specimens with a single notch, and the non-linear fracture mechanics was employed here to study the fracture property of this material. Through analysis, the double J integral, initial cracking value, JIC, and failure value, JIF, could be used to evaluate UHTCC's fracture toughness. That was, macrocacks began to develop if the energy absorbed by the plastic zone was larger than while the failure crack began to develop if that was larger than JIf. The growth of macrocracking coveraging area, AA, here was selected here as the parameter to describe the development of multiple cracks. Based on the experimental results, a simplified JR resistance curve was introduced. From this curve, a good bi-linear relationship existed between J integral and△A before the failure crack initiated, with JIc as the dividing point. Consequently, it could be considered that the energy in need for the same amount of cracking area propagation was equal during the stable developing stage.
     (4) Based on the Paris law of fatigue crack propagation rate, a theoretical and experimental investigation was undertaken to study the fatigue crack propagation mechanism of UHTCC. During the experiment, it was observed that multiple cracks were formed, with a random distribution of their locations, shapes and lengths. According to some discussion, Paris law was applicable for this material, with the function form as, dA/dN=C(△J)m, in which, the coveraging area of multiple cracks, A, was applied in instead of the length of a single crack, a; meanwhile, the J integral substituted for the stress singularity intensity, K. A fatigue crack propagation threshold was found in the experiment, that is to say, the cracks did not develop while the fatigue range of J integral value,△J, was smaller than the critical value,△Jth. It was found that, the fatigue crack propagation rate slowed down with the increases of PVA fiber fraction. Furthermore, the influence of PVA fiber on the propagation rate was found to become obvious with the increase of J integral.
     (5) The flexural fatigue tests on UHTCC/concrete composite beam (UC composite beam) were carried out to study the effects of UHTCC layer on concrete layer. The results showed that, the section deformation of the composite beam fitted to the plane section assumption for both static and fatigue loading. In addition, the depth of compression zone at higher stress levels was smaller than that of lower stress levels for the same load cycles. Good bond strength was realized and no relative slip happened under fatigue loading. During the fatigue process, several visible cracks generated on the UHTCC layer, and the number reduced with the decrease of stress levels, while, about1-3cracks were produced on the concrete layer. Due to the multiple-cracking characteristic, ductile deformation was found for UC beams under fatigue load. Three stages of deformation existed, while the deformation ability became weaker with the decrease of stress levels. Through analysis, the fatigue life of a UC composite beam was defined by the complete damage of UHTCC layer. The regression function on UHTCC's flexural fatigue damage was applied to calculate the evolution process of maximum tensile strain, and the calculated results were a little smaller than the experimental results, expecially at lower stress levels, the two results were in good agreement.
引文
[1]吴中伟,廉惠珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [2]盛国华,刘红彬,王会杰,王金波,鞠杨.活性粉末混凝土的冲击性能的研究[J].混凝土,2009,241(11):23-30.
    [3]Jarny S, Roussel N, Le R, et al. Modeling thixotropic behavior of fresh cement pastes from MRI measurements [J]. Cement and Concrete Research,2008,38(5):616-623.
    [4]郑克仁:矿物掺合料对混凝土疲劳性能的影响及机理[D]:(博士学位论文).南京:东南大学材料学,2005.
    [5]Perumalsamy N B, Surendra P S. Fiber-Reinforced Cement Composites [M]. New York:McGraw-Hill, 1992.
    [6]Li V C. Performance Driven Design of Fiber Reinforced Cementitious Composites [C]//Proceedings of 4th RILEM Internationla Symposium on Fiber Reinforced Concrete. London:Chapman and Hall,1992: 12-30.
    [7]Li V C, Leung C K Y. Steady State and Multiple Cracking of Random Discontinuous Fiber Reinforced Brittle Matrix Composites [J]. Journal of Engineering Mechanics, ASCE,1992,118(11):2246-2264.
    [8]Li V C. From Micromechanics to Structural Engineering-The Design of Cementitious Composites for Civil Engineering Applications [J]. JSEE Journal of Structural Mechanics and Earthquake Engineering, 1993,10(2):37-48.
    [9]Marshall D B, Cox B N. A J-integral Method for Calculating Steady-State Matrix Cracking Stresses in Composites [J]. Mechanics of Materials,1988,7(2):127-133.
    [10]Li V C. Engineered Cementitious Composites-Tailored Composites through Micromechanical Modeling [C]//Banthia N, Bentur A, and Mufti A. Fiber Reinforced Concrete:Present and the Future. Montreal:Canadian Society for Civil Engineering,1998:64-97.
    [11]Li V C, Mishra D K, Naaman A E, et al. On the Shear Behavior of Engineered Cementitious Composites [J]. Journal of Advanced Cement Based Materials,1994,1(3):142-149.
    [12]Li V C, Fischer G, Kim Y, et al. Durable Link Slabs for Jointless Bridge Decks Based on Strain-Hardening Cementitiuos Composites [R]. Michigan:University of Michgan,2003.
    [13]徐世娘.超高韧性绿色ECC新型材料研究机应用[R].大连:大连理工大学,2007.
    [14]高淑玲.PVA纤维增强水泥基复合材料假应变硬化即断裂特性研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [15]李贺东.超高韧性水泥基复合材料试验研究[D]:(博士学位论文).大连:大连理工大学,2008.
    [16]朱榆.混凝土阻裂即断裂理论的研究[D](博士学位论文).大连:大连理工大学,2009.
    [17]李庆华.超高韧性水泥基复合材料受弯构件计算理论与试验研究[D]:(博士学位论文).大连:大连理工大学,2009.
    [18]蔡向荣.超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D]:(博士学位论文).大连:大连理工大学,2010.
    [19]蔡新华.超高韧性水泥基复合材料耐久性能试验研究[D]:(博士学位论文).大连:大连理工大学,2010.
    [20]王冰.超高韧性水泥基复合材料与混凝土的界面粘结性能及其在抗弯补强中的应用[D]:(博士学位论文).大连:大连理工大学,2011.
    [21]王楠.超高韧性水泥基复合材料与既有混凝土粘结工作性能试验研究[D]:(博士学位论文).大连:大连理工大学,2011.
    [22]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能[D]:(硕士学位论文).大连:大连理工大学,2007.
    [23]李大为.玻璃纤维与超高韧性水泥基复合材料粘结性能的研究[D]:(硕士学位论文).大连:大连理工大学,2007.
    [24]田艳华.自密实超高韧性水泥基复合材料试验研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [25]绕芳芬.粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [26]王巍.超高韧性水泥基复合材料膨胀性能及热导性能的研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [27]刘志凤.超高韧性水泥基复合材料干燥收缩及约束收缩下抗裂性能研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [28]高栋.超高韧性水泥基复合材料渗透性能试验研究[D]:(硕士学位论文).大连:大连理工大学,2010.
    [29]公成旭.高韧性低收缩纤维增强水泥基复合材料研发[D]:(硕士学位论文).北京:清华大学,2008.
    [30]Zhang J, Li V C. Effect of Inclination Angle on Fiber Rupture Load in Fiber Reinforced Cementitious Composites [J]. Composite Science and Technology,2002,62(6):775-781.
    [31]Zhang J, Li V C. Monotonic and Fatigue Performance in Bending of Fiber-Reinforced Engineered Cementitious Composite in Overlay System [J]. Cement and Concrete Research,2002,32(3): 415-423.
    [32]Zhang J. Modeling of the Influence of Fibers on Creep of Fiber Reinforced Cementitiuos Composite [J]. Composites Science and Technology,2003,63(13):1877-1884.
    [33]Zhang J, Leung C K Y, Cheung Y N. Flexural Performance of Layered ECC-Concrete Composite Beam [J]. Composites Science and Technology,2006,66(11-12):1501-1512.
    [34]Zhang J, Leng B. Transition from Multiple Macro-Cracking to Multiple Micro-cracking in Cementitiuos Composites [J]. Tsinghua Science and Technology,2008,13(5):669-673.
    [35]Zhang J, Gong C X, Guo Z L, et al. Engineered Cementitious Composites with Characteristic of Low Drying Shrinkage [J]. Cement and Concrete Research,2009,39(4):303-312.
    [36]张君,公成旭.高韧性纤维增强水泥基复合材料单轴拉伸性能研究[C]//第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:27-32.
    [37]梁坚凝,曹倩.高延性永久模板在建造耐久混凝土结构中的应用[J].东南大学学报(自然科学版),2006,36(S2):110-]]5.
    [38]姜国庆,孙伟,刘小泉.生态型工程水泥基复合材料的制备与性能研究[J].西安建筑科技大学学报(自然科学版),2008,40(1):93-100.
    [39]姜国庆,刘小泉,孙伟等.高性能特种水泥复合材料(HPSCC)的关键技术研究[C]//第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:3-9.
    [40]Wang X G, Wittmann F H, Zhao T J. Comparative Study of Test Methods to Determine Fracture Energy of Strain Hardening Cement-Based Composites (SHCC) [J]. International Journal for Restoration of Buildings and Monuments,2006,12(2):169-178.
    [41]赵铁军,毛新奇,张鹏.应变硬化水泥基复合材料的干燥与开裂[J].东南大学学报(自然科学版),2006,36(S2):269-273.
    [42]田砾,范宏,孙雪飞等.应变硬化水泥基复合材料(SHCC)本构关系逆向分析研究[J].固体力学学报,2006,27(S1):14-17.
    [43]王晓刚,Wittmann F H,赵铁军.优化设计水泥基复合材料应变硬化性能研究[J].混凝土与水泥制品,2006,(3):46-49.
    [44]田砾,许婷华,万小梅等.水泥基工程复合材料(ECC)的研究与应用[C]//第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:16-20.
    [45]赵铁军,毛新奇,田砾PVA-ECC的弯曲韧性[C]//第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:21-26.
    [46]任昭君,孙志伟,苏卿.水分含量对PVA-SHCC断裂能及应变硬化的影响[J].工程建设,2008,40(4):9-12.
    [47]陈婷,詹炳根.设计PVA纤维水泥基复合材料的研究进展[J].混凝土,2003,(11):3-10.
    [48]徐世娘,李贺东.超高韧性水泥基复合材料直接拉伸试验研究[J].土木工程学报,2009,42(9):32-41.
    [49]徐世娘,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能[J].水力学报,2009,40(9):1055-1063.
    [50]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
    [51]Ahmed S F U, Maalej M. Tensile Strain Hardening Behavior of Hybrid Steel-Polyethylene Fiber Reinforced Cementitious Composites [J]. Conctrution and Building Materials,2009,23(1) 96-106.
    [52]Li V C, Mishra D K, Wu H C. Matrix Design for Pseudo Strain-Hardening Fiber Reinforced Cementitiuos Composites [J]. Materials and Structures,1995,28(10):586-595.
    [53]Li V C, Wang S X, Wu H C. Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC) [J]. ACI Materials Journal,2001,98(6):483-492.
    [54]Li V C, Obla K H. Effect of Fiber Length Variation on Tensile Properties of Carbon Fiber Cement Composites [J]. Composites Engineering,1994,4(9):947-964.
    [55]Li V C, Wu H C, Maalej M, et al. Tensile Behavior of Cement Based Composites with Random Discontinuous Steel Fibers [J]. Journal of the American Ceramic Society,1996,79(1):74-78.
    [56]Fukuyama H, Suwada H, Ilseung Y. HPFRCC Damper for Structural Control [C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC). Japan Concrete Institute. Tokyo,2002:219-228.
    [57]Leung C K Y, Li V C. Effect of Fiber Inclination on Crack Bridging Stress in Brittle Fiber Reinforced Brittle Matrix Composites [J]. Journal of Mechanics and Physics of Solids,1992,40(6):1333-1362.
    [58]Kanda T, Li V C. Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC [J]. Journal of Advanced Concrete Technology,2006,4(1):59-72.
    [59]Wu C. Micromechanical Tailoring of PVA-ECC for Structural Applications [D]:(Doctoral Thesis). Ann Arbor:University of Michigan,2002.
    [60]Fisher G, Li V C. Influence of Matrix Ductility on the Tension-Stiffening Behavior of Steel Reinforced ECC [J]. ACI Structural Journal,2002,99(1):104-111.
    [61]高淑玲,徐世娘.PVA纤维水泥基复合材料单轴拉伸特性试验研究[J].大连理工大学学报,2007,47(2):233-239.
    [62]徐世娘,蔡向荣,张英华.超高韧性水泥基复合材料单轴受压应力应变全曲线试验测定与分析[J].土木工程学报,2009,42(11):79-85.
    [63]Li H D, Xu S L, Leung C K Y. Experimental Research on Tensile and Flexural Properties of UHTCC [J]. Journal of Wuhan Unversity of Technology (English Edition),2009,24(4):677-683.
    [64]高栋,徐世娘.纤维水泥基复合材料轴向直接拉伸试验保证措施研究[J].混凝土,2010,(8):38-57.
    [65]Li V C. A Simplied Micromechanical Model of Compressive Strength of Fiber-Reinforced Cementitious Composites [J]. Cement and Concrete Composites,1992,14(2):131-141.
    [66]Fisher G, Li V C. Effect of Matrix Ductility on Deformation Behavior of Steel-Reinforced ECC Flexural Members Under Reserved Cyclic Loading Conditions [J]. ACI Structural Journal,2002, 99(6):781-790.
    [67]Fishcher G. Deformation Behavior of Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions [D]:(Doctoral Thesis). Ann Arbor:University of Michigan,2002.
    [68]蔡向荣,徐世娘UHTCC单轴受压韧性的实验测定与评价指标[J].工程力学,2010,27(5):218-224.
    [69]Maalej M, Li V C. Flexural Strength of Fiber Cementitious Composites [J]. Journal of Materials in Civil Engineering, ASCE,1994,6(3):390-406.
    [70]Lepech M, Li V C. Preliminary Findings on Size Effect in ECC Structural Members in Flexure [C]//Proceedings of the Seventh International Symposium on Brittle Matrix Composites. Warsaw, Poland:ZTUREK RSI and Woodheas Publication,2003:57-66.
    [71]Naaman A E, Reinhardt H W. Characterization of High Performance Fiber Reinforced Cement Composites-HPFRCC [C]//Naaman A E, Reinhardt H W. High Performance Fiber Reinforced Cement Composites 2 (HPRTCC 2), Proceedings of the Second International RILEM Workshop, London: E&FN Spon,1996:1-24.
    [72]Kanda T, Watanabe S, Li V C. Application of Pseudo Strain Hardening Cementitious Composites to Shear Resistant Structural Elements [C]//Proceedings of Fracture Mechanics of Concrete Structures-3, Freiburgm, Germany:AEDIFICATIO Publishers,1998:1477-1490.
    [73]Xoxa V. Investigating the Shear Characteristics of High Performance Fiber Reinforced Concrete [D]: (Master Thesis). Toronto:University of Toronto,2004.
    [74]Zhang J, Maalej M, Quek S T. Performance of Hybrid-Fiber ECC Blast-Shelter Panels Subjected to Drop Weight Impact [J]. Journal of Materials in Civil Engineering,2007,19(10):855-863.
    [75]Maalej M, Quek S T, Zhang J. Behavior of Hybrid-Fiber Engineered Cementitious Composites Subjected to Dynamic Tensile Loading and Project Impact [J]. Journal of Materials in Civil Engineering, ASCE,2005,17(2):143-152.
    [76]Rokugo K, Kunieda M, Sakai H, et al. Study on Impact Resistance of PC Beams with Buffer Layer Made of Ductile Fiber Reinforced Cementitious Composites [C]//Proceedings of the 1st fib Congress, Osaka, Japan,2002:349-356.
    [77]Kabele P, Li V C. Fracture Energy of Strain-Hardening Cementitious Composites [C]//Fracture Mechanics of Concrete Structures. Proceedings of Fracture Mechanics of Concrete Structures-3, Freiburgm, Germany:AEDIFICATIO Publishers,1998,487-498.
    [78]Wang X G, Wittmann F H, Zhao T J. Comparative Study of Test Methods to Determine Fracture Energy of Strain Hardening Cement-Based Composites (SHCC) [J]. International Journal for Restoration of Building and Monuments,2006,12(2):169-178.
    [79]Kabele P, Horii H. Analytical Model for Fracture Behaviors of Pseudo Strain-Hardening Cementitious Composites [J]. Journal of Materials, Concrete Structures and Pavements,1996,30(2):209-219.
    [80]Kawamata A, Mihashi H, KaneKo Y, et al. Controlling Fracture Toughness of Matrix for Ductile Fiber Reinforced Cementitiuos Composites [J]. Engineering Fracture Mechanics,2002,69(2):249-265.
    [81]Li V C, Hashida T. Engineering ductile fracture in brittle-matrix composites [J]. Journal of Materials Science Letters.1993,12(12):898-901.
    [82]Nelson P K, Li V C, Kamada T. Fracture Toughness of Microfiber Reinforced Cement Composites [J]. Journal of Materials in Civil Engineering.2002,14(5):384-391.
    [83]Hashida T, Li V C. New Development of the J-Based Fracture Testing Technique for Ceramic-Matrix Composites [J]. Journal of the American Ceramic Society.1994,77(6):1553-1561.
    [84]Maalej M, Hashida T, Li V C. Effect of Fiber Volume Fraction on the Off-Crack-Plane Fracture in Strain-Hardening Engineered Cementitiuos Composites [J]. Journal of the American Ceramic Society, 1995,78(12):3369-3375.
    [85]Spagnoli A. A Micromechanical Lattice Model to Describe the Fracture Behaviour of Engineered Cementitiuos Composites [J]. Computational Materials Science,2009,46(1):7-14.
    [86]Weimann M B, Li V C. Hygral Behavior of Engineered Cementitiuos Composites (ECC) [J]. International Journal for Restoration of Building and Monuments,2003,9(5):513-534.
    [87]Li M, Li V C. Behavior of ECC/Concrete Layer Repair System under Drying Shrinkage Conditions [J]. International Journal for Restoration of Buildings and Monuments,2006,12(2):143-160.
    [88]Lim Y M, Wu H C, Li V C. Development of Flexural Composited Properties and Drying Shrinkage Behavior of High Performance Fiber Reinforced Cementitious Composites at Early Ages [J]. ACI Materials Journal,1999,96(1):20-26.
    [89]Li V C. High Performance Fiber Reinforced Cementitious Composites as Durable Material for Concrete Structure Repair [J]. International Journal for Restoration of Buildings and Monuments, 2004,10(2):163-180.
    [90]Weimann M B, Li V C. Drying Shrinkage and Crack Width of Engineering Cementitiuos Composites (ECC) [C]//Proceedings of the Seventh International Symposium on Brittle Matrix Composites (BMC-7), Poland,2003:37-46.
    [91]徐世娘,刘志凤.超高韧性水泥基复合材料干缩性能及其对抗裂性能的影响[J].水力学报,2010,41(12):1491-1496.
    [92]Boshoff W P, van Zijl G P A G. Numerical Creep Modeling of ECC [C]//Proceedings 5th Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-V), Vail, Colorado, USA,2004: 1037-1043.
    [93]Boshoff W P, van Zijl G P A G. Time-Dependent Response of ECC:Characterisation and Modeling of Creep and rate dependence [J]. Cement and Concrete Research,2007,37(5):725-734.
    [94]Billington S L, Rouse J M. Time-Dependent Response of Highly Ductile Fiber-Reinforced Cement-Based Composites [C]//Proceedings of the Seventh International Symposium on Brittle Matrix Composites, Warsaw, Poland:ZTUREK RSI and Woodheas Publication,2003:47-56.
    [95]Li V C, Lepech M. Crack Resistanct Concrete Material for Transportation Construction [C]// Proceedings of the Transportation Research Board 83rd Annual Meeting, Washington, D. C. Compendium of Papers CD ROM, Paper 04-4680,2004. Cited in Concrete Products, Feb 1,2004.
    [96]Li V C, Stang H. Elevation FRC Material Ductility to Infrastructure Durability [C]//Proceedings of the 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC)-BEFIB, Varenna, Italy,2004:171-186.
    [97]Kanda T, Saito T, Sakata N, et al. Tensile and Anti-Spalling Properties of Direct Sprayed ECC [J]. Journal of Advanced Concrete Technology,2003,1(3):269-282.
    [98]Li V C, Horikoshi T, Ogawa A, et al. Micromechanics-Based Durability Study of Polyvinyl AlcoholOEngineered Cementitious Composites [J]. ACI Materials Journal,2004,101(3):242-248.
    [99]Horikoshi T, Ogawa A, Saito T, et al. Properties of Polyvinyl Alcohol Fiber as Reinforcing Materials for Cementitious Composites [C]//In Fischer G and Li V C, eds. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. RILEM Publications SARL. Hawaii, USA,2005:145-153.
    [100]Suthiwarapirak P, Matsumoto T, Kanda T. Multiple Cracking and Fiber Bridging Characteristics of Engineered Cementitious Composites under Fatigue Flexure [J]. Journal of Material in Civil Engineering,2004,16(5):433-443.
    [101]Suthiwarapirak P, Matsumto T, Kanda T. Flexural Fatigue Failure Characteristics of an Engineered Cementitious Composite and Polymer Cement Mortars [J]. Journal of Materials, Concrete Structures and Pavements, JSCE,2002, No.718/V-57:121-134.
    [102]Matsumoto T, Suthiwarapirak P, Kanda T. Mechanisms of Multiple Cracking and Fracture of DFRCCs under Fatigue Flexure [J]. Journal of Advanced Concrete Technology, Japan Concrete Institute,2003,1(3):299-306.
    [103]Suthiwarapirak P, Matsumoto T. Fiber Bridging Degradation Based Fatigue Analysis of ECC under Flexure [J]. Journal of Applied Mechanics, JSCE.2003,6:1179-1188.
    [104]Matsumoto T, Li V C. Fatigue Life Analysis of Fiber Reinforced Concrete with a Fracture Mechanics Based Model [J]. Cement and Concrete Composites,1999,21(4):249-261.
    [105]Han T S, Feenstra P H, Billington S L. Simulation of Highly Ductile Fiber-Reinforced Cement-Based Composite Components under Cyclic Loading [J]. ACI Structural Journal,2003,100(6):749-757.
    [106]Kesner K E, Billington S L, Douglas K S. Cyclic Response of Highly Ductile Fiber-Reinforced Cement-Based Composites [J]. ACI Materials Journal,2003,100(5):381-390.
    [107]Leung C K Y, Cheung Y N, Zhang J. Fatigue Enhancement of Concrete Beam with ECC Layer [J]. Cement and Concrete Research,2007,37(5):743-750.
    [108]Jun P, Mechtcherine V. Behaviour of Strain-Hardening Cement-based Composites (SHCC) under Monotonic and Cyclic Tensile Loading Part 1-Experimental Investigations [J]. Cement and Concrete Composites 2010,32(10):801-809.
    [109]Jun P, Mechtcherine V. Behaviour of Strain-Hardening Cement-based Composites (SHCC) under Monotonic and Cyclic Tensile Loading:Part 2:Modelling [J]. Cement and Concrete Composites 2010, 32(10):810-818.
    [110]Lappa E S. High Strength Fiber Reinforced Concrete:Static and Fatigue Behaviour in Bending [D]: (Doctoral Thesis). Duitsland:Delft University of Technology,2007.
    [111]Lepech M, Li V C. Water Permeability of Cracked Cementitious Composites [C]//Proceedings of 11th International Conference on Fracture, Torino, Italy,2005.
    [112]Miyazato S, Hiraishi Y. Transport Properties and Steel Corrosion in Ductile Fiber Reinforced Cement Composites [C]//Proceedings of 11th International Conference on Fracture, Torino, Italy,2005.
    [113]徐世娘,蔡新华.超高韧性水泥基复合材料碳化与渗透性能试验研究[J].复合材料学报,2010,27(3):177-183.
    [114]Sahmran M, Lachemi M, Li V C. Assessing the Durability of Engineered Cementitiuos Composite under Freezing and Thawing Cycles [J]. Journal of ASTM International,2009,6(7):1-13.
    []15] Ahmed S F U, Mihashi H. A Review on Durability Properties of Strain Hardening Fiber Reinforced Cementitious Composites (SHFRCC) [J]. Cement and Concrete Composites,2007,29(5):365-376.
    [116]Sahmaran M, Li V C, Andrade C. Corrosion Resistance Performance of Steel-Reinforced Engineered Cementitious Composite Beams [J]. ACI Materials Journal,2008,105(3):243-250.
    [117]Sahmaran M, Li V C. Durability of Mechanically Loaded Engineered Cementitious Composites under Highly Alkaline Environments [J]. Cement and Concrete Composites,2008,30(2):72-81.
    [118]Li V C, Wu H C. Conditions for Pseudo Strain-Hardening in Fiber Reinforced Brittle Matrix Composites [J]. Applied Mechanics Reviews,1992,45(8):390-398.
    [119]Kanda T, Saito T, Sakata N, et al. Fundamental Properties of Direct Sprayed ECC [C]//Proceedings of the JCI International Workshop on DFRCC, Takayam, Japan,2002:133-142.
    [120]Kim Y Y, Kong H J, Li V C. Design of Engineered Cementitious Composite Suitable for Wet-Mixture Shotcreting [J]. ACI Materials Journal,2003,100 (6):511-518.
    [121]Kim Y Y, Fischer G, Lim Y M, et al. Mechanical Performance of Sprayed Engineered Cementitious Composite Using Wet-Mix Shotcreting Process for Repair Applications [J]. ACI Materials Journal, 2004,101(1):42-49.
    [122]Kim Y Y, Kong H J, Li V C. Development of Sprayable Engineering Cementitious Composites [C]//Proceedings of the High Performance Fiber Reinforced Cementitious Composites-4, Ann Arbor, Michigan, USA,2003:233-243.
    [123]Kong H J, Bike S G, Li V C. Development of a Self-Comsolidating Engineered Cementitious Composite Employing Electrosteric Dispersion/Stabilization [J]. Cement and Concrete Composites, 2003,25(3):301-309.
    [124]Kong H J, Bike S G, Li V C. Constitutive Rheological Control to Develop a Self-Consolidating Engineered Cementitious Composite Reinforced with Hydrophilic Poly (Vinyl Alcohol) Fibers [J]. Cement and Concrete Composites,2003,25(3):333-341.
    [125]Kong H J, Bike S G, Li V C. Electrosteric Stabilization of Concentrated Cement Suspensions Imparted by a Strong Anionic Polyelectrolyte and a Non-ionic Polymer [J]. Cement and Concrete Research,2006,36(5):842-850.
    [126]Kong H J, Bike S G, Li V C. Effects of a Strong Polyelectrolyte on Rheological Properties of Concentrated Cementitious Suspensions [J]. Cement and Concrete Research,2006,36(5):851-857.
    [127]Li V C, Kong H J, Chan Y W. Development of Self-Compacting Engineered Cementitious Composites [C]//Proceedings of the International Workshop on Self-Compacting Composites, Kochi, Japan,1998:46-59.
    [128]Wang S X, Li V C. High-Early-Strength Engineered Cementitious Composites [J]. ACI Materials Journal,2006,103(2):97-105.
    [129]Yang E H. Designing Added Functions in Engineering Cementitiuos Composites [D]:(Doctoral Thesis). Ann Arbor:The University of Michigan,2008.
    [130]Li V C, Lepech M, Wang S X, et al. Development of Green Engineering Cementitiuos Composites for Sustainable Infrastructures Systems [C]//Proceedings of International Workshop on Sustainable Development and Concrete Technology. Iowa:Iowa State University,2004:181-192.
    [131]Wang S X, Li V C. Engineered Cementitious Composites with High-Volume Fly Ash [J]. ACI Materials Journal,2007,104(3):233-241.
    [132]Lepech M D, Li V C, Robertson R E, et al. Design of Green Engineered Cementitious Composites for Improved Sustainability [J]. ACI Materials Journal,2008,105(6):567-575.
    [133]Yang E H, Yang Y Z, Li V C. Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness [J]. ACI Materials Journal,2007,104(6):303-311.
    [134]Wang S, Li V C. Lightweight ECC [C]//Proceedings of the High Performance Fiber Reinforced Cementitious Composites-4, Ann Arbor, Michigan, USA,2003:379-390.
    [135]Martinola G, Bauml M F, Wittmann F H. Modified ECC by Means of Internal Impregnation [J]. Journal of Advanced Concrete Technology,2004,2(2):207-212.
    [136]Sahmaran M, Li V C. Influence of Microcracking on Water Absorption and Sorptivity of ECC [J]. Materials and Structures,2009,42(5):593-603.
    [137]Stang H, Li V C. Extrusion of ECC-Material [C]//Proceedings of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC-3), New York:Chapman&Hull,1999:203-212.
    [138]Takashima H, Miyagai K, Hashida T, et al. A Design Approach for the Mechanical Properties of Polypropylene Discontinuous Fiber Reinforced Cementitiuos Composites by Extrusion Molding [J]. Engineering Fracture Mechanics,2003,70(7-8):853-870.
    [139]Takashima H, Miyagai K, Hashida T. Fracture Properties of Discontinuous Fiber Reinforced Cementitious Composites Manufactured by Extrusion Molding [C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation,2002:75-83.
    [140]De Koker D, Van Zijl G P A G. Extrusion of Engineering Cement-Based Composite Material [C]//Proceedings of the 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC)-BEFIB,2004, Varenna, Italy,2004:1301-1310.
    [141]Li V C. Advances in ECC Research [J]. ACI Special Publication on Concrete:Material Science to Applications,2002, SP 206-23:373-400.
    [142]De Koker D, Van Zijl G P A D. Presentation:Manufacturing Processes for Engineered Cement-Based Composite Material (ECC) [C]//Proceedings of the 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC)-BEFIB,2004:1301-1310.
    [143]Li V C. Postcrack Scaling Relations for Fiber Reinforced Cementitiuos Composites [J]. Journal of Materials in Civil Engineering,1992,4(1):41-57.
    [144]Lin Z, Li V C. Crack Bridging in Fiber Reinforced Cementitiuos Composites with Slip-hardening Interfaces [J]. Journal of Mechanics and Physics of Solids,1997,45(5):763-787.
    [145]Maalej M, Li V C, Hashida T. Effect of Fiber Rupture on Tensile Properties of Short Fiber Composites [J]. Journal of Engineering Mechanics, ASCE,1995,121(8):903-913.
    [146]Kanda T, Li V C. A New Micromechanics Design Theory for Pseudo Strain Hardening Cementitious Composite [J]. Journal of Engineering Mechanics, ASCE 1999,125(4):373-381.
    [147]Kanda T, Li V C. Effect of Fiber Strength and Fiber-Matrix Interface on Crack Bridging in Cement Composites [J]. Journal of Engineering Mechanics, ASCE,1999,125(3):290-299.
    [148]Redon C, Li V C, Hoshiro H, et al. Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix [J]. Journal Materials in Civil Engineering, ASCE,2001,13(6):399-406.
    [149]Lin Z, Kanda T, Li V C. On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites [J]. RILEM J. of Concrete Science and Engineering,1999,1(2):173-184.
    [150]徐世娘,王楠,李庆华.超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能试验研究[J].土木工程学报,2010,39(8):1391-1406.
    [151]张秀芳,徐世娘.采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(Ⅰ):基本理论[J].土木工程学报,2008,41(12):48-54.
    [152]徐世娘,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究[J].中国科学E辑:技术科学,2009,39(5):878-896.
    [153]Zhang Xiufang, Xu Shilang. Theoretical Analysis and Experimental Investigation on Flexural Performance of Steel Reinforced Ultra High Toughness Cementitious Composite (RUHTCC) beams [J]. Science in China Series E:Technological Sciences,2009,52(4):1068-1089.
    [154]徐世娘,李庆华.超高韧性水泥基复合材料控裂功能梯度复合梁弯曲性能理论研究[J].中国科学E辑:技术科学,2009,39(6):1081-1094.
    [155]Xu S L, Li Q H. Theoretical Analysis on Bending Behavior of Functionally Graded Composite Beam Crack-controlled by Ultra-High Toughness Cementitious Composites [J]. Science in China Series E: Technological Sciences,2009,52(2):363-378.
    [156]李庆华,徐世娘.超高韧性水泥基复合材料控裂功能梯度复合梁弯曲性能试验研究[J].中国科学E辑:技术科学,2009,39(8):1391-1406.
    [157]Li Q H, Xu S L. Experimental Investigation and Analysis on Flexural Performance of Functionally Graded Composite Beam Crack-controlled by Ultra High Toughness Cementitious Composites [J]. Science in China Series E:Technology Sciences,2009,52(6):1648-1664.
    [158]Parra-Montesinos G. High Performance Fiber Reinforced Cement Composites:an Alternative for Seismic Design of Structures [J]. ACI Structural Journal,2005,102(5):668-675.
    [159]Li V C, Fukuyama H, Mikame A. Development of Ductile Engineered Cementitious Composites Elements for Seismic Structural Applicaiotns [C]//Proceedings of the Structural Engineering World Congress, Paper T177-5, San Francisco, July,1998.
    [160]Shimizu K, Kanakubo T, Kanda T, et al. Shear Behavior of Steel Reinforced PVA-ECC Beams [C]//Proceedings of the 13th World Conference on Earthquake Engineering, Paper 704, Vancouver, B. C, Canada,2004.
    [161]Fukuyama H, Sato Y, Li V C, et al. Ductile Engineering Cementitious Composites Elements for Seismic Structural Application [C]//Proceedings of the 12th Word Conference on Earthquake Engineering, Paper 1672, Auckland, New Zealand,2000.
    [162]Fischer G, Fukuyama H, Li V C. Effect of Matrix Ductility on the Performance of Reinforced ECC Column Members under Reversed Cyclic Loading Conditions [C]//Proceedingos of Ductile Fiber Reinforced Cement Composites, Int'l Workshop, Takayama, Japan,2002:269-278.
    [163]Fischer G, Li V C. Influence of Matrix Ductility on Tension-Stiffening Behavior of Steel Reinforced Engineered Cementitious Composites (ECC) [J]. ACI Structural Journal,2002,99(1):104-111
    [164]Fischer G, Li V C. Structural Composites with ECC [C]//Proceedings of the 6th ASCCS International Conference:Steel-Concrete Composite Structures, Xiao Y and Mahin S, eds., Los Angeles, Mar.2000: 1001-1008.
    [165]Fischer G, Li V C. Deformation Behavior of Fiber-Reinforced Polymer Reinforced Engineered Cementitious Composites (ECC) Flexural Members under Reversed Cyclic Loading Conditions [J]. ACI Structural Journal,2003,100(1):25-35.
    [166]Parra-Montesinos G, Wight J K. Seismic Response of Exterior RC Column-to-Steel Beam Connections [J]. Journal of Structural Engineering, ASCE,2000,126(10):1113-1121.
    [167]Billington S L, Yoon J K. Cyclic Behavior of Precast Post-tensioned Segmental Concrete Columns with ECC [C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Applications and Evalution, Takayama, Japan,2002:279-288.
    [168]Kesner K, Billington S. Experimental Response of Precast Infill Panels made with DFRCC [C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Applications and Evalution, Takayama, Japan,2002:289-298.
    [169]Nagai S, Kanda T, Maruta M, et al. Shear Capacity of Ductile Wall with High Performance Fiber Reinforced Cement Composites [C]//Proceedings of the 1st fib Congress, Session 6:Seismic design of concrete structures, Osaka, Japan,2002:161-774.
    [170]Fischer G, Li V C. Intrinsic Response Control of Moment-Resisting Frames Utilizing Advanced Composite Materials and Structural Elements [J]. ACI Structural Journal,2003,100(2):166-176.
    [171]Rokugo K, Kanda T. R/ECC Coupling Beam. In:HPFRCC workshop, Hawaii,2005, http://www. engineeredcomposites.com/Applications/coupling_beam.html.
    [172]Li V C. Engineered cementitiuos conposites. http://www.engin.umich.edu/ace-mrl.
    [173]Li V C. Bendable Composites-Ductile Concrete for Structures [J]. Structure Magazine,2006, July: 45-48.
    [174]Kunieda M, Rokugo K. Recent Progress on HPFRCC in Japan [J]. Journal of anvanced concrete technology,2006,4(1):19-33.
    [175]Information on http://www.engineeredcomposites.com/Applications/bridge_deck.html.
    [176]Lepech M, Li V C. Durability and Long Term Performance of Engineered Cementitious Composites [J]. Restoration of buildings and monuments,2006,12(2):119-132.
    [177]Li V C, Lepech M. Crack Resistant Concrete Material for Transportation Construction [R]. Michigan: University of Michigan,2004.
    [178]Information on http://ace-crl.engin.emich.edu/New Files/Projects/Linkslab-timeline.html.
    [179]Rokugo K, Kanda T. Presentation "Recent HPFRCC R&D Progress in Japan" Proceedings of International Workshop on HPFRCC in Structural Applications [R]. Bagneux:RILEM Publications SARL,2005:23-26.
    [180]Inaguma H, Seki M, Suda K, et al. Experimental Study on Crack-bridging Ability of ECC for Repair under Train Loading [C]//Proceedings of Int'l workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA,2005:499-508.
    [181]Kunieda M, Pokugo K. Recent Progress on HPFRCC in Japan Required Performance and Applications [J]. Journal of Advanced Concrete Technology,2006,4(1):19-33.
    [182]Zhao H. A Study on Testing Techniques for Concrete-like Materials under Compressive Impact Loading [J]. Cement and Concrete Composites,1998,20(4):293-299.
    [183]Leung C K Y, Li V C. New Strength-based Model for the Debonding of Discontinuous Fibers in an Elastic Matrix [J]. Journal of Material Science,1991,26(2):5996-6010.
    [184]Mu B, Li Z J, Peng J. Short Fiber Reinforced Cementitious Extruded Plate with High Percentage of Slag and Different Fibers [J]. Cement and Concrete Research,2000,30(8):1277-1282.
    [185]Hodgkinson J M.先进纤维增强复合材料性能测试[M].北京:化学工业出版社,2005.
    [186]Lee M K, Barr B I G. An Overview of the Fatigue Behavior of Plain and Fiber Reinforced Concrete [J]. Cement and Concrete Composites,2004,26(4):299-305.
    [187]赵光仪,吴佩刚,詹巍巍.高强混凝土抗拉疲劳性能[J].土木工程学报,1990,23(3):11-22.
    [188]Morris A D, Garrett G G. A Comparative Study of the Static and Fatigue Behavior of Plain and Steel Fiber Reinforced Mortar in Compression and Direct Tension [J]. International Journal of Cement Composites and Lightweight Concrete,19813(2):73-91.
    [189]孙伟,严云.高强混凝土与钢纤维高强混凝土冲击和疲劳特性及其机理的研究[J].土木工程学报,1994,27(5):21-27.
    [190]Sun W, Gao J M, Yan U. Study of Fatigue Performance and Damage Mechanism of Steel Fiber Concrete [J]. ACI Materials Journal,1996,93(3):206-212.
    [191]黄承逵,赵国藩,彭骏.二级配钢纤维混凝土疲劳性能的研究[C]//全国第四届纤维水泥与纤维混凝土学术会议论文集,南京,1992:138-146.
    [192]贡金鑫,黄承逵,赵国藩.钢纤维混凝土的疲劳抗折性能[J].土木工程学报,2001,34(4):72-77.
    [193]王伯昕,黄承逵.粗合成纤维混凝土抗裂与抗冲击性能试验研究[C]//第十一届全国纤维混凝土学术会议论文集,大连:大连理工大学出版社,2006:135-141.
    [194]ACI Committee 544. Measurement of Properties of Fiber Reinforced Concrete, ACI Mater Journal, 1998,85(6):83-93.
    [195]ACI Committee 215. Considerations for Design of Concrete Subjected to Fatigue Loading [M]. ACI Manual of Concrete Practice,1990, Part Ⅰ:215-1 to 215-25.
    [196]Raithby K D. Flexural Fatigue Behavior of Plain Concrete [J]. Fatigue Engineering Materials and Structure,1979,2:269-278.
    [197]林燕清.混凝土疲劳累积损伤与力学性能劣化研究[D]:(博士学位论文).哈尔滨:哈尔滨建筑大学,1998.
    [198]傅祥炯.结构疲劳与断裂[M].西安:西北工业大学出版社,1995.
    [199]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003.
    [200]石小平,姚祖康,李华,顾敏浩,水泥混凝土的弯曲疲劳特性[J].土木工程学报,1990,23(3):11-22.
    [201]Miner M A. Cumulative Damage in Fatigue [J]. Journal of Applied Mechanics,1945,12(3): A159-A164.
    [202]Manson S S, Halford G R. Re-examination of Cumulative Analysis-An Engineering Prospective [J]. Engineering Fracture Mechanics,1986,25(5/6):539-571.
    [203]Marco S M, Starkey W L. A Concept of Fatigue Damage [J]. Transactions of the ASME,1954,76: 627-632.
    [204]Henry D L. A Theory of Fatigue Damage Accumulation in Steel [J]. Transaction of the ASME,1955, 77:913-918.
    [205]Oh B H. Cumulative Damage Theory of Concrete under Variable-Amplitude Fatigue Loading [J]. ACI Materials Journal,1991,88(1):41-48.
    [206]欧进萍,林燕青.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑工业大学学报,1998,31(4):1-7.
    [207]Zhang B S, Wu K R. Residual Fatigue Strength and Stiffness of Ordinary Concrete under Bending [J]. Cement and Concrete Research,1997,27(1):115-126.
    [208]赵浩东,张立翔,王时越.谱荷载下剩余强度衰减的混凝土疲劳寿命可靠度分析[J].力学与实践,2002,24(1):28-30
    [209]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2004,41(3):355-358.
    [210]鞠杨,樊承谋.循环荷载作用下钢纤维混凝土的损伤及演化行为的定量描述[J].工程力学,1998,15(1):94-104.
    [211]Chaboche J L. Continuum Damage Mechanics——A Tool to Descibe Phenomena Before Crack Initiation [M]. Nuclear Engineering Design,1981.
    [212]Wang J. Low Cycle Fatigue and Cycle Depedent Creep with Continuum Mechanics [J]. International Journal of Damage Mechanics,1992,1(2):237-244.
    [213]Kaplan M F. Crack Propagation and the Fracture of Concrete [J]. ACI journal,1961,58(11):591-610.
    [214]Glucklich J. Fracture of Plain Concrete [J]. Journal of the Engineering Mechanics Division, ASCE, 1963,89:127-138.
    [215]Guo Z K, Kobayashi A S, Hawkins N M. Furture Studies on Fracture Process Zone for Mode I Concrete Fracture [J]. Engineering Fracture Mechanics,1993,46(6):1041-1049.
    [216]邱崇光等.岩石混凝土断裂力学[M].武汉:武汉工业大学出版社,1991.
    [217]尹双增.断裂判据与在混凝土工程中的应用[M].北京:科学出版社,1996.
    [218]Jenq Y S, Shah S P. Two Parameter Fracture Model for Concrete [J]. Journal of Engineering Mechanics, ASCE,1985,111(4):1227-1241.
    [219]徐世娘,赵国藩.混凝土结构裂缝扩展的双K断裂准则[J].土木工程学报,1992,25(2):32-38.
    [220]Shah S P, Jenq S P. Fracture Resistance of Steel Fiber Reinforced Concrete [C]. Steel Fiber Concrete, US-Sweden joint seminar (NSF-STU) Stockholm,1985, June 3-5:273-297.
    [221]Jenq Y S, Shah S P. Crack Propagation in Fiber Reinforced Concrete [J]. Journal of Structural Engineering,1986,112(1):19-34.
    [222]Naaman A E, et al. Probabilistic Analysis of Fiber Reinforced Concrete [C]//Proceedings of ASCE, J. of Eng. Mech. Div,1974(100):397.
    [223]徐世娘,朱榆,张秀芳.水泥净浆和水泥砂浆材料的Ⅰ型断裂韧度测定[J].水利学报,2008(1),39(]):41-46.
    [224]Xu Shilang, Reinhardt H W. A Simplified Method for Determining Double-K Fracture Parameters for Three-Point Bending Tests [J]. International Journal of Fracture,2000,104(2):181-209.
    [225]Guinea G V, Pastor J Y, Planas J, et al. Stress intensity factor, compliance and CMOD for a general three-point-bend beam [J]. Internatinal Journal of Fracture,1998,89(2):103-106.
    [226]赵艳华.混凝土断裂过程中的能量分析研究[D]:(博士学位论文).大连:大连理工大学,2002.
    [227]Muralami (Editor-in-chief).Stress Intensity Factors Handbook [M]. Pergamon Press, London,1987.
    [228]荀勇,陈伯望.纤维桥连作用的探讨与验证[J].湖南大学学报,1996,23(4):112-116.
    [229]Latzko D G H. Post-Yield Fracture Mechanics [M]. Applied Science Publishers LTD, London,1979.
    [230]Rice J R. Mathematical Analysis in the Mechanics of Fracture [M]//H. Liebowitz. Fracture:An Advanced Treatise, Vol.2. New York:Academic Press,1968:191.
    [231]Rice J R, Paris P C, Merkle J G. Some Further Results on J Integral Analysis and Estimates [J]. ASTM-STP,1973,536:231-245.
    [232]Mihashi H, de Barros Leite J P, Yamakoshi S Y, et al. Controlling Fracture Toughness of Matrix with Mica Flake Inclusions to Design Pseudo-Ductile Fiber Reinforced Cementitious Composites [J]. Engineering Fracture Mechanics,2007,74(1-2):210-222.
    [233]GB 50010-2002,混凝土结构设计规范[S].
    [234]易成,沈世钊.疲劳裂缝扩展理论及其在混凝土疲劳性能研究中的应用[J].哈尔滨建筑大学学报,2000,33(5):20-24.
    [235]Head A K. On the Growth of Fatigue Crack [J]. The Philosophical Magazine.1953,44(7c):925-931.
    [236]Liu H W. Crack Propagation in Thin Metal Sheet under Repeated Loading [J]. Journal of the Basic Engineering, Transactions of the ASME,1961,83(1):23-32.
    [237]Paris P C, Gomez M P, Anderson W E. A Rational Analytic Theory of Fatigue [J]. Trend in Engineering,1961,13:9-14.
    [238]Liu H E. Fatigue Crack Propagation and Applied Stress Range [J]. Journal of the Basic Engineering, Transactions of the ASME,1963,85(1):116-122.
    [239]Paris P C, Erdogan F. A Critical Analysis of Crack Propagation Laws [J]. Journal of the Basic Engineering, Transactions of the ASME,1963,85(3):528-534.
    [240]McClintock F A. On the Plasticity of the Growth of Fatigue Crack [J]. New York:Wiley, Fracture of Solid,1963,20:65-102.
    [241]Frost N E. The Growth of Fatigue Cracks [C]//Proceedings of the First International Conference on Fracture, Sendai 1966:1422-1459.
    [242]Buccr R J, JrClark W J, Paris P C. Fatigue-Crack-Propagation Growth Rates under a Wide Variation of △K for an ASTM A517 Grade F (T-1) Steel [C]//Proceedings of the 5th National Symposium on Fracture Mechanics, Urbana, the United States,1972:177-195.
    [243]Paris P C, Bucci R J, Wessel E T, et al. Mager. Extensive Study of Low Fatigue Crack Growth Rates in A508 Steel. ASTM-STP513[C]//Proceedings of the 5th National Symposium on Fracture Mechanics, Urbana, the United States,1972:141-176.
    [244]H. K. Hilsdorf, C. E. Kesler. Fatigue Strength of Concrete Under Varying Flexural Stresses [J]. ACI Journal,1964,63(10):1059-1076.
    [245]Holmen J O. Fatigue of Concrete by Constant and Variable Amplitude Loading [D]. (Doctora thesis). Norwegian:University of Trondheim,1979.
    [246]B. H. Oh. Cumulative Damage Theory of Concrete under Variable Amplitude Fatigue Loading [J]. ACI Materials Journal,1991,88(1):41-48.
    [247]吴智敏,赵国藩.混凝土试件缝高比对裂缝扩展过程及断裂韧度的影响[J].应用基础与工程科学学报,1995,3(2):126-130.
    [248]吴智敏,赵国藩,黄承逵.混凝土疲劳断裂特性研究[J].土木工程学报,1995,28(3):59-65.
    [249]Irwin G R. Analysis of Stresses and Strains near the End of a Crack Traversing a Plate [J]. Journal of the Applied Mechanics, Transactions of the ASME,1957,21(3):361-364.
    [250]Frost N E, Dugdale D S. The Propagation of Fatigue Cracks in Sheet Specimens [J]. Journal of the Mechanics and Physics of Solids,1958,6(2):92-101.
    [251]朱劲松,宋玉普,肖汝诚.混凝土疲劳特性与疲劳损伤后等效单轴本构关系[J].建筑材料学报,2005,8(6):609-614.