内蒙古克什克腾旗大型真菌资源利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用文献调查和实地调查相结合的方法对内蒙古地区大型真菌资源进行了系统分析。文献报道大型真菌共计990种,隶属于2个门23个目72个科218个属。调查结果表明:内蒙古地区的大型真菌种类十分丰富,其中种类超过或等于20种的有13科,共有686种,占内蒙古大型真菌总数的69.29%;种类超过或等于10种的有24属,共有484种,占内蒙大型真菌全部种数的48.88%。内蒙古的食药用真菌共有531种,其中药用真菌316种,食用真菌373种,食药兼用菌158种。经对克什克腾旗的实地调查,共采集样品41份,根据宏观特征与显微结构特征鉴定出26种,隶属于子囊菌门2目2科2属2种,担子菌门7目14科20属24种。
     为了开发利用内蒙古地区的真菌资源,本研究对克什克腾旗地区桦褶孔菌(Lenzites betulina)、大白桩菇(Leucopaxillus giganteus)、粗柄蘑菇(Agaricus spissicaulis)、疣孢黄枝瑚菌(Ramaria flava)和毛咀地星(Geastrum fimbriatum)等五种食药性真菌的化学成分和生物活性进行了研究。
     利用各种分离技术手段和现代光谱技术,从五种大型真菌中共分离鉴定了49个化合物,其中有1个新化合物和1个新天然产物。具体结果如下:
     (1)从桦褶孔菌的乙醇提取物中分离鉴定了14个化合物,包括:甾体(7个)、对三联苯(3个)、吡喃酮(1个)、氨基酸(1个)、芳香化合物(1个)和糖醇(1个)。其中2-甲氧基-3,6-二苯基-4H-呲喃-4-酮是新化合物,2-苯基-3-甲氧基-[1H-2-苯并哌喃][4,3-e]p]苯醌是新天然产物。
     (2)从疣孢黄枝瑚菌的乙醇提取物中分离鉴定了11个化合物,分别是:甾体(3个过氧化物麦角甾、2个甾体苷类和1个甾醇)、芳香化合物(2个)、碱基(1个)、糖(1个)和糖醇(1个)。这11个化合物均为首次从该菌中分离得到。
     (3)从粗柄蘑菇的乙醇提取物中分离鉴定了10个化合物,其中包括4个甾体、2个香豆素、1个脑苷脂、1个糖醇、1个碱基和1个脂肪酸。目前尚无关于粗柄蘑菇的化学成分的研究报道。
     (4)从毛咀地星的乙醇提取物中分离鉴定了6个化合物,有2个甾体、2个糖、1个糖醇和1个氨基酸。目前尚无关于毛咀地星的化学成分的研究报道。
     (5)从大白桩菇乙醇提取物的乙酸乙酯层中分离鉴定了化合物8个,分别为:甾体(2个)、吡啶甲酸(1个)、生物碱(1个)、酸性成分(2个)和酚(1个)。除了生物碱clitocine,其余均为首次从该菌中分离得到的化合物。
     本研究对五种真菌乙醇提取物和3个对联三苯的抗氧化活性进行了分析,同时还对这些提取物进行了抗细菌、抗真菌的活性研究,采用MTT法研究了各提取物对MDA-MB-231、BGC-803和NCI-H520等肿瘤细胞的抑制活性。研究结果如下:
     (1)五种大型真菌乙醇提取物对DPPH自由基和羟自由基都有一定的清除活性,且清除能力有显著性差异(P<0.05),大小顺序为桦褶孔菌>疣孢黄枝瑚菌>大白桩菇>毛咀地星>粗柄蘑菇。其中桦褶孔菌抗氧化活性最好,对DPPH自由基和羟自由基清除能力IC5o分别为24.12±0.61μg/mL和24.58±0.19μg/mL。五种真菌的总酚含量分别为17.79±0.57μg/mL(桦褶孔菌)、12.95±0.41μg/mg (疣孢黄枝瑚菌)、11.66±0.56μg/mg(大白桩菇)、10.53±0.53μg/mg毛咀地星)和3.32±0.45μg/mg(粗柄蘑菇)。总酚含量与DPPH自由基和羟自由基清除能力之间均呈正相关关系,相关系数分别为0.856和0.892。在实验浓度的范围内,3种对联三苯化合物的DPPH自由基和羟自由基清除率与浓度都呈正相关,化合物2表现出了较高的羟自由基清除活性,其IC5o为37.69±0.8μg/mL。
     (2)通过抑菌圈法对五种大型真菌乙醇提取物进行了抗细菌活性测定,发现桦褶孔菌、疣孢黄枝瑚菌、大白桩菇和粗柄蘑菇提取物对金黄葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌(Bacillus subtilis)和大肠杆菌(Escherichia coli)均有抑制作用。其中大白桩菇对这三种细菌的抑菌活性最好,抑菌圈直径均大于2㎝,最低抑菌浓度(MIC)均为6.25mg/mL;桦褶孔菌抑细菌活性次之,对上述细菌的抑菌圈直径分别为2.24cm、1.90cm和1.72cm, MIC分别为6.25mg/mL、12.50mg/mL和25.00mg/mL
     采用菌饼法对五种大型真菌乙醇提取物进行抗真菌活性测定,这些真菌提取物分别表现出了不同的抑制效果,提取物对燕麦镰刀菌(Gibberella zeae)的抑制率高于禾谷镰刀菌(Fusarium graminearum)和白斑小尾孢(Cercosporella albo-maculans)。其中大白桩菇的抑菌活性最好,对禾谷镰刀菌、燕麦镰刀菌和白斑小尾孢的抑制率分别为35.80%、67.23%和52.05%。
     (3)五种大型真菌乙醇提取物对MDA-MB-231、BGC-803和NCI-H520等肿瘤细胞都有一定的抑制活性,在试验浓度范围内,抑制活性与提取物浓度呈正相关。大白桩菇提取物的抑肿瘤效果最佳,在浓度为200μg/mL时对MDA-MB-231、BGC-803和NCI-H520细胞的抑制率分别达到77.35%、68.92%和65.53%,其IC50分别为46.26μg/mL、65.06μg/mL和84.76μg/mL;桦褶孔菌提取物的抑肿瘤效果次之,在浓度为200μg/mL时,对MDA-MB-231、BGC-803和NCI-H520细胞的抑制率分别达到83.15%、55.54%和57.50%,其IC5o分别为51.47μg/mL.130.19μg/mL和106.54μg/mL
The author adopts the use of research methods of literature search and review of papers regarding macro fungi in Inner Mongolia over the past twenty years for this dissertation. Accordingly, papers regarding990species of macro fungi were collected. The diversity catalogue of these990species was arranged according to Ainsworth&Bisby's Dictionary of the Fungi (2008,10th), and they belong to2phylums,23orders,78families,218genus.
     The survey of the flora diversity study indicated that macro fungi species are vey plentiful in Inner Mongolia. Thirteen different families each have over20species represented, comprising a total of686species, or69.29%of the total macro fungi in Inner Mongolia. Another24families have over10species represented, totaling to484species, or48.88%of the total. Of these species,531have either edible or medicinal characteristics, or both. Three hundred sixteen species have medicinal properties,373species are edible, and158species are both edible and have medicinal functions.
     As a result of conducting field sampling in Hexigten Banner, a total of41specimens were collected. Twenty-six species were identified through studying their gross features and their structures under a microscope. Among these26species,2phylums were identified. The first phylum was Ascomycota, containing2orders,2families,2genuses and2species. The second phylum identified was Basidiomycota, which contained7orders,14 families,20genuses and24species.
     Because of the diversity of the species and their unique chemical structures, the higher fungi are an extremely important resource for new natural medicines. In order to fully exploit the fungal resources in Inner Mongolia region and search for new active compounds, we investigated the chemical constituents and bioactivities of the five higher fungi species of Lenzites betulina, Ramaria flava, Agaricus spissicaulis, Geastrum fimbriatum and Leucopaxillus giganteus in Inner Mongolia region.
     Forty-nine different compounds, including1new compound and1new natural compound, have been isolated by the use of chromatographic methods. The structures of these compounds were elucidated by both spectroscopic methods (MS,1D&2D-NMR, IR, UV) and chemical methods, and the results are as follows:
     (1) Fourteen compounds were isolated from the extract of Lenzites betulina including seven sterides, three p-terphenyls, one pyranone, one amino acid, one aromatic compound and one D-allitol.
     (2) Eleven compounds were isolated from the extract of Ramaria flava including six sterides, one glucose, one base, two aromatic compounds and one D-allitol. All of these were first reported from the genus Ramaria.
     (3) This was the first time to investigate the chemical constituents of the Agaricus spissicaulis fruiting bodies. Ten compounds were isolated from its extract including four sterides, one cerebroside, one base, two coumarin compounds, one aliphatic acid and one D-allitol.
     (4) It was the first time to investigate the chemical constituents of the fruiting body of Geastrum fimbriatum. Subsequently, six compounds were isolated from its extract including two sterides, two glucose, one amino acid and one D-allitol.
     (5) Eight compounds were isolated from the extract of Lenzites betulina including two sterides, two acidic compounds, one hydroquinol, one alkaloid and one picolinic acid. All of these compounds, except the alkaloid, were first reported from this fungus.
     The antioxidant activities of the ethanol extracts of these five fungi and three p-terphenyls compounds were evaluated by DPPH radical scavenging activity and hydroxyl radical scavenging ability. Also, the antibacterial and antifungal activities of the extracts from these species were evaluated. Moreover, we also evaluated the in vitro cytotoxicity of these extracts against human tumor cells MDA-MB-231、BGC-803和NCI-H520, by the use of MTT assay. The results are as follows:
     (1) There were significant differences among the extracts of these five fungi (P<0.05) on DPPH and hydroxyl radical scavenging ability. The radical scavenging activity of these five fungi decreased in the order of Lenzites betulina, Ramaria flava, Leucopaxillus giganteus, Geastrum fimbriatum and Agaricus spissicaulis. Lenzites betulina displayed the best activity among these fungi in regard to DPPH and hydroxyl radical scavenging ability with the lowest IC50values (24.12±0.61μg/mL and24.58±0.19μg/mL respectively). The content of total phenol for these five fungi, in decreasing order, were17.79±0.57μg/mg (Lenzites betulina),12.95±0.41μg/mg (Ramaria, flava),11.66±0.56μg/mg (Leucopaxillus giganteus),10.53±0.53Hg/mg (Geastrum fimbriatum), and3.32±0.45μg/mg (Agaricus spissicaulis). The results indicated that the total phenols were positively correlated with DPPH and hydroxyl radical scavenging ability, displaying correlation coefficients of0.856and0.892, respectively. The three p-terphenyls compounds were positively correlated with DPPH and hydroxyl radical scavenging ability, and the compound2displayed higher hydroxyl radical scavenging activity (IC50=37.69±0.8μg/mL).
     (2) Using the inhibition zone method, we isolated the ethanol extracts from Lenzites betulina, Ramaria flava, Leucopaxillus giganteus and Agaricus spissicaulis. Lenzites betulina has an inhibitor effect on Staphylococcus aureus, Escherichia coli and Bacillus subtilis. Among these four fungi, Leucopaxillus giganteus displayed the best antibacterial activity. The inhibition zone diameters of this species were all greater than2cm, and the minimum inhibitory concentration of this species were all6.25mg/mL. The antibacterial activities of Lenzites betulina were better, and the inhibition zone diameters of this species were2.24cm,1.90cm and1.72cm respectively, with the MIC of6.25mg/mL,12.50mg/mL and25.00mg/mL respectively.
     Using the fungus cake method, antifungal activities of the extracts from these five species were evaluated. First, we found that the inhibition ratios of these five species on Gibberella zeae are higher than the inhibition ratios on Fusarium graminearum and Cercosporella albo-maculans. Second, it was discovered that Leucopaxillus giganteus has the best antifungi activities among the five fungi. At the concentration of1mg/mL, the inhibition ratios of Leucopaxillus giganteus on Gibberella zeae, Fusarium graminearum and Cercosporella albo-maculans were35.80%,67.23%,52.05%respectively.
     (3) The MTT test revealed that the ethanol extracts from these five mushrooms exhibited certain cytotoxicities against the human cancer cells identified as MDA-MB-231, BGC-803and NCI-H520. The IC50values of these five ethanol extracts also have positive correlation within this experiment scope of concentration. Of these five species, Leucopaxillus giganteus displayed the best cytotoxicities. At the concentration of200ug/mL, the inhibition ratios of Leucopaxillus giganteus against MDA-MB-231, BGC-803and NCI-H520cells were77.35%,68.92%,65.53%respectively, with corresponding IC50values of46.26μg/mL,65.06μg/mL and84.76μg/mL. At the concentration of200μg/mL, the inhibition ratios of Lenzites betulina against MDA-MB-231、BGC-803and NCI-H520cells were83.15%,55.54%and57.50%respectively, with corresponding IC50values of51.47μg/mL,130.19μg/mL and106.54μg/mL.
引文
[1]Hawksworth D L. Mushrooms:the extent of the unexplored potential. International Journal of Medicinal Mushrooms,2001,3 (4):333-337.
    [2]Mueller G M and Schmit J P. Fungal biodiversity:what do we know? What can we predict?. Biodiversity and Conservation,2007,16 (1):1-5.
    [3]卯晓岚.中国大型真菌.郑州:河南科学技术出版社,2000.1-719.
    [4]胡琳.云南十二种野生高等真菌的化学成分研究:[博士学位论文].昆明:中国科学院昆明植物研究所,2002.
    [5]郭天希.神农、黄帝的灵芝故事.中国食用菌,2008,27(5):68.
    [6]Mahajna J, Dotan N, Zaidman B Z, et al. Pharmacological values of medicinal mushrooms for prostate cancer therapy:the case of Ganoderma lucidum. Nutrition and Cancer,2009,61(1):16-26.
    [7]阂三弟.真菌的药用价值.食用菌学报,1996,3(4):55-64.
    [8]戴玉成,杨祝良.中国药用真菌名录及部分名称的修订.菌物学报,2008,27(6):801-824.
    [9]Hobbs C. Medicinal mushrooms:an eaxploration of tradition, healing & culture. Seattle:Culinary Arts Ltd,1995.1-252.
    [10]Wasser S P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology,2011,89 (5): 1323 - 1332.
    [11]刘吉开.高等真菌化学成分及其生物活性的研究.中国科学基金,2007,21(2):69-70.
    [12]Quang D N, Hashimoto T, Nomura Y, et al. Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Anmtlata. Phytochemistry,2005,66 (7):797-809.
    [13]Fugmann B, Steglich W, Lang-Fugmann S, et al. Rompp encyclopedia natural products. New York:Thieme,2000.1-748.
    [14]Osmanova N, Schultze W and Ayoub N. Azaphilones:a class of fungal metabolites with diverse biological activities. Phytochemistry Reviews,2010,9 (2):315-342.
    [15]Zaidman B Z, Yassin M, Mahajna J, et al. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology, 2005,67 (4):453-468.
    [16]吴霞.维吾尔药阿里红、阿育魏实的化学成分及生物活性研究:[博士学位论文].药用植物研究所,2005.
    [17]Youn M J, Kim J K, Park S Y, et al. Potential anticancer properties of the water extract of Inontus obliquus by induction of apoptosis in melanoma B16-F10 cells. Journal of Ethnopharmacology,2009,121 (2):221-228.
    [18]Lee J S, Park B C, Ko Y J, et al. Grifola frondosa (maitake Mushroom) water extract inhibits vascular endothelial growth factor-induced angiogenesis through inhibition of reactive oxygen species and extracellular signal-regulated kinase phosphorylation. Journal of Medicinal Food,2008, 11 (4):643-651.
    [19]Joo J I, Kim D H and Yun J W. Extract of Chaga mushroom (Inonotus obliquus) stimulates 3t3-11 adipocyte differentiation. Phytotherapy Research, 2010, 24 (11): 1592 - 1599.
    [20]Jedinak A, Dudhgaonkar S, Wu Q L, et al. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-B and AP-1 signaling. Nutrition Journal,2011, doi:10.1186/1475-2891-10-52.
    [21]Santoyo S, Ramirez-Anguiano A, Reglero G, et al. Improvement of the antimicrobial activity of edible mushroom extracts by inhibition of oxidative enzymes. International Journal of Food Science and Technology, 2009, 44 (5): 1057-1064.
    [22]Ajith T A and Janardhanan K K. Indian medicinal mushrooms as a source of antioxidant and antitumor agents. Journal of Clinical Biochemistry and Nutrition, 2007,40(3):157-162.
    [23]Shu C H and Lung M Y. Effect of culture pH on the antioxidant properties of Antrodia camphorata in submerged culture. Journal of the Chinese Institute of Chemical Engineers,2008,39 (1):1-8.
    [24]Huang S J and Mau J L. Antioxidant properties of methanolic extracts from Antrodia camphorata with various doses of y-irradiation. Food Chemistry, 2007, 105(4):1702-1710.
    [25]Shen Y C, Chou C J, Wang Y H, et al. Anti-infammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. Ferns Microbiology Letters,2004,231 (1): 137-143.
    [26]Moro C, Palacios I, Lozano M, et al. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chemistry,2012,130 (2):350-355.
    [27]Sasidharan S, Aravindran S, Latha L Y, et al. In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity. Molecules,2010,15 (6):4478-4489.
    [28]Lu M C, Du Y C, Chuu J J, et al. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A. Archives of Toxicology,2009,83 (2):121 - 129.
    [29]Chen Y S, Pan J H, Chiang B H, et al. Ethanolic extracts of Antrodia cinnamomea mycelia fermented at varied times and scales have differential effects on hepatoma cells and normal primary hepatocytes. Journal of Food Science,2008,73 (7):H 179-185
    [30]Kalyoncu F, Oskay M, Saglam H, et al. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. Journal of Medicinal Food,2010,13 (2): 415-419.
    [31]Guo T, Wei L, Sun J, et al Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chemistry,2011,127 (4):1634-1640.
    [32]Kim S H, Song Y S, Kim S K, et al. Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. Journal of Ethnopharmacology,2004,93 (1):141 - 146.
    [33]Van Q, Nayak B N, Reimer M, et al. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. Journal of Ethnopharmacology,2009,125 (3):487-493.
    [34]Yaltirak T, Aslim B, Ozturk S, et al. Antimicrobial and antioxidant activities of Russula delica Fr. Food and Chemical Toxicology,2009,47 (8):2052-2056.
    [35]Turkoglu A, Duru M E, Mercan N, et al. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chemistry,2007,101 (1):267-273.
    [36]Nitha B, Fijesh P V and Janardhanan K K. Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Experimental and Toxicologic Pathology,2011,10.1016/j.etp.2011.06.007.
    [37]Park H J, Han E S and Park D K. The ethyl acetate extract of PGP (Phellinus linteus grown on Panax ginseng) suppresses B16F10 melanoma cell proliferation through inducing cellular differentiation and apoptosis. Journal of Ethnopharmacology,2010, 132(1):115 - 121.
    [38]Wu J Y, Zhang Q X and Leung P H. Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine,2007,14 (1):43-49.
    [39]Song T Y and Yen G C. Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry,2002,50 (11): 3322-3327.
    [40]Hsua Y L, Kuob P L, Choc C Y, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food and Chemical Toxicology,2007,45 (7):1249-1257.
    [41]Rao Y K, Fang S H and Tzeng Y M. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of Ethnopharmacology,2007,114 (1):78-85.
    [42]Suseem S R, Mary Saral A, Neelakanda Reddy P, et al. Evaluation of the analgesic activity of ethyl acetate, methanol and aqueous extracts of Pleurotus eous mushroom. Asian Pac J Trop Med, 2011, 4 (2):117-120.
    [43]Yayeh T, Oh W J, Park S C, et al. Phellinus baumii ethyl acetate extract inhibits lipopolysaccharide-induced iNOS, COX-2, and proinflammatory cytokine expression in RAW264.7 cells. Journal of Natural Medicines,2012,66 (1):49-54.
    [44]Shittu O B, Alofe F V, Onawunmi G O, et al. Bioautographic evaluation of antibacterial metabolite production by wild mushrooms African Journal of Biomedical Research,2006,9 (1):57-62.
    [45]Adams M, Christen M, Plitzko I, et al. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. Journal of Natural Products,2010,73 (5):897-900.
    [46]任刚.多孔菌抗肿瘤活性评价及巨多孔菌有效成分分离、结构鉴定及诱导HeLa细胞凋亡的分子机理研究:[博士学位论文].杭州:浙江大学,2006.
    [47]Wasser S P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology,2002, 60 (3):258-274.
    [48]Sontag B, Arnold N, Steglich W, et al. Montadial A, a cytotoxic metabolite from Bondarzewia montana. Journal of natural products,1999,62 (10):1425 - 1426.
    [49]Mcmorris T C and Anchel M. Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and-M. Journal of the American Chemical Society,1965, 87(7):1594-1600.
    [50]Anchel M, Hervey A and Robbins W J. Antibiotic substances from basidiomycetes VII. Clitocybe Illudens. Proceedings of the National Academy of Sciences of the United States of America,1950,36 (5):300-305.
    [51]Kelner M J, Mcmorris T C, Montoya M A, et al. Characterization of acylfulvene histiospecific toxicity in human tumor cell lines. Cancer Chemotherapy and Pharmacology,1997,41 (3):237-242.
    [52]Wiltshire T, Senft J, Wang Y, et al. BRCA1 contributes to cell cycle arrest and chemoresistance in response to the anticancer agent irofulven. Molecular Pharmacology,2007,71 (4):1051 - 1060.
    [53]Fabian K, Lorenzen K, Anke T, et al. Five new bioactive sesquiterpenes from the fungus Radulomyces confluens (Fr.) Christ. Zeitschrift fur Naturforschung Teil C Biochemie Biophysik Biologie Virologie,1998,53 (11-12):939-945.
    [54]Stark A, Anke T, Mocek U, et al. Lentinellic acid, a biologically active protoilludane derivative from Lentinellus species (Basidiomycetes). Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences, 1988, 43 (3-4):177-183.
    [55]Lorenzen K, Anke T, Anders U, et al. Two inhibitors of platelet aggregation from a Panus species (Basidiomycetes). Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1994,49(1-2):132-138.
    [56]Reina M A, Orihuela J C, Gonzalez-Coloma A, et al. Four illudane sesquiterpenes from Coprinopsis episcopalis. Phytochemistry, 2004, 65 (4):381-385.
    [57]Ma W Z, Huang Y C, Lin L D, et al. Two new biologically active illudane sesquiterpenes from the mycelial cultures of Panaeolus retirugis. The Journal of Antibiotics,2004,57 (11):721-725.
    [58]Opatz T, Kolshorn H, Birnbacher J, et al. The creolophins:a family of linear triquinanes from Creolophus cirrhatus (Basidiomycete). European Journal of Organic Chemistry,2007,2007 (33):5546-5550.
    [59]Mazura X, Beckera U, Ankea T, et al. Two new bioactive diterpenes from Lepista sordida. Phytochemistry,1996,43 (2):405-407
    [60]Gao J J, Min B S, Ahn E M, et al. New triterpene aldehydes, lucialdehydes A—C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chemical& Pharmaceutical Bulletin,2002,50 (6):837-840.
    [61]Chen C H, Yang S W and Shen Y C. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. Journal of Natural Products,1995, 58(11):1655 - 1661.
    [62]Yeh C T, Rao Y K, Yao C J, et al. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells,. Cancer Letters,2009, 285(1):73-79.
    [63]Ukiya M, Akihisa T, Tokuda H, et al. Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos. Journal of Natural Products,2002,65 (4): 462-465.
    [64]Ohsawa T, Yukawa M, Takao C, et al. Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chemical& Pharmaceutical Bulletin,1992,40 (1):143 - 147.
    [65]Lee W Y, Park Y k, Ahn J K, et al. Cytotoxic activity of ergosta-4,6,8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus. Bulletin of the Korean Chemical Society.2005,26 (9):1464-1466.
    [66]Valisolalao J, Luu B and Ourisson G. Steroides cytotoxiques de polyporus versicolor. Tetrahedron,1983,39 (17):2779-2785.
    [67]Zhang Y J, Mills G L and Nair M G. Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. Journal of Agricultural and Food Chemistry,2002,50 (26):7581-7585.
    [68]Takaku T, Kimura Y and Okuda H. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. Journal of Nutrition.,2001, 131 (5):1409-1413.
    [69]莫顺燕.药用真菌桑黄化学成分研究:[硕士学位论文].北京:中国协和医科大学,2003.
    [70]Liberra K, Jansen R, Wegner U, et al. Fomecin B as a cytotoxic metabolite from the basidiomycete Tricholomopsis rutilans (Schaeff. ex. Fr.) Sing. Pharmazie,1995,50 (6):370-371.
    [71]Ding Z H, Dong Z J and Liu J K. Albaconol, a novel prenylated resorcinol (=benzene-1,3-diol) from basidiomycetes Albatrellus confluens. Helvetica Chimica Acta,2001,84(1):259-262.
    [72]刘明华,肖顺汉,秦大莲等.地花菌提取物Albaconol的抗肿瘤活性研究.中药药理与临床,2005,21(1):14-16.
    [73]Tringali C, Piattelli M, Geraci C, et al. Previously unreported p-terphenyl derivatives with antibiotic properties from the fruiting bodies of Sarcodonleucopus (Basidiomycetes). A two-dimensional nuclear magnetic resonance study. Canadian Journal of Chemistry,1987,65 (10):2369-2372.
    [74]Ferreira I C F R, Vaz J A, Vasconcelos M H, et al. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem,2010,10 (5): 424-436.
    [75]Yoshkawa K, Bando S, Arihara S, et al. A Benzofuran glycoside and an acetylenic acid from thefungus Laetiporus sulphureus var. miniatus. Chemical & Pharmaceutical Bulletin,2001,49 (3):327-329.
    [76]郑永标.5种食药用大型真菌天然产物的研究:[博士学位论文].深圳:厦门大学,2008.
    [77]Song J, Manir M M and Moon S S. Cytotoxic grifolin derivatives isolated from the wild mushroom Boletus pseudocalopus (Basidiomycetes). Chemistry & Biodiversity,2009,6 (9):1435 - 1442.
    [78]Takahashi A, Nunozawa T, Endo T, et al. Isolation of 1-beta-D-arabinofuranosylcy-tosine from the mushroom Xerocomus nigromaculatus Hongo. Chemical & Pharmaceutical Bulletin,1992,40 (5):1313 - 1314.
    [79]Gehrt A, Erkel Q Anke T, et al. Nitidon, a new bioactive metabolite from the basidiomycete Junghuhnia nitida (Pers.:Fr.) Ryv. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,1998,53 (1-2):89-92.
    [80]Leon F, Brouard I, Rivera A, et al. Isolation, structure elucidation, total synthesis, and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells. Journal of Medicinal Chemistry,2006,49 (19):5830-5839.
    [81]Clericuzio M, Tabasso S, Garbarino J A, et al. Non-phenolic dicinnamamides from Pholiota spumosa:isolation, synthesis and antitumour activity. European Journal of Organic Chemistry 2007,2007 (33):5551 - 5559.
    [82]Lee I K, Yun B S, Cho S M, et al. Betulinans A and B, two benzoquinone compounds from Lenzites betulina. Journal of Natural Products,1996,59 (11): 1090-1092.
    [83]Yun B S, Lee I K, Kim J P, et al. Curtisians A-D, new free radical scavengers from the mushroom Paxillus curtisii. The Journal of Antibiotics,2000,53 (2):114-122.
    [84]Lee I K, Jung J Y, Kim Y S, et al. p-Terphenyls from the fruiting bodies of Paxillus curtisii and their antioxidant properties. Bioorganic & Medicinal Chemistry,2009, 17 (13):4674-4680.
    [85]Liu J K, Hu L, Dong Z J, et al. DPPH Radical Scavenging Activity of Ten Natural p-Terphenyl Derivatives Obtained from Three Edible Mushrooms Indigenous to China. CHEMISTRY & BIODIVERSITY, 2004,1 (4):601-605.
    [86]Xie C, Koshino H, Esumi Y, et al. Vialinin A, a novel 2,2-diphenyl-l- picrylhydrazyl (DPPH) radical scavenger from an edible mushroom in China. Bioscience, Biotechnology, and Biochemistry,2005,69 (12):2326-2332.
    [87]Tsukamoto S, Macabalang A D, Abe T, et al. Thelephorin A:a new radical scavenger from the mushroom Thelephora vialis. Tetrahedron,2002,58 (6):1103 -1105.
    [88]Nakajima Y, Sato Y and Konishi T. Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chemical & pharmaceutical bulletin, 2007,55 (8):1222-1226.
    [89]Lee I K, Kim Y S, Jang Y W, et al. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorganic & Medicinal Chemistry Letters, 2007,17 (24):6678-6681.
    [90]Lee I K and Yun B S. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus. Bioorganic & Medicinal Chemistry, 2007, 15 (10):3309-3314.
    [91]Kim S W, Park S S, Min T J, et al. Antioxidant activity of ergosterol peroxide (5,8-Epidioxy-5α,8α-ergosta-6,22E-dien-3β-ol) in Armillariella mellea. Bulletin of The Korean Chemical Society,1999,20 (7):819-823.
    [92]Zhang Y, Mills G L and Nair M G. Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita. Phytomedicine,2003,10 (5):386-390.
    [93]Yoo N H, Kim J P, Yun B S, et al. Hirsutenols D, E and F,new sesquiterpenes from the culture broth of Stereum hirsutum. The Journal of Antibiotics 2006,59 (2): 110-113.
    [94]Lee I K, Jang Y W, Yu S H, et al. New triterpene glucosides, oligoporins A-C, from Oligoporus tephroleucus protect DNA from Fenton reaction. Bioorganic & Medicinal Chemistry Letters,2007,17(17):4906-4909.
    [95]Kimura C, Nukina M, Igarashi K, et al. [small beta]-Hydroxyergothioneine, a new ergothioneine derivative from the mushroom Lyophyllum connatum, and its protective activity against carbon tetrachloride-induced injury in primary culture hepatocytes. Bioscience, Biotechnology, and Biochemistry,2005,69 (2):357-363.
    [96]Yun B S, Cho Y, Lee I K, et al. Sterins A and B, new antioxidative compounds from Stereum hirsutum. ChemInform,2002,55 (2):208-210.
    [97]Kim W G, Lee I K, Kim J P, et al. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. Journal of Natural Products,1997, 60 (7):721-723.
    [98]Jiang Y, Wong J H, Fu M, et al. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Corayceps militaris. Phytomedicine,2011,18 (2-3):189-193.
    [99]Wu D P and Chiang H C. Constituents of Antrodia cinnamomea. Journal of the Chinese Chemical Society,1995,42 (5):797-800.
    [100]Mothana R A A, Jansen R, Julich W D, et al. Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. Journal of Natural Products,2000,63 (3):416-418.
    [101]Jin W and Zjawiony J K.5-Alkylresorcinols from Merulius incarnatus. Journal of Natural Products,2006,69 (4):704-706.
    [102]Beattie K D, Rouf R, Gander L, et al. Antibacterial metabolites from Australian macrofungi from the genus Cortinarius. Phytochemistry,2010,71 (8-9):948-955.
    [103]Steglich W. Biologically active compounds from higher fungi. Pure and Applied Chemistry,1981,53 (4):1233 - 1240.
    [104]Allbutt A D, Ayer W A, Brodie H J, et al. Cyathin, a new antibiotic complex produced by Cyathns helenae. Canadian Journal of Microbiology,1971,17 (11): 1401 - 1407.
    [105]Ward D E and Shen J. Enantioselective total synthesis of cyathin A3. Organic Letters,2007,9 (15):2843-2846.
    [106]Watanabe R, Kita M and Uemura D. A novel dipeptide, N-γ-glutamyl boletine, and a cyclic iminium toxin from the mushroom Tylopilus sp. (Boletaceae). Tetrahedron Letters,2002,43 (37):6501-6504.
    [107]Schneider Q Anke H and Sterner O. Xylaramide, a new antifungal compound, and other secondary metabolites from Xylaria longipes. Zeitschrift Fur Naturforschung C-A Journal of Biosciences,199651 (11-12):802-806.
    [108]Kneifel H, Konig W A, Loeffler W, et al. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Journal of The American Chemical Society,1977,113 (1-2):121 - 130.
    [109]Zhu Y C, Wang G, Yang X L, et al. Agrocybone, a novel bis-sesquiterpene with a spirodienone structure from basidiomycete Agrocybe salicacola. Tetrahedron Letters,2010,51 (26):3443-3445.
    [110]高远,许泓瑜,陆震鸣等.桦褐孔菌子实体和发酵菌丝体中甾类化合物的定量测定.色谱,2009,27(6):745-749.
    [111]Awadh AH N A, Mothana R A, Lesnau A et al. Antiviral activity of Inonotus hispidus. Fitoterapia,2003,74 (5):483-485.
    [112]Shen C C, Yang H C, Huang R L, et al. Anti-HBV principle from the culture broth of Antrodia camphorata (strain# CCRC-35396). The Journal of Chinese Medicine, 2005,16(1):57-61.
    [113]Phuong D T, Ma C M, Hattori M, et al. Inhibitory effects of antrodins A-E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytotherapy Research,2009,23 (4):582-584.
    [114]Huang R L, Huang Q, Chen C F, et al. Anti-viral effects of active compounds from Antrodia camphorata on wild-type and lamivudine-resistant mutant HBV. Chinese Pharmaceutical Journal,2003,55 (5):371-379.
    [115]Shen Y C, Wang Y H, Chou Y C, et al. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Medica,2004,70 (4):310-314.
    [116]Chen J J, Lin W J, Liao C H, et al. Anti-inflammatory benzenoids from Antrodia camphorata. Journal of Natural Products,2007,70 (6):989-992.
    [117]Geethangili M and Tzeng Y M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine,2009, doi:10.1093/ecam/nep108.
    [118]Chien S C, Chen M L, Kuo H T, et al. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. Journal of Agricultural and Food Chemistry,2008,56 (16):7017-7022.
    [119]Yang S S, Wang G J, Wang S Y, et al. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata. Planta Medica,2009,75 (5): 512-516.
    [120]Jeong J W, Jin C Y, Kim G Y, et al. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. International Immunopharmacology,2010,10(12):1580-1586.
    [121]Sun Y and Yasukawa K. New anti-inflammatory ergostane-type ecdysteroids from the sclerotium of Polyporus umbellatus. Bioorganic& Medicinal Chemistry Letters,2008,18 (11):3417-3420.
    [122]Reyes R Q Lopez L L M A, Kumakura K, et al. Coprimus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. Journal of Agricultural Technology,2009,5 (2):299-316.
    [123]Guillamon E, Garcia-Lafuente A, Lozano M, et al. Edible mushrooms:role in the prevention of cardiovascular diseases. Fitoterapia,2010,81 (7):715-723.
    [124]Lu X M, Chen H X, Dong P, et al. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. Journal of the Science of Food and Agriculture,2010,90 (2):276-280.
    [125]Ding Z Y, Lu Y J, Lu Z X, et al. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chemistry,2010,121:39-43.
    [126]Kawagishi H, Ishiyama D, Mori H, et al. Dictyophorines A and B, two stimulators of NGF-synthesis from the mushroom Dictyophora indusiata. Phytochemistry,1997, 45(6):1203 - 1205.
    [127]Chen C C, Shiao Y J, Lin R D, et al. Neuroprotective diterpenes from the fruiting body ofAntrodia camphorata. Journal of Natural Products,2006,69 (4):689-691.
    [128]Male K B, Rao Y K, Tzeng Y M, et al. Probing Inhibitory effects of Antrodia camphorata isolates using insect cell-based impedance spectroscopy:inhibition vs chemical structure. Chemical Research in Toxicology,2008,21 (11):2127-2133.
    [129]连俊文.内蒙古大兴安岭食用菌资源.中国食用菌,1994,13(5):19-20.
    [130]刘培贵.贺兰山高等真菌垂直分布规律与经济真菌资源评价.阴山学刊,1999, 15(12):8-14.
    [131]张功,峥嵘,巴图等.贺兰山大型真菌资源调查记述.内蒙古师大学报,2000,29(4):292-296.
    [132]图力古尔,李玉.大青沟自然保护区大型真菌物种多样性的研究.吉林农业大学学报,1999,21(3):36-45.
    [133]白叔兰,闫伟,马荣华.大青山、蛮汗山的外生菌根资源调查.山地学报,2001,19(1):44-47.
    [134]白淑兰,刘勇,周晶.大青山外生菌根真菌资源与生态研究.生态学报,2006,26(3):837-841.
    [135]徐涛,王伟,赵博生.内蒙古大兴安岭大型经济真菌.哈尔滨:东北林业大学出版社,2005.20-190.
    [136]巴图,乌云高娃,图力古尔.内蒙古高格斯台罕乌拉自然保护区大型真菌区系调查.吉林农业大学学报,2005,27(1):29-34.
    [137]万宇,图力古尔,李玉.内蒙古阿尔山地区大型真菌物种多样性研究.菌物研究,2009,7(2):76-85.
    [138]孙亚红,黄晨阳,张金霞.内蒙古根河市野生大型经济真菌资源调查报告.食用菌学报,2009,16(1):81-88.
    [139]乌兰图雅.内蒙古赤峰地区大型真菌物种多样性调查研究:[硕士学位论文].呼和浩特:内蒙古师范大学,2008.
    [140]樊永军,闫伟,王黎元.阴山山脉中段九峰山自然保护区大型真菌调查初报.干旱区资源与环境,2010,24(1):168-171.
    [141]王素英,李冬,秦强等.呼和浩特市树木园真菌多样性初步研究.内蒙古林业科技,2008,34(4):36-39.
    [142]卯晓岚.中国经济真菌.北京:科学出版社,1998.1-762.
    [143]林晓民,李振歧.中国大型真菌的多样性.北京:中国农业出版社,2005.30-294.
    [144]戴玉成,图力古尔.中国东北野生食药用真菌图志.北京:科学出版社,2007.1-231.
    [145]Kirk P M, Cannon P E, Minter D W, et al. Ainsworth & Bisby's Dictionary of the Fungi(10th ecition). Wallingford UK:CAB International,2008,1-771.
    [146]宋斌,李泰辉,章卫民.广东南岭大型真菌区系地理成分特征初步分析.生态科学,2001,20(4):37-41.
    [147]宋斌,邓旺秋.广东鼎湖山自然保护区大型真菌区系初析.贵州科学,2001,19(3):43-49.
    [148]宋斌,邓旺秋,沈亚恒.海南伞菌资源及区系地理成分初步分析.吉林农业大学学报,2002,24(2):42-46.
    [149]图力古尔,李玉.大青沟自然保护区大型真菌区系多样性研究.生物多样性,2000,8(1):73-80.
    [150]王荷生.植物区系地理.北京:科学出版社,1992,30-150.
    [151]李林玉,金航,张金渝.中国药用真菌概述.微生物学杂志,2007,27(2):57-61.
    [152]刘正南,郑淑芳.中国药用真菌的现状和种质资源(续).中国食用菌,1996,15(6):29-31.
    [153]刘正南,郑淑芳.中国药用真菌的现状和种质资源.中国食用菌,1996,15(5):20-22.
    [154]刘正南,郑淑芳.中国药用真菌的现状和种质资源.中国食用菌,1997,16(6):30-31.
    [155]刘正南,郑淑芳.中国药用真菌的现状和种质资源.中国食用菌,1998,17(6):22-24.
    [156]刘正南,郑淑芳.中国药用真菌的现状和种质资源.中国食用菌,1999,18(5):17-19.
    [157]刘正南,郑淑芳.中国药用真菌的现状和种质资源.中国食用菌,2001,20(4):22-24.
    [158]应建浙,卯晓岚.中国药用真菌图鉴.北京:科学出版社,1987.1-578.
    [159]今阴六也,本郷次雄.原色日本新菌类图鉴(Ⅱ).日本:保育社,1995.1-315.
    [160]李茹光.吉林省真菌志(第1卷·担子菌亚门).长春:东北师范大学出版社,1991.1-528.
    [161]图力古尔.大青沟自然保护区菌物多样性.呼和浩特:内蒙古教育出版社,2004.1-189.
    [162]谢支锡,王云,王柏.长白山伞菌志.长春:吉林科学技术出版社,1986.1- 288.
    [163]刘波.中国药用真菌.太原:山西人民出版社,1978.101,129.
    [164]Yamac M, Zeytinoglu M, Kanbak G, et al. Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprimis comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 2009,47(2):168-174.
    [165]Ren G, Liu X Y, Zhu H K, et al. Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia,2006,77 (5):408-410.
    [166]Yamac M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharmaceutical Biology,2006,44 (9):660-667.
    [167]Fujimoto H, Nakayama M, Nakayama Y, et al. Isolation and characterization of immunosuppressive components of three mushrooms, Pisolithus tinctorius, Microporus flabelliformis and Lenzites betulina. Chemical Pharmaceutical Bulletin 1994,42 (3):694-697.
    [168]张军陆,伟刚.感光科学与光化学天然5,8过氧化甾醇的结构、生理活性、波谱特征和合成方法.天然产物研究与开发,2006,18(5):883-887,892.
    [169]Rosecke J and Konig W A. Constituents of the fungi Daedalea quercina and Daedaleopsis confragosa var. tricolor. Phytochemistry,2000,54 (8):757-762.
    [170]Yates P J, Haughan P A, Lenton J R, et al. Four A5,7-sterols from terbinafine treated celery cell suspension cultures. Phytochemistry,1992,31 (9):3051-3058.
    [171]张海娟.五种植物的化学成分及其生物活性研究:[博士学位论文].济南:山东大学,2007.
    [172]Stonik V A, Ponomarenko L P, Makarieva T N, et al. Free sterol compositions from the sea cucumbers Pseudostichopus trachus, Holothuria (Microtele) nobilis, Holothuria scabra, Trochostoma orientale and Bathyplotes natans. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1998, 120 (2):337-347.
    [173]李华.羊肚菌子实体部分化学成分研究:[硕士学位论文].长春:吉林农业大学,2006.
    [174]Kobayashi M, Krishna M M, Ishida K, et al. Marine sterols. XXII. Occurrence of 3-Oxo-4,6,8(14)-triunsaturated Steroids in the Sponge Dvsidea herbacea. Chemical & Pharmaceutical Bulletin 1992,40 (1):72-74.
    [175]王兴娜.四种高等真菌化学成分的研究:[博士学位论文].南京:南京大学,2002.
    [176]Yaoita Y, Amemiya K, Ohnuma H, et al. Sterol constituents from five edible Mushrooms. Chemical & Pharmaceutical Bulletin 1998,46 (6):944-950.
    [177]黄悦.四种高等真菌和两种热带植物的化学成分研究:[博士学位论文].中国科学院昆明植物研究所,2002.
    [178]赵丽艳.两种高等真菌的化学成分及生物活性研究:[硕士学位论文].保定:河北大学,2009.
    [179]何自伟.葵花大蓟和鸦葱的化学成分研究:[硕士学位论文].兰州:兰州大学,2007.
    [180]周忠玉,刘吉开.黄盾盘菌的化学成分.云南民族大学学报(自然科学版),2009,18(1):1-4.
    [181]Horsley W J and Sternlicht H. Carbon-13 magnetic resonance studies of amino acids and peptides. Journal of the American Chemical Society,1968,90 (14): 3738-3748.
    [182]Gursoy N, Sarikurkcu C, Tepe B, et al. Evaluation of antioxidant activities of 3 edible mushrooms:Ramaria flava (Schaef:Fr.) Quel., Rhizopogon roseolus (Corda) T.M. Fries., and Russida delica Fr. Food Science and Biotechnology,2010,19 (3): 691-696.
    [183]Hearn M T W, Jones E R H, Pellatt M G, et al. Natural acetylenes. Part XLII. Novel C7, C8, C9, and C10 polyacetylenes from fungal cultures. Journal of the Chemical Society, Perkin Transactions 1,1973,22:2785-2788.
    [184]Yoo I S, Woo M S, Choi E C, et al. Studies on constituents of higher fungi of Korea (XXXIX) Antitumor components of Ramaria formosa. The Korean Journal of Mycology,1982,10(4):165-171.
    [185]Ramesh C and Pattar M G. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy research,2010,2 (2):107-112.
    [186]Yaoita Y, Satoh Y and Kikuchi M. A new ceramide from Ramaria botrytis (Pers.) Ricken. Journal of Natural Medicines,2007,61 (2):205-207.
    [187]Kobor M, Yoshida M, Ohnishi-Kameyama M, et al.5a,8a-Epidioxy-22E-ergosta-6,9(11),22-trien-3b-ol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells. Biological & Pharmaceutical Bulletin,2006,29 (4):755-759.
    [188]Yue J M, Chen S N, Lin Z W, et al. Sterols from the fungus Lactarium volenms. Phytochemistry,2001,56(8):801-806.
    [189]Yoshikawa K, Ikuta M, Arihara S, et al. Two new steroidal derivatives from the fruit body of Chlorophyllum molybdites. Chemical& Pharmaceutical Bulletin,2001,49 (8):1030-1032.
    [190]Ramesh P, Reddy V L N, Reddy N S, et al. Synthesis of melithasterol A, a 5a,6a-Epoxy-7a-hydroxy A8-Steroid. Journal of Natural Products,2000,63 (10): 1420-1421.
    [191]陈丽.美丽风毛菊化学成分的研究:[硕士学位论文].兰州:兰州大学,2009.
    [192]王薪.环棱褐孔菌水溶性提取物的化学成分研究:[硕士学位论文].济南:山东中医药大学,2002.
    [193]Bezuidenhoudt B C B, Brandt E V, Roux D G, et al. Novel a-methyldeoxybenzoins from the heartwood of Pterocarpits angolensis D.C.:absolute configuration and conformation of the first sesquiterpenylangolensis, and X-ray crystal structure of 4-O-a-cadinylangolensin. Journal of the Chemical Society, Perkin Transactions 1, 1980,2179-2183.
    [194]Staubmann R, Schubert-Zsilavecz M, Hiermann A et al. A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas. Phytochemistry,1999,50(2):337-338.
    [195]缪成贵,韩飞园,钟敏等.双孢蘑菇总黄酮抗油脂氧化作用研究.中国林副特产,2010,6(3):11-13.
    [196]Kimura Y, Kido T, Takaku T, et al. Isolation of an anti-angiogenic substance from Agaricus blazei Murill:Its antitumor and antimetastatic actions. Cancer Science, 2004,95 (9):758-764.
    [197]Endo M, Beppu H, Akiyama H, et al. Agaritine purified from Agaricus blazei Murrill exerts anti-tumor activity against leukemic cells. Biochimica et Biophysica Acta (BBA)-General Subjects,2010,1800 (7):669-673.
    [198]Higuchi R, Inagaki M, Togawa K, et al. Constituents of holothuroideae, V. isolation and structure of cerebrosides from the sea cucumber Pentacta australis. Liebigs Annalen der Chemie,1994,1994(7):653-658.
    [199]Takaishi Y, Uda M, Ohashi T, et al. Glycosides of ergosterol derivatives from Hericum erinacens. Phytochemistry,1991,30 (12):4117-4120.
    [200]国家医药管理局中草药情报中心站.植物药有效成分手册.北京:人民卫生出版社,1986.786.
    [201]Kuroyanagi M, Shiotsu M, Ebihara T, et al. Chemical studies on Viburmum awabuki K. Koch. Chemical and Pharmaceutical Bulletin,1986,34 (10):4012-4017.
    [202]Dupont M P, Llabres G, Delaude C, et al. Sterolic and triterpenoidic constituents of stem bark of Drypetes gossweileri. Planta Medica,1997,63 (3):282-284.
    [203]刘波.中国药用真菌.太原:山西人民出版社,1984.1-228.
    [204]Guerra D C M P, Azevedo T C Q Souza M C R De, et al. Antiinflammatory, antioxidant and cytotoxic actions of P-glucan-rich extract from Geastrum saccatum mushroom. International Immunopharmacology,2007,7 (9):1160-1169.
    [205]Angyal S J and Fur R L. The 13C-N.M.R. spectra of alditols. Carbohydrate Research, 1980,84 (2):201-209.
    [206]Agrawal G D, Rizvi S A I, Gupta P C, et al. Study of a polysaccharide from the stamens of Bombax malabaricum flowers. Planta Medica,1972,21 (3):293-303.
    [207]Dormant D E and Roberts J D. Nuclear magnetic resonance spectroscopy:13C spectra of some common nucleotides. Proceedings of the National Academy of Sciences,1970,65 (1):19-26.
    [208]上海农科院食用菌所.中国食用菌志.北京:中国林业出版社,1991.1-298.
    [209]Muller-Stoll W R. The antibiotic activity of clitocybine and nebularine from Leucopaxillns giganteus and Clitocybe nebularis. Zeitschrift fur Mykologie,1990, 56(1):167-186.
    [210]Barros L, Baptista P, Estevinho L M, et al. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chemistry, 2007, 105 (1):179-186.
    [211]Hollande A C. Lyse massive des bacilles de Koch chez la Cobaye apres traitement a la clitocybine. Pouvoir inhibiteur de ce produit vis-a-vis du bacille typhique, du colibacille, de Brucella abortus etc. Comptes Rendus de l'Academie de Pari, 1945, 221:361-363.
    [212]Ren Q Zhao Y P, Yang L, et al. Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Letters, 2008, 262 (2):190-200.
    [213]Barros L, Ferreira I C F R and Baptista P. Phenolics and antioxidant activity of mushroom Leucopaxillus giganteus mycelium at different carbon sources. Food Science and Technology International,2008,14 (1):47-55.
    [214]Ishizuka T, Yaoita Y and Kikuchi M. Sterol constituents from the fruit bodies of Grifola frondosa (FR.) S. F. Gray. Chemical & Pharmaceutical Bulletin,1997,45 (11):1756-1760.
    [215]李国友,李伯刚,刘光晔等.赭曲霉43的甾醇成分研究.应用与环境生物学报,2005,11(1):67-70.
    [216]Dommisse R, Freyne E, Esmans E, et al.13C-NMR shift increments for 3-substituted pyridines. Heterocycles,1981,16(11):1893 - 1897.
    [217]Kubo I, Kim M, Hood W F, et al. Clitocine, a new insecticidal nucleoside from the mushroom clitocybe inversa. Tetrahedron Letters,1986,27 (36):4277-4280.
    [218]Merwin L H and Ross S D. Solid-state 13C and 1H NMR study of anomalous acid salts of dibasic carboxylic acids. Magnetic Resonance in Chemistry, 1992, 30 (5): 440-448.
    [219]Cox P F. Proton spin-spin coupling in aromatic molecules, p-disubstituted benzenes. Journal of the American Chemical Society, 1963,85 (4):380-383.
    [220]Bruzik K S and Nyholm P G. NMR study of the conformation of galactocerebroside in bilayers and solution:galactose reorientation during the metastable-stable gel transition. Biochemistry,1997,36 (3):566-575.
    [221]Natori T, Morita M, Akimoto K, et al. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron,1994,50(9):2771-2784.
    [222]武守华.四种子囊菌的抗氧化活性及抗氧化成分研究:[硕士学位论文].长沙:湖南师范大学,2009.
    [223]李秋红,李廷利,黄莉莉等.中药抗氧化的作用机理及评价方法研究进展.时珍国医国药,2008,19(5):1257-1258.
    [224]苗明三.氧自由基疾病与抗氧化中药.河南中医药学刊,2002,17(4):1-4.
    [225]志宏,齐聪儒,杨松鹤.器官衰老机理和自由基学说.承德医学院学报,2003,20(2):143-146.
    [226]Berry M N, Grivell A R, Grivell M B, et al. Isolated hepatocytes-past, present and future. Cell Biology and Toxicology,1997,13 (4-5):223-233.
    [227]刘志东,郭本恒,王荫榆.抗氧化活性检测方法的研究进展.天然产物研究与开发,2008,20:563-567.
    [228]曹艳萍,代宏哲,曹炜Folin-Ciocalteu比色法测定红枣多酚.安徽农业科学,2008,36(4):1299-1302.
    [229]胡君萍,杨建华,王新玲等.新疆沙枣果实不同部位总酚的含量测定.食品科学,2010,31(6):220-222.
    [230]Kirby A J and Schmidt R J. The antioxidant activity of Chinese herbs for eczema and of placebo herbs-I. Journal of Ethnopharmacology,1997,56 (2):103-108.
    [231]Tepe B, Sokmen M, Akpulat H A, et al. In vitro antioxidant activities of the methanol extracts of five Allhim species from Turkey. Food Chemistry, 2005,92 (1): 89-92.
    [232]吴少林,谢四才,杨莉等.几种光催化反应体系中羟基自由基表观生成率的实验研究.感光科学与光化学,2006,24(2):102-109.
    [233]Grymonpre D R, Sharma A K, Finney W C, et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors. Chemical Engineering Journal, 2001,82(1-3):189-207.
    [234]Dandawate P R, Vyas A C, Padhye S B, et al. Perspectives on medicinal properties of benzoquinone compounds. Mini-Reviews in Medicinal Chemistry, 2010, 10 (5): 436-454.
    [235]朱宏科.大型真菌的抗细菌和抗真菌活性研究:[硕士学位论文].杭州:浙江大学,2006.
    [236]张前军,杨小生,郝小江.我国天然抗菌药物研究进展.中草药,2008,39(2):304-308.
    [237]周德庆.微生物实验教程(第2版).北京:高等教育出版社,2006.300-385.
    [238]周立刚.植物抗菌化合物.北京:中国农业科学技术出版社,2005.73-81.
    [239]J Zhao, Y Li, Q Liu, et al. Antimicrobial activities of some thymol derivatives from the roots of Inula hupehensis.2010,120 (2):512-516.
    [240]方中达.植物研究法.北京:中国农业出版社,1998.179-210.
    [241]梁蓓蓓,刘华钢.天然药物抗肿瘤作用的研究进展.中国肿瘤,2007,16(9):705-708.
    [242]陈颖,孙红,张树斌等.肉色香蘑子实体提取物的体外抗氧化与抗肿瘤活性研究.食品科学,2009,30(23):214-217.
    [243]张秋卉.大白桩菇等大型真菌菌丝体的液体发酵研究:[硕士学位论文].杭州:浙江大学,2007.
    [244]Rhee Y H, Jeong S J, Lee H J, et al. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer,2012, doi:10.1186/1471-2407-12-28.