用户名: 密码: 验证码:
带鱼下脚料酶解小肽亚铁螯合物结构鉴定及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带鱼(Hairtail),又名刀鱼,体长呈带形,是我国最重要的海产经济鱼类之一,近年来渔获量在110万吨左右,约占世界同种鱼类渔获量的70%-80%。年产量居海产经济鱼类之首。带鱼的脂肪含量高于一般鱼类,还含有一种抗癌成分,肉质肥嫩且鲜美,深受各阶层人们喜爱。但是带鱼在加工处理过程中会产生含有蛋白质资源的大量如头、内脏等下脚料,其重量约占原料鱼的40%-50%。这类废弃物常随意丢弃,这不仅会造成蛋白资源的浪费,下脚料的腐败还可能造成严重的环境污染。目前,我国水产加工企业对各种形式的下脚料利用常集中于制作鱼露、动物饲料等,这样处理不仅造成海洋优质蛋白资源浪费,而且加工成本高,工艺复杂。铁营养是人体必需的营养素,由于需要量以毫克(mg)计,故称为微量矿物质营养素。根据世界卫生组织的统计,缺铁是目前世界上最普遍的营养缺乏问题。食物中的常见的铁元素主要以三价形式存在,不能直接被机体吸收利用。目前使用的补铁制剂有化学合成制剂及生物制剂两种,但存在价格高,吸收利用率低等缺陷。
     天然产物蛋白经蛋白酶等水解后生成小肽和游离氨基酸,小肽或氨基酸与微量元素螯合形成的小分子络合物可通过小肠粘膜细胞直接被机体吸收。因此,利用带鱼下脚料蛋白制备有抗菌抗氧化功效的功能性食品或食品配料,既可为带鱼等富含蛋白质的海洋低值鱼资源的深度开发和利用提供理论依据,也为实现带鱼资源的综合利用、提高其附加值开辟新的途径。
     本论文以舟山海域捕获(9-10月份)的小带鱼为原料,对带鱼下脚料在蛋白酶和氯化亚铁处理条件下制备有抗菌活性的亚铁螯合肽工艺进行研究,并对亚铁螯合肽的结构、抗菌活性及抗菌机理进行研究,主要研究内容及结果如下:
     1.首先以水解度及亚铁螯合率为考察指标,先采用五种常用蛋白酶进行单一酶解筛选试验,再进行复合酶解试验。以亚铁螯合率及水解度为指标,采用二次正交旋转组合设计,研究酶制剂种类、复合酶比例、总加酶量、加酶方式、酶解最适pH值、酶解时间及最适酶解温度对制备亚铁螯合多肽工艺的影响。综合考虑水解度和螯合率因素,最终确定复合酶解带鱼蛋白制备亚铁螯合多肽的最佳工艺条件为:总加酶量22000U/g,并以配比为4:6先后加入碱性蛋白酶和木瓜蛋白酶;碱性蛋白酶与木瓜蛋白酶的酶解时间分别为9h和8h;pH值分别为8.0和6.0;酶解温度为45℃。在该酶解条件下制备的带鱼蛋白亚铁螯合多肽产物的水解度和螯合率分别为52.22%、82.31%。
     2.为研究不同分子量分布的肽段的抗菌抗氧化活性,选用截留分子量为10kDa、5kDa、3kDa超滤膜对带鱼蛋白酶解液亚铁螯合物进行分级分离,比较了各级份及未分级带鱼蛋白亚铁螯合肽的肽含量及抗菌抗氧化活性;并采用正交试验对最佳膜分离条件进行了优化。结果显示:经透过分子质量3kDa的膜滤过肽液的抗菌抗氧化活性最高,其最佳膜分离条件为:螯合肽浓度30%, pH值为6.5,温度为35℃时,带鱼蛋白酶解液亚铁螯合物滤过液的DPPH自由基清除活性为81.2%(2mg/mL),对金黄色葡萄球菌的抑制率为91.3%。透过分子质量为3KD的超滤膜为分离高抗菌抗氧化活性的带鱼蛋白亚铁螯合肽的最佳超滤膜。
     3.为研究分子质量小于3KD带鱼蛋白亚铁螯合肽抗菌稳定性的因素,利用Minitab软件中的Plackett-Burman设计试验,对pH值(以磷酸缓冲盐配置)、温度、光照、空气、超声波、螯合肽溶液的质量浓度、巴氏灭菌处理、高压处理及镁离子(硫酸镁盐)9个相关因子中筛选出了对带鱼蛋白亚铁螯合肽抗菌活性具有显著影响的因子为:pH值、螯合肽质量浓度/(mg/mL)、镁离子,其重要性顺序为pH值>螯合肽质量浓度>镁离子。
     4.采用凝胶过滤色谱G-25和反相高效液相色谱对分子质量小于3KD带鱼蛋白亚铁螯合抗菌肽进行分离纯化,得到了具有抗菌能力的单一组分F1-2。采用MALDI-TOF/TOF MS/MS对该组分进行测序,氨基酸序列为His-Tyr-Asp,核磁共振及红外光谱结构表征显示三肽与亚铁离子螯合机制为:三肽上的两个-NH-、-NH2与Fe2+发生配位,三肽末端-COOH上的-C=O及-OH与Fe~(2+)发生配位,形成不稳定结构的螯合物。将该物质命名为带鱼小肽亚铁离子螯合物(Small peptides ferrouschelates of Hairtail protein,Fe(Ⅱ)-SHPH)。
     5.用金黄色葡萄球菌为指示菌研究抑菌机制,Fe(Ⅱ)-SHPH的最小抑菌浓度(MIC)为0.20mg/ml,最小杀菌浓度(MBC)为0.26mg/ml,抑菌特性显示Fe(Ⅱ)-SHPH主要抑制了金黄色葡萄球菌对数生长期的菌体分裂,Fe(Ⅱ)-SHPH对金黄色葡萄球菌细胞膜渗透性的影响也较明显,溶液的相对电导率在高浓度情况下(1/2MIC)随作用时间的延长而逐渐增大,作用12h后,其相对电导率增大到19.4%。流式细胞仪检测Fe(Ⅱ)-SHPH作用金黄色葡萄球菌细胞8h后,可见G0/G1期细胞增多,S期细胞减少。说明Fe(Ⅱ)-SHPH对金黄色葡萄球菌的分裂增殖有一定的抑制作用。
     6.研究带鱼小肽亚铁螯合物对对金黄色葡萄球菌毒力因子的抑制作用,发现带鱼小肽亚铁螯合物对金黄色葡萄球菌的BBF的形成有抑制作用,但抑制作用并不是很明显。Western Blot分析不同浓度带鱼小肽亚铁螯合物作用后对金黄色葡萄球菌肠毒素A、B的分泌的影响。结果显示高浓度(1/2MIC)带鱼小肽亚铁螯合物对肠毒素A分泌的抑制作用强于低浓度(1/16MIC)。高浓度(1/2MIC)的带鱼小肽亚铁螯合物对肠毒素B表达的影响与低浓度(1/16MIC)比较并无明显变化。而高浓度(1/2MIC)带鱼小肽亚铁螯合物对金葡菌α-溶血素蛋白的表达则有明显的抑制作用。
Hairtail is one of the economically important commercial fish resources in our country, and accountsfor much market share as leader in fish production. The total hairtail caught in2010amounted to1,100,000tones which occupied70%-80%of the total product. It is a kind of aquatic product with high nutritionalvalue, tender fat and delicious meat, and so loved by the people. But the process will produce a largeamount of waste, its weight is approximately40%-50%of raw fish. Such kind of waste is very rich inprotein resources. If it is not treated effectively, this producing process will not only cause environmentalpollution, but also waste the resources. Now, the aquatic product leftovers utilization focuses on theproduction of feed, fish sauce, hydrolyzed protein. It is a waste of high quality protein resources, and theprocess is complicated with high cost.
     Iron is an essential nutrient, plays an important role in the metabolism of human body. The iron in foodmainly trivalent form, cannot be directly absorbed by organism. As to used current supplements-ironabsorption and utilization rate is low, and leads to certain side effects. Natural protein can hydrolyse togenerate peptides, the latter with trace elements combine to form a complex can be directly absorbed by thesmall intestine. Therefore, preparation of antibacterial and antioxidant efficacy of functional foods or foodingredients using hairtail waste protein,it make developing and utilizating low value marine fish resourcespossible,and open up new way to achieving the comprehensive utilization of resources.
     Small hairtail captured in Zhoushan sea area (9-10month) is used raw material, to prepareantibacterial activity of ferrous chelate peptide using hairtail waste protein disposed proteasome and ferrouschloride is studied, and also the structure of ferrous chelating peptides, antibacterial activity andmechanism is studied.The main research contents and results are as follows:
     1、With DH and iron chelating rate as the index, an enzymatic hydrolysis screening experiment was done tothe alkali protease, papain, trypsin, neutral protease and pepsin, respectively; then, the compound enzymehydrolysis experiment was implemented. With a with DH and Iron chelating rate as the index, the quadraticrotation-orthogonal combination design was applied to study the effect of the category of enzymepreparation, proportion of the compound enzyme, method to add enzyme, total volume of the enzyme, PHvalue, time of enzymolysis and temperature on the craft of preparation of ferrous chelate polypeptides. Dueto the comprehensive consideration of DH and iron chelating, the following condition was determined as the optimal craft to produce the ferrous chelate polypeptide with compound enzyme hydrolysis hairtailprotein: total volume of added enzyme is22000U/g while the ratio between alkali protease and papainwhich were added successively, was4:6; the time of enzyme hydrolysis of alkali protease was9h and thatof papain was8h; PH value of alkali protease was8.0and that of papain was6.0; the temperature ofenzyme hydrolysis was45℃. In this condition, DH and iron chelating rate of the hairtail protein ferrouschelate polypeptide were52.22%and82.31%, respectively.
     2、In order to study the antibacterial antioxidant activity of the peptide in which the molecular weightdistributes unevenly, the ultra-filtration membranes with the molecular weights of10kDa,5kDa and3kDawere used to separate the ferrous chelates of the hairtail protease solution in hierarchy, and the peptidecontent and the antibacterial antioxidant activity of the hairtail protein ferrous chelate peptide at allhierarchies were compared; in addition, the membrane separating condition was optimized with theorthogonal test. The finding indicates that the antibacterial antioxidant activity of the peptide solutionfiltered by the3kDa membrane is the highest, and the best membrane separation condition is as follows:when the content of chelating peptide is30%, PH value is6.5and the temperature is35℃, the scavengingactivity of DPPH free radical of the hairtail protease hydrolysis fluid ferrous chelates percolate is81.2%(2mg/ml), and its inhibition ratio of staphylococcus aureus is91.3%. Therefore, membrane with themolecular weight being3KD is the best to separate the hairtail protein ferrous chelating peptide with highantibacterial antioxidant activities.
     3、In order to study the factor affecting the antibacterial stability of hairtail protein ferrous chelating peptide,Plackett-Burman in Minitab was used to design the experiment, selecting several factors which haveobvious effect on the antibacterial antioxidant of hairtail protein ferrous chelating peptide from the relevantfactors which are PH value, temperature, light, air, ultrasonic, density of chelating peptide solution,pasteurization processing and magnesium ion (magnesium sulfate). Finally, PH value, density of chelatingpeptide (mg/ml) and magnesium ion were chosen and their importance was sequenced as follows: PH value> density of chelating peptide> magnesium ion.
     4、The antibacterial peptide of the hairtail protein ferrous chelate with the molecular weight being less than3KD was separated and purified with the gel filtration chromatography (GFC) G-25and reversed phasehigh performance liquid chromatography (RP-HPLC), and a single component of F1-2with antibacterialcapacity was acquired. The component was sequenced with MALDI-TOF/TOF MS/MS, and the amino acid sequence was His-Tyr-Asp; besides, the nuclear magnetic resonance and infrared spectrum of the structureindicated that the chelating mechanism of tripeptide and ferrous ion was as follows: two-NH-and-NH2onthe tripeptide were coupled with Fe~(2+), while-C=O and-OH on-COOH of tripeptide were coupled withFe2+, thus forming an unstable structure. This obtained substance was named Small peptides ferrouschelates of Hairtail protein (Fe(Ⅱ)-SHPH).
     5、The staphylococcus aureus was taken as the indicative bacteria in the study of antibacterial mechanism.The minimum inhibitory concentration (MIC) of Fe(Ⅱ)-SHPH was0.20mg/ml and minimum bactericidalconcentration was0.26mg/ml. The antibacterial characteristics indicated that Fe(Ⅱ)-SHPH principallyimpeded the cell division of staphylococcus aureus in the exponential phase; besides, Fe(Ⅱ)-SHPH alsohad a significant effect on the permeability of the membrane of staphylococcus aureus. When theconcentration was high (1/2MIC), relative conductivity of the solution gradually rose as the response timepassed; after12h, its relative conductivity rose to19.4%. After8h since the effect of Fe(Ⅱ)-SHPH onstaphylococcus aureus was detected by the flow cytometer (FCM), it could be seen that the number of thecell increased in G0/G1period, but decreased in S period, which indicated that Fe(Ⅱ)-SHPH has a certaininhibiting effect on the division and reproduction of staphylococcus aureus.
     6、During the study on the inhibiting effect of the ferrous chelates of hairtail small peptide on the virulencefactor of staphylococcus aureus, it was found that the ferrous chelates of hairtail small peptide had aninhibiting effect of the formation of BBF of staphylococcus, but the effect was not very obvious. WesternBlot analysed the effect of ferrous chelates of hairtail small peptide of different concentrations on thesecretion of enterotoxin A and enterotoxin B of staphylococcus, and the result indicated that the inhibitingeffect on the of the high-concentration (1/2MIC) of the ferrous chelates of hairtail small peptide on thesecretion A was higher than that of the low-concentration (1/16MIC) ferrous chelates of hairtail smallpeptide. However, their effects on the expression of B showed no obvious differences. However, thehigh-concentration (1/2MIC) ferrous chelates of hairtail small peptide obviously impeded the expression ofstaphylococcus aureus α-hemolysin protein.
引文
[1] Harnedy P A, FitzGerald R J. Bioactive peptides from marine processing waste and shellfish: A review[J]. Journal of Functional Foods,2011,56(10):235-9.
    [2] Wojdyla K, Rogowska-Wrzesinska A, Wrzesinski K, et al. Mass spectrometry based approach foridentification and characterisation of fluorescent proteins from marine organisms [J]. Journal of Proteomics,2011,34(6):157-61.
    [3] Clark M S, Peck L S. HSP70heat shock proteins and environmental stress in Antarctic marineorganisms: A mini-review [J]. Marine Genomics,2009,2(1):11-8.
    [4] Lopez-Fandino R, Otte J, Van Camp J. Physiological, chemical and technological aspects ofmilk-protein-derived peptides with antihypertensive and ACE-inhibitory activity [J]. International dairyjournal,2006,16(11):1277-93.
    [5] Lpez Expsito I, Recio I. Antibacterial activity of peptides and folding variants from milk proteins [J].International dairy journal,2006,16(11):1294-305.
    [6] Mendis E, Rajapakse N, Byun H G, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatinpeptides for their in vitro antioxidant effects [J]. Life sciences,2005,77(17):2166-78.
    [7] Sarmadi B H, Ismail A. Antioxidative peptides from food proteins: A review [J]. Peptides,2010,34(6):1949-56.
    [8] Hoyle N T, Merritt J. Quality of fish protein hydrolysates from herring (Clupea harengus)[J]. Journalof food science,1994,59(1):76-9.
    [9] Chalamaiah M, Rao G N, Rao D G, et al. Protein hydrolysates from meriga (Cirrhinus mrigala) eggand evaluation of their functional properties [J]. Food Chemistry,2010,120(3):652-7.
    [10] Guerard F, Sumaya-Martinez M T, Laroque D, et al. Optimization of free radical scavenging activityby response surface methodology in the hydrolysis of shrimp processing discards [J]. Process Biochemistry,2007,42(11):1486-91.
    [11] Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidative activityof protein hydrolysates prepared from round scad (Decapterus maruadsi)[J]. Food Chemistry,2007,103(4):1385-94.
    [12] Klompong V, Benjakul S, Kantachote D, et al. Antioxidative activity and functional properties ofprotein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree ofhydrolysis and enzyme type [J]. Food Chemistry,2007,102(4):1317-27.
    [13] Wasswa J, Tang J, Gu X-h, et al. Influence of the extent of enzymatic hydrolysis on the functionalproperties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin [J]. Food Chemistry,2007,104(4):1698-704.
    [14] Liaset B, Espe M. Nutritional composition of soluble and insoluble fractions obtained by enzymatichydrolysis of fish-raw materials [J]. Process Biochemistry,2008,43(1):42-8.
    [15] Bougatef A, Nedjar-Arroume N, Manni L, et al. Purification and identification of novel antioxidantpeptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins [J]. FoodChemistry,2010,118(3):559-65.
    [16] Zhu X, Zhu C, Zhao L, et al. Amino Acids Production from Fish Proteins Hydrolysis in SubcriticalWater [J]. Chinese Journal of Chemical Engineering,2008,16(3):456-60.
    [17] Conroy J, Couturier M. Dissolution of minerals during hydrolysis of fish waste solids [J].Aquaculture,2010,298(3-4):220-5.
    [18] Liaset B, Julshamn K, Espe M. Chemical composition and theoretical nutritional evaluation of theproduced fractions from enzymic hydrolysis of salmon frames with Protamex [J]. Process Biochemistry,2003,38(12):1747-59.
    [19] Nalinanon S, Benjakul S, Kishimura H, et al. Type I collagen from the skin of ornate threadfin bream(Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis [J]. Food Chemistry,2011,125(2):500-7.
    [20] Kittiphattanabawon P, Benjakul S, Visessanguan W, et al. Characterisation of acid-soluble collagenfrom skin and bone of bigeye snapper (Priacanthus tayenus)[J]. Food Chemistry,2005,89(3):363-72.
    [21]丁利君,钟森辉.鳕鱼蛋白酶解工艺优化及其酶解液抗氧化研究[J].食品科学,2008,13(8):398-401.
    [22]林伟锋,赵谋明,彭志英,等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,03):10-3.
    [23]钱俊青,单昱东,廖启元.黄鲇鱼内脏自溶酶解提取鱼油的工艺[J].食品与发酵工业,2009,12):66-9.
    [24]任明.梅鱼酶解多肽的分析及功能性研究[D];浙江工商大学,2008.
    [25]毋瑾超,朱碧英.低值鱼酶解蛋白的制取及其组成研究[J].水产科学,2001,04):7-10.
    [26]周明明,徐伟,薛长湖,等.鳀鱼酶解技术的条件优化[J].食品工业科技,2009,35(2):158-61.
    [27]许晓琴,徐丽,付翠萍,等.利用有限酶解技术提高鲶鱼食用肉粉溶解度的研究[J].安徽农业科学,2011,39(16):9838-9.
    [28]张静,郝记明,吉宏武,等.吉尾鱼酶解蛋白粉的营养组成与评价[J].现代食品科技,2008,23(4):387-9.
    [29]杨萍,洪鹏志,刘书成,等.军曹鱼下脚料的脂肪酸组成及其酶解蛋白粉的营养价值研究[J].食品与发酵工业,2008,19(4):52-5.
    [30] You L, Zhao M, Regenstein J M, et al. In vitro antioxidant activity and in vivo anti-fatigue effect ofloach (Misgurnus anguillicaudatus) peptides prepared by papain digestion [J]. Food Chemistry,2011,124(1):188-94.
    [31]施佳慧,郭海英,陈谦.鲐鲅鱼生产抗疲劳多肽酶解工艺初步研究[J].科技通报,2010,23(06):858-62.
    [32] Je J-Y, Lee K-H, Lee M H, et al. Antioxidant and antihypertensive protein hydrolysates producedfrom tuna liver by enzymatic hydrolysis [J]. Food Research International,2009,42(9):1266-72.
    [33] Suetsuna K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle [J].Marine Biotechnology,2000,2(1):5-10.
    [34] Kearney P M, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwidedata [J]. The Lancet,2005,365(9455):217-23.
    [35] FitzGerald R J, Murray B A, Walsh D J. Hypotensive peptides from milk proteins [J]. The journal ofnutrition,2004,134(4):980S.
    [36] Je J Y, Park P J, Kwon J Y, et al. A novel angiotensin I converting enzyme inhibitory peptide fromAlaska Pollack (Theragra chalcogramma) frame protein hydrolysate [J]. Journal of agricultural and foodchemistry,2004,52(26):7842-5.
    [37] Lee S H, Qian Z J, Kim S K. A novel angiotensin I converting enzyme inhibitory peptide from tunaframe protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats [J]. FoodChemistry,2010,118(1):96-102.
    [38] Kawamura T, Oda T, Muramatsu T. Purification and characterization of a dipeptidylcarboxypeptidase from the polychaete Neanthes virens resembling angiotensin I converting enzyme [J].Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,2000,126(1):29-37.
    [39] Ko S-C, Lee J-K, Byun H-G, et al. Purification and characterization of angiotensin I-convertingenzyme inhibitory peptide from enzymatic hydrolysates of Styela clava flesh tissue [J]. ProcessBiochemistry,2011,14(3):232-7.
    [40] Lee J K, Hong S, Jeon J-K, et al. Purification and characterization of angiotensin I convertingenzyme inhibitory peptides from the rotifer, Brachionus rotundiformis [J]. Bioresource Technology,2009,100(21):5255-9.
    [41] Fitzgerald R J, Murray B A. Bioactive peptides and lactic fermentations [J]. International journal ofdairy technology,2006,59(2):118-25.
    [42] Tsai J S, Chen T J, Pan B S, et al. Antihypertensive effect of bioactive peptides produced byprotease-facilitated lactic acid fermentation of milk [J]. Food Chemistry,2008,106(2):552-8.
    [43]马俪珍,甄润英,张建荣,等.具免疫活性的鲶鱼胶原多肽酶解工艺研究[J].食品工业科技,2008,34(4):152-5.
    [44]彭汶铎,陈启亮,赵金华.鲍鱼酶解提取物的营养成分及对免疫低下小鼠的免疫调节作用[J].中国食品卫生杂志,2005,35(6):17-20.
    [45] Dong S, Zeng M, Wang D, et al. Antioxidant and biochemical properties of protein hydrolysatesprepared from Silver carp (Hypophthalmichthys molitrix)[J]. Food Chemistry,2008,107(4):1485-93.
    [46] Xie Z, Huang J, Xu X, et al. Antioxidant activity of peptides isolated from alfalfa leaf proteinhydrolysate [J]. Food Chemistry,2008,111(2):370-6.
    [47] Mendis E, Rajapakse N, Kim S K. Antioxidant properties of a radical-scavenging peptide purifiedfrom enzymatically prepared fish skin gelatin hydrolysate [J]. Journal of agricultural and food chemistry,2005,53(3):581-7.
    [48] Lee T G, Maruyama S. Isolation of HIV-1Protease-Inhibiting Peptides from ThermolysinHydrolysate of Oyster Proteins*1[J]. Biochemical and biophysical research communications,1998,253(3):604-8.
    [49] Cudennec B, Ravallec-Pl R, Courois E, et al. Peptides from fish and crustacean by-productshydrolysates stimulate cholecystokinin release in STC-1cells [J]. Food Chemistry,2008,111(4):970-5.
    [50] Gurard F, Decourcelle N, Sabourin C, et al. Recent developments of marine ingredients for food andnutraceutical applications: a review [J]. Journal des Sciences Halieutique et Aquatique,2010,2(6):21-7.
    [51] Porkelsson G, Kristinsson H G. Bioactive peptides from marine sources. State of art. Report to theNORA fund [J]. Skrsla Mat′s,2009,16(2):9-14.
    [52]鸥泉。“鲨”中求宝——记乐清市海洋生物保健品有限公司[J].农产品加工业,2009,23(7):18-9.
    [53]袁联群,杨永桃.铈氨基酸配合物的UV和CV方法[J].上海师范大学学报:自然科学版,2002,31(4):62-5.
    [54]管海跃.甘氨酸微量元素螫合物的合成与表征研究[D];浙江大学,2007.
    [55]赵惠敏,闫俊英.氨基乙酸螯合铁的研究[J].河北师范大学学报:自然科学版,2000,24(2):232-3.
    [56]张祥麟.络合物化学[M].冶金工业出版社,1979.
    [57]祝德义,李彦春,靳丽强,等.胶原多肽与钙结合性能的研究[J].中国皮革,2005,34(3):26-9.
    [58]冯小强,李小芳,杨声.硫脲壳聚糖Co (Ⅱ)配合物的制备,抑菌活性及与血清白蛋白的作用[J].应用化学,2011,28(5):9-13.
    [59]周元臻,魏永锋.壳聚糖-Ca (Ⅱ)配位聚合物的合成及其性能表征[J].食品科学,2003,24(1):36-9.
    [60]卢奎,宗珊盈,马丽.甲硫氨酸三肽与金属离子相互作用的研究[J].中国化学会全国第十三届大环化学暨第五届超分子化学学术讨论会论文选集,2006,
    [61] Tellinghuisen J. Resolution of the visible infrared absorption spectrum of into three contributingtransitions [J]. The Journal of Chemical Physics,1973,58(3):2821.
    [62] Dai J, Jiang X, Wang H, et al. Organic photovoltaic cells with near infrared absorption spectrum [J].Applied Physics Letters,2007,91(5):253-6.
    [63]许良忠,陆小兰,张书圣,等.含芳硫基的新三唑类化合物的合成及生物活性研究[J].高等化学学报,2002,23(3):
    [64]王忆锋,黄炎.光谱蓝移或红移的工程可行性分析[J].红外技术,2008,30(005):286-8.
    [65] Orien J T, Prell J S, Berden G, et al. Effects of anions on the zwitterion stability of Glu, His and Arginvestigated by IRMPD spectroscopy and theory [J]. International Journal of Mass Spectrometry,2010,297(1-3):116-23.
    [66] Zhou W, Kornegay E, Lindemann M, et al. Stimulation of growth by intravenous injection of copperin weanling pigs [J]. Journal of Animal Science,1994,72(9):2395.
    [67]王静,蔡星伟,肖德宝.氨基酸-多金属氧酸盐电荷转移配合物的固相法合成及表征[J].化学研究与应用,2008,10):1341-4.
    [68]李清禄,陈强,黄志坚,等.吡啶羧酸与铜(Ⅱ)螯合物的合成及结构表征[J].福建农林大学学报(自然科学版),2007,03):316-9.
    [69]汪芳安,黄泽元,王海滨,等.蛋氨酸亚铁螯合物的合成及表征[J].湖北化工,2001,18(4):17-9.
    [70]侯育冬,高胜利,郭利娟,等.硫酸锌与L-氨基酸配合行为的相化学研究[J].高等学校化学学报,1999,20(9):1346-8.
    [71]左瑞雅. L-丙氨酰-L-谷氨酰胺-Zn~(2+)螯合物制备及表征[D];重庆大学,2007.
    [72]张红漫,陈国松,仪明君,等.复合氨基酸铜螯合物的研究[J].氨基酸和生物资源,2002,24(2):37-40.
    [73] Nyquist R A, Putzig C L, Leugers M A. Infrared and Raman spectral atlas of inorganic compoundsand organic salts [M]. Academic Press,1997.
    [74] Dittrich H, Bieniok A. MEASUREMENT METHODS|Structural Properties: X-Ray and NeutronDiffraction [M]. Encyclopedia of Electrochemical Power Sources. Amsterdam; Elsevier.2009:718-37.
    [75]刘会云,席宇,戈士文,等.胶原蛋白金属配合物的合成,表征及抗菌性能[J].郑州大学学报:医学版,2010,13(2):301-4.
    [76]于德泉,杨峻山,谢晶曦.分析化学手册:核磁共振波谱分析[M].化学工业出版社,1989.
    [77] Irina M R, E. Edward Bittar N M A, Clare W. Protein Structure Determination by Nuclear MagneticResonance Spectroscopy [M]. Advances in Molecular and Cell Biology. Elsevier.1997:133-75.
    [78]周桢,左瑞雅. Ala—Gin—Zn2+配合物的主要理化及抗菌性质[J].药物生物技术,2010,17(2):130-5.
    [79] Fujihira M, Tani Y, Furugori M, et al. Chemical force microscopies by friction and adhesion usingchemically modified atomic force microscope (AFM) tips [M]. Studies in Surface Science and Catalysis.Elsevier.2001:319-24.
    [80] Bugly P, Nagy E M, Farkas E, et al. New insights into the metal ione ptide hydroxamate interactions:Metal complexes of primary hydroxamic acid derivatives of common dipeptides in aqueous solution [J].Polyhedron,2007,26(8):1625-33.
    [81] Kurzak B, Wona A, Jezierska J, et al. Copper(II) complexes of several monophosphono dipeptides:the role of phosphonic oxygen and thioether sulfur in complex stabilization [J]. Polyhedron,2004,23(11):1939-46.
    [82]李庭,熊华,史苏华,等.米蛋白肽锌对油脂稳定性的影响及其抑菌活性的研究[J].食品工业科技,2009,(6):65-8.
    [83] Fardet A, Rock E, Rmsy C. Is the in vitro antioxidant potential of whole-grain cereals and cerealproducts well reflected in vivo?[J]. Journal of Cereal Science,2008,48(2):258-76.
    [84] Etsuo N. Assessment of Antioxidant Capacity in vitro and in vivo [J]. Free Radical Biology andMedicine,2010,49(4):503-15.
    [85]赵洪雷.鲢鱼蛋白小肽螯合锌的制备及其生物活性研究[D];华中农业大学,2009.
    [86]殷作明,胡德耀,李素芝,等.高原高寒战时环境猪肢体枪弹伤后T-AOC, SOD, MDA的特点变化及意义[J].第三军医大学学报,2005,27(9):809-12.
    [87]赵海军,王宝贵,张桂英,等.大豆多肽螯合锌对自然衰老小鼠的作用[J].中国老年学杂志,2009,29(12):53-8.
    [88]杨杰,赵洪雷,徐淑芬,等.鱼蛋白小肽螯合锌对小鼠的补锌效果及抗氧化作用[J].华中农业大学学报,2011,30(4):516-20.
    [89] Megas C, Pedroche J, Yust M M, et al. Production of copper-chelating peptides after hydrolysis ofsunflower proteins with pepsin and pancreatin [J]. LWT-Food Science and Technology,2008,41(10):1973-7.
    [90] Fisher A E O, Naughton D P. Metal ion chelating peptides with superoxide dismutase activity [J].Biomedicine& Pharmacotherapy,2005,59(4):158-62.
    [91]高腾波.微量元素氨基酸螯合物及其在畜禽饲养中的应用[J].北京农业,2011,23(3):27-9.
    [92]苏纯阳,董仲华,香红星.微量元素氨基酸(小肽)螯合物的研究应用进展[J].食品工业科技,2002,23(1):12-4.
    [93] Ashmead H. Comparative intestinal absorption and subsequent metabolism of metal amino acidchelates and inorganic metal salts [J]. The roles of amino acid chelates in animal nutrition Noyes Publishers,New Jersey,1993,306鈥?19.
    [94] Apines M J S, Satoh S, Kiron V, et al. Availability of supplemental amino acid-chelated traceelements in diets containing tricalcium phosphate and phytate to rainbow trout, Oncorhynchus mykiss [J].Aquaculture,2003,225(1-4):431-44.
    [95]李永富,施用晖,喻涛.乳猪小肽螯合铁的补铁效果[J].无锡轻工大学学报,2001,20(1):62-4.
    [96]陈琎.小肽螯合铬对SD大鼠生长性能,糖酵解途径及血脂水平的影响[D];四川农业大学,2008.
    [97]邓尚贵,徐涛,满德慧,等.鳕鱼(Gadous macrocephaius)皮水解蛋白亚铁修饰对大鼠营养性贫血改善的试验研究[J].海洋与湖沼,2010,23(5):719-25.
    [98] Yamamoto N, Akino A, Takano T. Antihypertensive effect of the peptides derived from casein by anextracellular proteinase from Lactobacillus helveticus CP790[J]. Journal of dairy science,1994,77(4):917-22.
    [99] Maeno M, Yamamoto N, Takano T. Identification of an antihypertensive peptide from caseinhydrolysate produced by a proteinase from Lactobacillus helveticus CP790[J]. Journal of dairy science,1996,79(8):1316-21.
    [100]王卫国,张天勇.纳米级小肽螯合铜对小白鼠铜排泄和免疫指标的影响[J].饲料工业,2011,32(7):11-5.
    [101]张国蓉,张旭,张程,等.胶原蛋白多肽-铬(Ⅲ)螯合物提高糖尿病小鼠免疫功能的研究[J].现代食品科技,2009,25(4):358-61.
    [102]张旭,张国蓉,车伟,等.胶原蛋白多肽-铬(Ⅲ)螯合物对糖尿病小鼠免疫力的影响[J].中国试验动物学报,2008,16(1):10-3.
    [103]王秀丽,刘安军,李琨,等.胶原蛋白多肽-铬(Ⅲ)螯合物的降血糖机理探讨[J].食品研究与开发,2006,27(5):125-6.
    [104]吴扬,胡志和,郭嘉,等.乳铁蛋白铬对实验性糖尿病小鼠血糖水平的影响[J].食品科学,2010,31(13):25-8.
    [105]林龙山,张寒野,李惠玉,等.东海带鱼食性的季节变化[J].中国海洋大学学报:自然科学版,2007,36(6):932-6.
    [106]王迎,黄丽萍,高健.舟山和上海带鱼市场价格变动的实证分析[J].上海海洋大学学报,2010,3(05):703-6.
    [107]黄镇繁.带鱼下脚料蛋白质提取与分离研究[J].渔业现代化,2008,3(5):52-5.
    [108] Hultin H O, Kelleher S D. Process for isolating a protein composition from a muscle source andprotein composition [M]. Google Patents.1999.
    [109]龚钢明,顾慧,蔡宝国.鱼类加工下脚料的资源化与利用途径[J].中国资源综合利用,2003,12(7):23-4.
    [110]张慜,张骏.国内外低值淡水鱼加工与下脚料利用的研究进展[J].食品与生物技术学报,2006,25(005):115-20.
    [111]苑艳辉.水产品下脚料综合利用研究之进展[J].水产科技情报,2004,31(001):44-8.
    [112] Carpenter C E, Mahoney A W. Contributions of heme and nonheme iron to human nutrition [J].Critical Reviews in Food Science&Nutrition,1992,31(4):333-67.
    [113] Fairweather‐Tait S J, Teucher B. Iron and calcium bioavailability of fortified foods and dietarysupplements [J]. Nutrition reviews,2002,60(11):360-7.
    [114] Bouhallab S, Cinga V, Aít-Oukhatar N, et al. Influence of various phosphopeptides of caseins oniron absorption [J]. Journal of agricultural and food chemistry,2002,50(24):7127-30.
    [115] Deng S, Huo J, Xie C. Preparation by enzymolysis and bioactivity of iron complex of fish proteinhydrolysate (Fe-FPH) from low value fish [J]. Chinese Journal of Oceanology and Limnology,2008,26(3):300-6.
    [116] Reddy M B, Hurrell R F, Cook J D. Estimation of nonheme-iron bioavailability from mealcomposition [J]. The American journal of clinical nutrition,2000,71(4):937.
    [117] Blat D, Weiner L, Youdim M B H, et al. A novel iron-chelating derivative of the neuroprotectivepeptide NAPVSIPQ shows superior antioxidant and antineurodegenerative capabilities [J]. Journal ofmedicinal chemistry,2007,51(1):126-34.
    [1]王迎,黄丽萍,高健.舟山和上海带鱼市场价格变动的实证分析[J].上海海洋大学学报,2010,3(5):703-6.
    [2]黄镇繁.带鱼下脚料蛋白质提取与分离研究[J].渔业现代化,2008,3(5):52-5.
    [3] Hultin H O, Kelleher S D. Process for isolating a protein composition from a muscle source andprotein composition [M]. Google Patents.1999.
    [4]龚钢明,顾慧,蔡宝国.鱼类加工下脚料的资源化与利用途径[J].中国资源综合利用,2003,12(7):23-4.
    [5]张慜,张骏.国内外低值淡水鱼加工与下脚料利用的研究进展[J].食品与生物技术学报,2006,25(5):115-20.
    [6]苑艳辉.水产品下脚料综合利用研究之进展[J].水产科技情报,2004,31(1):44-8.
    [7] Carpenter C E, Mahoney A W. Contributions of heme and nonheme iron to human nutrition [J].Critical Reviews in Food Science&Nutrition,1992,31(4):333-67.
    [8] Fairweather‐Tait S J, Teucher B. Iron and calcium bioavailability of fortified foods and dietarysupplements [J]. Nutrition reviews,2002,60(11):360-7.
    [9] Bouhallab S, Cinga V, Aít-Oukhatar N, et al. Influence of various phosphopeptides of caseins on ironabsorption [J]. Journal of agricultural and food chemistry,2002,50(24):7127-30.
    [10] Deng S, Huo J, Xie C. Preparation by enzymolysis and bioactivity of iron complex of fish proteinhydrolysate (Fe-FPH) from low value fish [J]. Chinese Journal of Oceanology and Limnology,2008,26(3):300-6.
    [11] Reddy M B, Hurrell R F, Cook J D. Estimation of nonheme-iron bioavailability from mealcomposition [J]. The American journal of clinical nutrition,2000,71(4):937.
    [12] Blat D, Weiner L, Youdim M B H, et al. A novel iron-chelating derivative of the neuroprotectivepeptide NAPVSIPQ shows superior antioxidant and antineurodegenerative capabilities [J]. Journal ofmedicinal chemistry,2007,51(1):126-34.
    [13]张意静.食品分析技术[M].中国轻工业出版社,2001.
    [14]林伟锋.可控酶解从海洋鱼蛋白中制备生物活性肽的研究[D];华南理工大学,2003.
    [15]宁正详.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    [16]朱少娟,施用晖,乐国伟.超声波对胰蛋白酶水解酪蛋白的影响[J].食品与生物技术学报,2005,24(2):116-24.
    [17]唐启义,冯明光。实用统计分析及其DPS数据处理系统[M].科学出版社,2002.
    [18] Flach C R, Brauner J W, Taylor J W, et al. External reflection FTIR of peptide monolayer films insitu at the air/water interface: experimental design, spectra-structure correlations, and effects ofhydrogen-deuterium exchange [J]. Biophysical journal,1994,67(1):402-10.
    [1] da Silva Malheiros P, Daroit D J, Brandelli A. Food applications of liposome-encapsulatedantimicrobial peptides [J]. Trends in Food Science& Technology,2010,21(6):284-92.
    [2] Kim P I, Sohng J K, Sung C, et al. Characterization and structure identification of an antimicrobialpeptide, hominicin, produced by Staphylococcus hominis MBBL [J]. Biochemical and BiophysicalResearch Communications,2010,399(2):133-8.
    [3] Kulon K, Valensin D, Kamysz W, et al. The His-HIis sequence of the antimicrobial peptide demegenP-113makes it very attractive ligand for Cu2+[J]. Journal of Inorganic Biochemistry,2008,102(4):960-72.
    [4] Wu H C, Chen H M, Shiau C Y. Free amino acids and peptides as related to antioxidant properties inprotein hydrolysates of mackerel (Scomber austriasicus)[J]. Food Research International,2003,36(9-10):949-57.
    [5] Beres D L, Hawkins D M. Plackett-Burman technique for sensitivity analysis of many-parameteredmodels [J]. Ecological Modelling,2001,141(1-3):171-83.
    [6] Ahuja S, Ferreira G, Moreira A. Application of Plackett-Burman design and response surfacemethodology to achieve exponential growth for aggregated shipworm bacterium [J]. Biotechnology andbioengineering,2004,85(6):666-75.
    [7] Delgado A, Brito D, Peres C, et al. Bacteriocin production by Lactobacillus pentosus B96can beexpressed as a function of temperature and NaCl concentration [J]. Food Microbiology,2005,22(6):521-8.
    [1] Yoshida T. Peptide separation in normal phase liquid chromatography [J]. Analytical chemistry,1997,69(15):3038-43.
    [2] Cooper J W, Chen J, Li Y, et al. Membrane-based nanoscale proteolytic reactor enabling proteindigestion, peptide separation, and protein identification using mass spectrometry [J]. Analytical chemistry,2003,75(5):1067-74.
    [3] Kimura H, Tanigawa T, Morisaka H, et al. Simple2D-HPLC using a monolithic silica column forpeptide separation [J]. Journal of separation science,2004,27(101):897-904.
    [4] Cifuentes A, Poppe H. Simulation and optimization of peptide separation by capillary electrophoresis[J]. Journal of Chromatography A,1994,680(1):321-40.
    [5] Yoshida T. Peptide separation by hydrophilic-interaction chromatography: a review [J]. Journal ofbiochemical and biophysical methods,2004,60(3):265-80.
    [6] Yau W, Kirkland J J, Bly D. Modern size-exclusion liquid chromatography: practice of gel permeationand gel filtration chromatography [M]. Wiley New York, NY,1979.
    [7]刘国诠.生物工程下游技术[M].化学工业出版社现代生物技术与医药科技出版中心,2003.
    [8] Du C M, Valko K, Bevan C, et al. Rapid gradient RP-HPLC method for lipophilicity determination: Asolvation equation based comparison with isocratic methods [J]. Analytical chemistry,1998,70(20):4228-34.
    [9] Solladi G, Salom-Roig X J, Hanquet G. Stereoselective synthesis towards the C8-C18subunit ofpamamycin-607induced by a chiral sulfoxide group [J]. Tetrahedron Letters,2000,41(4):551-4.
    [10]李瑞萍,黄骏雄.高效制备液相色谱柱技术的研究进展[J].化学进展,2004,16(2):273-83.
    [11]孙自勇,吴盛,王石泉等.液相色谱与串联质谱偶联在蛋白质序列分析中的应用[J].基础医学与临床,2003,23(2):126-131.
    [1] Christensen B, Fink J, Merrifield R, et al. Channel﹣forming properties of cecropins and relatedmodel compounds incorporated into planar lipid membranes [J]. Proceedings of the National Academy ofSciences,1988,85(14):5072.
    [2] Shai Y. Molecular recognition between membrane﹣spanning polypeptides [J]. Trends in biochemicalsciences,1995,20(11):460﹣4.
    [3] Fehlbaum P, Bulet P, Chernysh S, et al. Structure﹣activity analysis of thanatin, a21﹣residueinducible insect defense peptide with sequence homology to frog skin antimicrobial peptides [J].Proceedings of the National Academy of Sciences,1996,93(3):1221.
    [4] Ando K, Natori S. Inhibitory effect of sarcotoxin IIA, an antibacterial protein of Sarcophaga peregrina,on growth of Escherichia coli [J]. Journal of biochemistry,1988,103(4):735﹣7.
    [5]李庭,熊华,史苏华,等.米蛋白肽锌对油脂稳定性的影响及其抑菌活性的研究[J].食品工业科技,2009,(6):65﹣8.
    [6]毛胜凤,孙芳利,段新芳,等.壳聚糖金属盐抑菌效果研究[J].浙江林学院学报,2006,23(1):89﹣93.
    [7] El﹣Metwaly N M, Refat M S. Elaborated1H NMR study for the ligitional behavior of twothiosemicarbazide derivatives towards some heavy metals (Sn(II), Sb(III), Pb(II) and Bi(III)), thermal,antibacterial and antifungal studies [J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,81(1):519﹣28.
    [8] Tommasino J﹣B, Renaud F N R, Luneau D, et al. Multi﹣biofunctional complexes combiningantiseptic copper(II) with antibiotic sulfonamide ligands: Structural, redox and antibacterial study [J].Polyhedron,30(10):1663﹣70.
    [9]潘凌子,那杰,邢卓,等.蜂毒肽对农作物病原菌的抑杀作用[J].科学通报,2007,(3):291﹣6.
    [10] Fujimura S, Sato T, Mikami T, et al. Combined efficacy of clarithromycin plus cefazolin orvancomycin against Staphylococcus aureus biofilms formed on titanium medical devices [J]. InternationalJournal of Antimicrobial Agents,2008,32(6):481﹣4.
    [11] Ye X, Li X, Yuan L, et al. Effect of the surface activity on the antibacterial activity of octadecanoylacetal sodium sulfite series [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,268(1﹣3):85﹣9.
    [12] Mahmud T, Rehman R, Gulzar A, et al. Synthesis, characterization and study of antibacterial activityof enaminone complexes of zinc and iron [J]. Arabian Journal of Chemistry,3(4):219﹣24.
    [13] Nakayama M, Shigemune N, Tsugukuni T, et al. Mechanism of the combined anti﹣bacterial effectof green tea extract and NaCl against Staphylococcus aureus and Escherichia coli O157:H7[J]. FoodControl,25(1):225﹣32.
    [1] Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance [J].Pharmacological reviews,2003,55(1):27-55.
    [2] Brogden K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. NatureReviews Microbiology,2005,3(3):238-50.
    [3] Patrzykat A, Friedrich C L, Zhang L, et al. Sublethal concentrations of pleurocidin-derivedantimicrobial peptides inhibit macromolecular synthesis in Escherichia coli [J]. Antimicrobial agents andchemotherapy,2002,46(3):605.
    [4] Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functionsof gram-negative bacteria by bactenecins [J]. Infection and immunity,1990,58(11):3724.
    [5] Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential [J]. Journal ofpharmacy and pharmacology,2004,56(3):285-9.
    [6] Soejima T, Nagao E, Kubota T, et al. Comparison between ultrafiltration and trichloroacetic acidprecipitation method for concentration of Staphylococcus aureus enterotoxin in dairy samples [J].International Journal of Food Microbiology,2004,93(2):185-94.
    [7]王坤.细菌生物膜的形成和研究注射用双黄连对细菌生物膜的影响[D];长春中医药大学,2009.
    [8] Bernheimer A, SCHWARTZ L L. Isolation and composition of staphylococcal alpha toxin [J]. Journalof general microbiology,1963,30(3):455.
    [9] Lederberg J. Plasmid (1952-1997)[J]. Plasmid,1998,39(1):1-9.
    [10] Costerton J. Introduction to biofilm [J]. International journal of antimicrobial agents,1999,11(3-4):217.
    [11] Steen E. Enterotoxin production by Staphyloccucus aureus strains isolated from Danish foods [J].International Journal of Food Microbiology,1987,4(3):207-14.
    [12] Fueyo J M, Martn M C, Gonzlez-Hevia M A, et al. Enterotoxin production and DNA fingerprintingin Staphylococcus aureus isolated from human and food samples. Relations between genetic types andenterotoxins [J]. International Journal of Food Microbiology,2001,67(1-2):139-45.
    [13]王冰,林一曼,冼慧霞,等.深圳市食源性金葡菌的耐药趋势及携带肠毒素监测[J].中国热带医学,2011,11(1):5-7.
    [14]刘瑞田.金黄葡萄球菌处毒素的研究进展[J].国外兽医学:畜禽疾病,1994,15(1):12-4.
    [15]魏志恒.金黄色葡萄球菌及其溶血素基因分布研究[D];河北农业大学,2009.
    [16] Neu H C. The crisis in antibiotic resistance [J]. Science,1992,257(5073):1064.
    [17] Tollefson L, Miller M A. Antibiotic use in food animals: controlling the human health impact [J].Journal of AOAC international,2000,83(2):245-54.
    [18] Amabile-Cuevas C F, Heinemann J A. Shooting the messenger of antibiotic resistance:: Plasmidelimination as a potential counter-evolutionary tactic [J]. Drug discovery today,2004,9(11):465-7.
    [19] Muhammad G, Hoblet K, Jackwood D, et al. Interspecific conjugal transfer of antibiotic resistanceamong staphylococci isolated from the bovine mammary gland [J]. American journal of veterinary research,1993,54(9):1432.
    [20] Noble W, Rahman M, Karadec T, et al. Gentamicin resistance gene transfer from Enterococcusfaecalis and E. faecium to Staphylococcus aureus, S. intermedius and S. hyicus [J]. Veterinary microbiology,1996,52(1-2):143-52.
    [21] Licht T R, Christensen B B, Krogfelt K A, et al. Plasmid transfer in the animal intestine and otherdynamic bacterial populations: the role of community structure and environment [J]. Microbiology,1999,145(9):2615.
    [22] http://meeting.bimtdoctor.com/meeting!3467.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700