用户名: 密码: 验证码:
基于DSP的自动平衡控制理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子自动平衡系统一直是工程技术研究与开发的热点领域,具有很大的发展潜力。该项技术不仅可以消除运行中随机产生的动不平衡、实时减小设备振动,而且可以有效延长转动设备的运行周期、减少故障停机、降低维修费用,经济效应可观。同时其潜在的应用范围极为广泛,目前已知的应用报道,不仅有压缩机、汽轮机、离心分离机等大型机械设备,而且还有类似于硬盘磁头等高精密旋转机构。事实上,任何需要保持旋转体稳定运行的机械机构都是其潜在用对象,因而转子自动平衡技术的发展及应用前景非常广阔。
     本课题是中国自然科学基金项目51135001号《透平机械复杂机电系统动力学行为与振动、噪声靶向抑制原理及方法研究》的一部分,同时也是国家重点基础研究计划(973)项目2012CB26000号《高端压缩机组高效可靠及智能化基础研究》的一部分。本课题在总结现有各种自动平衡头和平衡技术的基础上,以自愈调控理论为指导,研究和开发自有知识产权的基于DSP的转子振动自愈系统,为该项技术的国产化、工业化进行了初步探索。课题主要工作有:
     1、旋转机械的振动一般是多个频率的简谐振动的叠加。旋转机械振动信号的基本要素与简谐振动既有一定的联系,又有其特殊性。鉴于,相位在研究旋转机械动平衡时具有重要的作用和意义,在简要介绍简谐振动初始相位定义的前提下,本论文重点梳理和研究了旋转机械振动信号的相位定义及其常用的测量方法及原理,并给出了利用快速傅里叶变换理论所得相位值与通常旋转机械振动信号相位值之间的相对转换公式。
     在具体工程中,因测量的相对难易及精度要求不可避免的要用振动加速度传感器(或振动速度传感器),而技术指标却是振动的速度值(或振动的位移值)。故需要研究相关振动信号的积分工作。从理论上,本论文重点研究了三种振动信号的积分方法,即基于硬件的积分、基于数值运算的软件积分和利用Laplace变换的微分性质解决时域积分问题。
     2、基于等相差映射的转子动平衡配重方法是一种改进的影响系数方法。该方法主要是利用振动系统可以简化为线性二阶系统。线性二阶系统的激励与其振动响应间的相位存在一定的理论关系。通过对激励与振动响应的相位的进一步研究,本论文得出:对于线性转子振动系统来说其激励间的相位差值等于相应振动响应间的相位差。利用该研究成果,我们在做动平衡时就可以通过系统原始振动信号与试重引起的净振动信号间的相位差反推平衡原始振动所需的平衡配重所在的相对位置。该方法对于指导手工动平衡和自动动平衡都有一定的指导意义。
     本论文详细研究了转子系统在某一稳定转速下两个测点、两个平衡面的条件下双面动平衡的影响系数矩阵与力-偶动平衡方法的影响系数矩阵间的相互关系。通过对这一特例的分析,可以进一步分析相应测点的振动是由于力还是力偶引起的,为进一步分析配重的实施或受约束限制时如何有效施加配重提供理论依据。
     3、为充分利用数字信号处理器DSP适于信号处理和控制的特点,本论文设计了基于DSP的控制系统的硬件平台。该硬件平台包括:DSP核心模块、键相传感器、锁相环程控倍频模块、电平转换模块、振动传感器,信号预处理模块、A/D转换模块、多路控制信号产生电路模块、外扩按键液晶人机接口电路、外扩E2PROM模块及通讯协议转换模块。其特征在于:DSP核心模块通过多路控制信号产生模块连接至用于控制平衡的平衡执行器;用于拾取旋转机械上测点原始振动信号的振动传感器的输出信号接口连接到信号预处理模块,再经过A/D转换模块进行模数转换后输入至DSP核心模块;用于拾取主轴的转速信号的键相传感器的输出信号接口连接到锁相环程控倍频模块,再经过用于将双向电压信号转变为A/D转换器所需的单电压信号的电平转换模块进行电平转换后输入至DSP核心模块;DSP核心模块还连接有用于人工输入参数的外扩按键液晶人机接口电路,用于参数动态存储、替换与恢复的外扩E2PROM模块,用于与上位机进行通信的通讯协议转换模块。
     4、本论文研究了液压型主动平衡系统的平衡原理及系统设计。对液压型主动平衡系统中的执行机构(即平衡盘)的结构设计、注液后离心力计算、平衡盘腔体数量的优化及平衡盘平衡能力进行了详细研究。基于三腔注液式平衡头的工作机理及对转子振动系统的模型简化,设计了适合以注液式平衡头为执行机构的转子系统的仿真模型和PI控制算法。对转子系统进行了幅值为阶跃信号和斜坡信号两种形式的干扰进行了仿真,仿真结果表明,控制器在以比例环节为主的情况下适当增加积分环节能够在较短的时间内对系统做出响应,从响应时间和控制效果来说,PI效果要好于仅用比例控制。仿真数据为进一步实际应用提供了保障。
     5、本论文进行了基于DSP和bently公司的RK-4转子实验台进行了振动信号处理和动平衡方法的实验研究。
On-line rotor auto-balancing has been a hot area of engineering researchand development over the years, which has a great potential of innovation.This technology can not only eliminate the dynamic random imbalances andreduce real-time equipment vibrations during rotor’s running period, but alsocan effectively extend the operation cycle of rotating machinery, decreasemalfunction downtimes, save maintenance costs, which has a very higheconomic value. Moreover, its potential application area is extremely broad.According to the reports so far, the applications cover not only largemechanical equipment, like compressors, turbines and centrifuges, but alsohighly precision rotary mechanism such as the hard disk drive heads. In fact,any machinery needs to maintain the stable operation of rotating facility is thelatent target, so the development and application prospects of rotor on-lineauto-balancing technology are very bright.
     As a part of the National Natural Science Foundation Project:“The theoryand methods for dynamic behavior of turbo machinery complexelectromechanical systems and vibration noise targeted inhibition”(No.51135001). This research project summarized several typical auto-balancinghead and balancing technique, and then a rotor vibration self-recoveringsystem based on DSP with independent intellectual property was completedunder the guidance of self-recovering theory, which may build the initialfoundation for the localization and industrialization of this bright technology.The main tasks of this project contained:
     1. The vibration of rotating machinery generally consists of a series ofharmonic vibration. The basic elements of rotating machinery vibration signalare related to harmonic vibration, but there are also specialties. Since phaseplay an important role in the study of the rotating machinery dynamicbalancing, the paper first briefly introduced the definition of initial phase ofharmonic vibration, then made a comprehensive analysis and study ondefinition, common measurement methods and principle of phase of vibrationsignal in rotating machinery, and gave the transfer formula between phaseobtained through FFT and phase of rotating machinery vibration signal in theusual sense.
     In specific project, due to the difficulty of measuring and requirementaccuracy, using of acceleration sensors (vibration velocity sensors) isinevitable. So the integral of the vibration signal is needed to study. This paper focused on three integral methods of vibration signals in theory to solve thetime domain integral problem: the method based on hardware, the methodbased on numerical computation and the method Laplace transform.
     2. Rotor dynamic balance weights method based on equal phase differencemapping is a modified influence coefficient method. The method is the use ofthe vibration system can be simplified to a linear second order system. Thereis a certain theoretical relation between excitation and vibration phaseresponse of linear second-order system. Through further research, the paperconcluded: the phase difference between the excitations is equal to thevibration phase response for linear rotor vibration system. Using this result,we can deduce relative position of balance mass for balancing systemvibration by the phase difference between the excitations. This method hasgreat significance for the guidance of hand-balancing and automaticbalancing.
     This paper studied in detail: the relationship between the influencecoefficients of double-sided dynamic balance method and force-coupledynamic balance method the rotor system in the condition of two measuringpoints, two balance planes and a stable rotating speed. Through the analysis ofthe special case, further analyze that the vibration of corresponding measuringpoint is whether caused due to the force or couple, to provide theoretical basicfor how to effectively add balance mass within constraint.
     To take full advantage of the characteristics of the digital signal processor(DSP) suitable for signal processing and control, this paper designed aDSP-based control system hardware platform, which includes: DSP coremodules, key phase sensor, program-controlled phase-locked loop multipliermodule, level conversion module, vibration sensors, signal pre-processingmodule, A/D converter module, multi-channel control signal generating circuitmodule, external LCD human-machine interface circuit, external E2PROMmodules and communications protocol conversion module. DSP core modulecontrol signals generated by multiple modules connected to the balancedactuator. In order to pick up the original vibration signal of the measuringpoint on the rotating machinery, pre-processing module connected to signalinterface of vibration sensor, and then go through the A/D converter modulebefore giving to the DSP core modules. For the purpose of picking up thespindle speed signal, key phase sensor connected to the phase-locked loopprogrammable multiplier module, and then go through level conversionmodule which translated bi-directional voltage signal into single voltage signal,what the A/D converter required for, before giving to the DSP core module.Besides, DSP core module connected to LCD Human Interface circuit withmanual input parameters button, used for parameter dynamic storage,replacement and restoration. The E2PROM module mainly used for thecommunication protocol convers to the host computer.
     This paper thoroughly studied the balance principle and system design of hydraulic type active balance system, including structure design ofimplementing agencies (i.e. balance dish), centrifugal force calculate afterliquid injected, number of cavity optimize in balance dish and the balanceability of the dish. Based on the mechanism of three cavities liquid injectiontype balancing head and the simplified model of rotor vibration system,designed the simulation model of rotor system and the PI control algorithm forthe system with liquid injection type balancing head as body implementingagencies. Simulation analysis about the system with interference signal as stepsignal and ramp signal was also done. The result demonstrate that based on thecondition proportion links as the leading, appropriate added the integrators canshorten the time controller responding to system. The PI control algorithm isbetter than only the proportion control algorithm according to responsetime and control effect. The simulation data provided a guarantee for furtherpractical application.
     The vibration signal processing and dynamic balance method have beenused to the experiment in this paper based on DSP, using the bently RK-4rotortesting rig.
引文
[1]张义民.机械振动学漫谈[M].北京:科学出版社,2010.
    [2] Gao J J. A study of the fault self-recovery regulation for process equipment[J]. Proceeding ofIMS2003, Xi’an, China,2003,779-786.
    [3]高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48.
    [4] Gao Jinji, Jiang Zhinong. Research on Fault Self-recovery Engineering[A], IMS2004proceedingss2-c, Arles France,2004.
    [5] Michael Krok, Kai Goebel. Prognostics for Advanced Compressor Health Monitoring[A]. Proc.Of SPIE: System Diagnosis and Prognosis-Security and Condition Monitoring Issues[C] III,2003,1-12.
    [6]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].北京:清华大学博士学位论文,1993.
    [7]王维民.离心压缩机轴位移故障自愈调控及密封改进增效技术研究[D].北京:北京化工大学博士学位论文,2006.
    [8]高金吉.未来装备医工程思维[J].中国工程科学,2003,5(12):30-35.
    [9] L.J.Everett, A Two-Plane Extension of The Four Run Balancing Technoloque, The1987ASMEDesign Technology Conferences11th Biennial Conference on Mechanical Vibration and NoiseBoston, USA, PP.223-228.
    [10] N.F. Rieger, Balancing of rigid and flexible rotors, The Shock and Vibration Information Center,Naval Research Laboratory,Washington, DC,1986.
    [11] T.C. Rathbone, Turbine vibration and balancing, Trans. AmericanSociety of Mechanical Engineers,Part I,51(1929),267–284.
    [12] E.L. Thearle, Dynamic balancing of rotating machinery in the field, Trans. American Society ofMechanical Engineers,J. Applied Mechanics56(1934),745–753.
    [13] J.G. Baker, Methods of rotor-unbalance determination, American Society of Mechanical Engineers,J.Applied Mechanics Trans.61(1939), A1–A6.
    [14] T.C. Rathbone, Discussion: Methods of rotor-unbalance determination by J.B. Baker, J. AppliedMechanics (1939), A131–A133.
    [15] K.R. Hopkirk, Problèmes se rattachant à l’èquilibrage mécanique des machines èlectriques,Comptes Rendus du Congrès International d’èlectricté4(1932),403–428.
    [16] K.R. Hopkirk, Notes on methods of balancing, The Engineer170(1940),38–39.
    [17] Goodman T P. A Least-Squares Method for Computing Balance Corrections. ASMETransactions,Journal of Engineering for Industry[J],1964(8):273-279.
    [18] M.S. Darlow, A unified approach to the mass balancing of rotating flexible shafts. Ph.D. thesis,University of Florida, June1980.
    [19] M.S. Darlow, Balancing of High-Speed Machinery, Mechanical Engineering Series,Springer-Verlag, NewYork,1989.
    [20] M.S. Darlow, A.J. Smalley and A.G. Parkinson, Demonstration of a unified approach to thebalancing of flexible rotors, Trans. American Society of Mechanical Engineers, J. EngineeringforPower, Paper No.80-GT-87(1980).
    [21] A.G. Parkinson, M.S. Darlow, A.J. Smalley and R.H. Badgley, A theoretical introduction to thedevelopment of a unified approach to flexible rotor balancing, J. Sound and Vibration68(4)(1980),489–506.
    [22] J.W. Lund and J. Tonnesen, Analysis and experiments on multi-plane balancing of a flexible rotor,Trans. American Society of Mechanical Engineers, J. Engineering for Industry94(1)(1972),233–242.
    [23]邓理博,程礼,李全通等.转子动平衡影响系数法改进[J].机械科学与技术,2007,26(5):631-634.
    [24]章碌璇,唐云冰,罗贵火.最小二乘影响系数法的优化改进[J].南京航空航天大学学报,2005,37(1):110-113.
    [25]凌建,朱慕铨.影响系数法的改进[J].电力建设,1990,11(1):1-5.
    [26]寇胜利.柔性转子采用影响系数法平衡方程中的病态方程[J].热力发电.2005,34(12):13-16.
    [27] L.P. Grobel, Balancing turbine generator rotors, General Electric Review (1953),22–25.
    [28] J.R. Lindsey, Significant developments in methods for balancing high-speed rotors, in: Conf.American Society of Mechanical Engineers Vibration, No.69-Vibr-53, Philadelphia, Pa.,1969.
    [29] R.E.D. Bishop, The vibration of rotating shafts, J. MechanicalEngineering Science1(1)(1959),50–65.
    [30] R.E.D. Bishop and G.M.L. Gladwell, The vibration and balancing Science of an unbalancedflexible rotor, J. Mechanical Engineering1(1)(1959),66–77.
    [31] A.G. Parkinson, K.L. Jackson and R.E.D. Bishop, Some experiments on the balancing of smallflexible rotors: Part i-theory, J. Mechanical Engineering Science5(1)(1963),114–128.
    [32] A.G. Parkinson, K.L. Jackson and R.E.D. Bishop, Some experiments on the balancing of smallflexible rotors: Part ii––experiments, J. Mechanical Engineering Science5(2)(1963),133–145.
    [33] A.L.G. Lindley and R.E.D. Bishop, Some recent research of the balancing of large flexible rotors,Proc. Institute of MechanicalEngineers177(30)(1963),811–825.
    [34]林宝根.挠性转子振型平衡[J].汽轮机技术,1991,33(4):41-46.
    [35]贺世正,周保堂.上悬臂带弹支的高速转子振型平衡方法[J].振动工程学报,2000,13(1):133-136.
    [36]徐宾刚,屈梁生,陶肖明.柔性转子现场动平衡误差研究[J].机械科学与技术,2004,23(12):1457-1462.
    [37] G.B. Karelitz, Field balancing rotors at operating speed, Power67(7)(1928),286–289.
    [38] F. Ribary, The balancing of masses in rotating bodies, Brown Boveri Review23(1936),186–192.
    [39] I.J. Somervaille, Balancing a rotating disc, simple graphical construction, Engineering (1954),241–242.
    [40] C. Jackson, The Practical Vibration Primer, Gulf Publ., Houston, Texas,1979.
    [41] L.E. Barrett, D.F. Li and E.J. Gunter, Second mode balancing without phase measurement usingthe three point method, in: Selected Papers on Field Balancing of Rotating Machinery AdvancedTheory and Techniques, E.J. Gunter, ed.,No. UVA/643092/MAE81/137, ROMAC Report80,Charlottesville,VA,1978.
    [42] E.J. Gunter, H. Springer and R.R. Humphris, Balancing ofand Noise, multimass flexible rotorbearing system without phase measurements, in:11th Biennial Conf. on MechanicalVibrationBoston, MA, September1982.
    [43] L.J. Everett, Two plane balancing of a rotor system without vibration phase measurements, J.Vibration, Acoustics, Stress tand Reliability in Design109(4)(1987),162–167.
    [44] C. Jackson, Using the orbit to balance, Mechanical Engineering (1971),28–32.
    [45] W.C. Foiles and D.E. Bently, Balancing with phase only (single-plane and multiplane), Trans.American Society of Mechanical Engineers, J. Vibration, Acoustics, Stress, and Reliability inDesign110(2)(1988),151–157.
    [46] R.M. Little, The application of linear programming techniques to balancing flexible rotors. Ph.D.thesis, School of and Applied Science, University of Virginia, Charlottesville, EngineeringVirginia,1971.
    [47] R.M. Little and W.D. Pilkey, A linear programming approach for balancing flexible rotors, J.Engineering for Industry SeriesB98(3)(1976),1030–1035.
    [48] W.D. Pilkey and J.T. Bailey, Constrained balancing techniques for flexible rotors, J. MechanicalDesign, Trans. American Society of Mechanical Engineers101(2)(1979),304–308.
    [49] E. Woomer and W.D. Pilkey, The balancing of rotating shafts by quadratic programming, J.Mechanical Design103(1981),831–834.
    [50] Guoxin Li, Zongli Lin, Paul E. Allaire, Robust Optimal Balancing of High-Speed MachineryUsing Convex Optimization, Journal of Vibration and Acoustics, June2008,Volume130, Issue3,031008(1-11).
    [51] R. Gasch, R. Markert, H. Pfützner. Acceleration of unbalanced flexible rotors through the criticalspeeds [J]. Journal of Sound and Vibration,1979,63(3):393-409.
    [52] P. Gnielka. Modal balancing of flexible rotors without test runs: An experimental investigation [J].Journal of Sound and Vibration,1983,90(2):157-172.
    [53] Fritzen C P,Gans P,Wiese D,et al.A model-based method for balancing of flexible rotorsmounted on oil-film bearings without trial weight.ASME Design Engineering TechnicalConferences,1999(7):1027-1036.
    [54]汪海良,刘思汉.柔性转子无试重动平衡法的实验研究[J].振动与冲击,1992,(3):57-65.
    [55]徐宾刚,屈梁生,孙瑞祥.基于影响系数法的柔性转子无试重平衡法研究[J].西安交通大学学报,2000,34(7):63-67.
    [56]缪红燕,高金吉,徐鸿,等.基于有限元法的柔性转子虚拟动平衡研究[J].振动、测试与诊断,2004,24(3):184-188.
    [57]郭峰,刘石,张伟.一次加重平衡法在风机振动处理中的应用[J].广东电力,2009,22(2):76-82.
    [58]董书岐,张延国.烧结鼓风机转子现场一次加重平衡法[J].风机技术,2000,(2):28-32.
    [59]王延博,康风霞.振型波特曲线理论及其在轴系现场动平衡中的应用[J].机械强度,2006,28(1):155-158.
    [60]张鸿海.智能式砂轮在线自动平衡仪[J].航空精密制造技术,1994,30(1):7-9
    [61] Zeng S, Wang X X. The electromagnetic balancing regulator and the automatic balancingsystem[J]. Journal of Sound and Vibration,1998,209(1):5-13
    [62]欧阳红兵,汪希萱.两种新型电磁式在线自动平衡头[J].机械制造,2002,40(455):47-48
    [63]孙宝东,须根法,黄文虎,夏松波.转子自动平衡技术的实验研究[J].中国机电工程学报,1995,15(5):317-322
    [64]李勇,陆永平.采用永磁频差电动机的自动平衡头[J].微特电机,1998,26(5):31-33
    [65] Dyer S W, Kerlin J, Hackett B K. Electromagnetically actuated rotating machine unbalancecompensator[P]. United States Patent,5757662,1998-5-26
    [66]葛哲学,陶利民.新型电磁式自动平衡装置的研究[J].机械,2001,28(6):62-64
    [67] Pfeiffer M W, Koester D D, Johnson E D, Borning D F, Spiczka K J. Balancing system withadjustable eccentric rings for a disc drive assembly[P]. United States Patent,6707639,2004-3-16
    [68] Kerlin J H. Unbalance compensator[P]. United States Patent,4432253,1984-2-21
    [69] Steere Jr, Robert E, Lewandowski T. Balanced rotary saw assembly and a method of balancing thesame[P]. United States Patent,4537177,1985-8-27
    [70] Gusarov A A, Shatalov L N. Method for balancing rotors[P]. United States Patent,4189507,1980-2-19
    [71] Inoue K. Dynamic balancing machine using EDM[P]. United States Patent,4506133,1985-3-19
    [72] Birkenstockv D, Jager O. Multi-chambered fluid balancing apparatus[P]. United States Patent,3950897,1976-4-20
    [73] Birkenstockv D, Jager O, System for compensating the unbalance of a rotating body, especially ofa grinding wheel[P]. United States Patent,3967416,1976-7-6
    [74] Hofmann D. Apparatus for compensating for unbalance of a rotary body[P], United States Patent,4050195,1977-9-27
    [75] Chen C M, Wu J R, Shieh C M, Chang W P. Device for on-line automatic fluid injection balancingsystem[P]. United States Patent,5343408,1994-8-30
    [76] Chen H M. Virtual rotor balancing in magnetic bearings[P]. United States Patent,5084643,1992-1-28
    [77]黄晓蔚,唐钟麟.电磁轴承系统实现自动平衡的一种新方法[J].机械工程学报,2001,37(7):96-99
    [78]李长河,原所先,修世超,等.超高速磨削中的砂轮自动平衡技术[J].新技术新工艺,2004.5:29-31
    [79]贺世正.释放液体式自动平衡头的研究[J].浙江大学学报,2001,35(4):418-422
    [80] Gao J J, Zhang P. Simulative Study of automatic Balancing of Grinding Wheel Using aContinuously-Dripping Liquid-Injection Balancing Head[J], Proceedings of the6th WorldCongress on Control, DaLian,2006, C22-108
    [81]周伟,全书海,廖传书. FFT算法应用于极小转子动平衡仪的研究[J].武汉汽车工业大学学报,1996,18(2):34-37
    [82]郑建彬.基于DFT的动平衡机不平衡量提取算法[J].武汉理工大学学报(交通科学与工程版),2002,26(3):318-320
    [83]王洪,彭熙伟,李占宏,侯增广.基于FFT的车轮动平衡检测技术[J].北京理工大学学报,2002,22(3):300-302
    [84]白志刚,唐贵基,一种转子动不平衡信号幅相特征的提取方法[J].电力科学与工程,2002,(4):69-70
    [85]彭熙伟,李占宏,王洪,谭日飞.车轮动平衡的数字检测方法及其比较[J].汽车工程,2003,25(4),327-329
    [86]胡爱军,安连锁,唐贵基.频谱校正理论及其在旋转机械相位测量中的应用[J].煤矿机械,2004,(10):134-136
    [87]董永贵,向莉.多路振动信号的伪同步采样及其在转子动平衡中的应用[J].仪表技术与传感器,2004,(8):43-46
    [88]徐晶,于向军.基于FFT算法的振动信号分析[J].工业控制计算机,2005,18(12):8-9
    [89]耿慧.转子动平衡检测中不平衡信号幅值与相位的计算方法[J].计量技术,2005,(3):32-33
    [90]吴少波,陆秋海.积分型数字跟踪滤波法及其在转子动平衡中的应用[J].工程力学,2003,20(1):76-79
    [91]刘健,潘双夏,杨克己,冯培恩.动平衡测量数字滤波方法研究[J].机械强度,2005,27(1):38-43
    [92]杨克己,武二永.高精度动平衡测量中自适应滤波技术的应用研究[J].仪器仪表学报,2005,26(1):32-36
    [93]赵良梁,夏俊超,曾胜.小型电机转子不平衡信号的提取与处理[J].化工机械,2007,34(1):8-11,29.
    [94]郑建彬,田春仿.基于离散小波变换的动平衡机不平衡量提取算法研究[J].测控技术,2002,21(8):21-26
    [95]郑建彬.基于DWT和DFT的动平衡机不平衡量提取原理及实现[J].系统工程与电子技术,2003,25(4):501-504
    [96]卿湘运,段红,魏俊民.谐波小波在动平衡机不平衡量信号提取中的应用[J].浙江工程学院学报,2003,20(2):100-103
    [97]赵午云,郭维强.动平衡测试技术方法浅析[J],机械工程师,2004,(4):15-18
    [98]楼向明,郑水英,汪希萱,姚滨.一种在线识别转子不平衡量的新方法[J].工程设计,1998,(3):41-43
    [99] Zeng S, Wang X X. Unbalance identification and field balancing of dual rotors system withdifferent rotating speeds [J]. Journal of Sound and Vibration,1999,220(2):343-351
    [100]余先涛,余明辉.相关分析在刚性转子动平衡测试中的应用[J].武汉大学学报(工学版),2001,34(4):100-103.
    [101]应光耀,郑水英,马振飞,崔丽娜.基于遗传算法的挠性转子系统的参数识别[J].机械,2003,30(05):13-15.
    [102]应光耀,郑水英,刘淑莲.遗传算法在转子—轴承系统参数识别中的应用[J].机械强度,2004,26(01):006-009.
    [103]张鹏举,陈昆昌,李仁旺,刘海霞,王莹.转子自适应动平衡测试系统的研究[J].计算机工程,2008,34(16):249-251,276.
    [104]杨建刚.旋转机械振动分析与工程应用[M].北京:中国电力出版社,2007.
    [105] William T. Thomson, Marie Dillon Dahleh.Theory of Vibration with Applications(Fifth Edition).北京:清华大学出版社,2005.
    [106]邓艾东,许春林,张红星.振动故障诊断系统中的同步键相信号处理[J].风机技术,2001(5):61-63.
    [107]韩余才.转子动平衡最优化法[J].中国电机工程学报1985,5(2):55~62.
    [108]刘正士,陈心昭。转子动平衡的相对系数法及其在动态信号分析仪上的实现[J].机械强度1994,16(4):53~57.
    [109]贾振波,余历军,最小二乘法平抑转子振动的计算[J].西北大学学报(自然科学版),2000,30(5):455~457
    [110]安胜利,杨黎明.转子现场动平衡技术[M]。国防工业出版社,北京,2007.
    [111]许在合.用闪光测相法找风机转子动平衡[J].冶金动力,1994,3:33-35.
    [112]郑州机械研究所.旋转机械振动检测诊断与动平衡技术基础[M].2004.
    [113]石维新,石静波.汽轮发电机组振动及事故[M].北京:中国电机出版社,2008.
    [114]吴佳.全自动平衡机去重控制系统的研究设计[D].重庆:重庆大学,2011..
    [115]李东文,熊晓燕,李博.振动加速度信号处理探讨[J]机电工程技术2008,37(09):50-52
    [116]周小祥,陈尔奎,吕桂庆,刘立星.基于数字积分和LMS的振动加速度信号处理[J].自动化仪表,2006,27(9):51-53.
    [117]石梅香.铁路桥梁振动超低频信号检测系统设计[J].硅谷,2011,11:74..
    [118]马昌凤,林伟川.现代数值计算方法[M].北京:科学出版社,2011,94-104.
    [119]程佩青.数字信号处理教程[M].北京:清华大学出版社,2004,138-150.
    [120]张新喜,许军,王新忠,杨雨迎. Multisim10电路仿真及应用[M].北京:机械工业出版社,2010.
    [121] Foiles W C,Bently D E.Balancing with Phase only (Single-Plane and Multiplane)[J], ASMEJournal of Vibration, Acoustics,. Stress and Reliability Design,1988;110:151-157.
    [122] John J. Yu. Relationship of Influence Coefficients Between Static-Couple and Multiplane Methodson Two-Plane Balancing[J], Journal of Engineering for Gas Turbines and Power,2009,Vol.131:1-11.
    [123]张雄伟,陈亮,徐光辉. DSP集成开发与应用实例[M].北京:电子工业出版社,2002.
    [124]苏奎峰,吕强,常天庆,张永秀. TMS320X281X DSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008.
    [125]吴杰清.宽范围高精度测速系统[J],武汉交通科技大学学报,1995,Vol.19(3):301-305.
    [126]刘治华,孟令启,孙中森,李正刚,胡友旺.一种任意整数周期的高精度测速系统设计[J].机床与液压,2007,Vol.35(5):186-189.
    [127]欧阳秉三.锁相环在转速测量中的应用[J],湘潭大学自然科学学报,1994,Vol16(4):65-69.
    [128]潘群,向军,王琳. RS-485串行通信接口电路的设计与应用[J].常州工学院学报,2009,Vol22(3):38-42.
    [129]余先元.高温超导磁悬浮车速度测量仪的研制[D].成都:西南交通大学,2006.
    [130]沈伟.旋转机械主动平衡技术及其工程应用研究[D].北京:北京化工大学,2007.
    [131]汪振威.转子系统的运行优化和自愈技术的研究[D].北京:北京化工大学,2006.
    [132]苏奕儒.基于注液式及电磁力式的旋转机械主动平衡技术研究[D].北京:北京化工大学,2010.
    [133]贺世正.释放液体是自动平衡头的研究[J].浙江大学学报,2001,35(4):418-422.
    [134]冯伟.悬臂转子主动平衡技术的控制原理及其实验研究[M].北京:北京化工大学,2007.
    [135]张鹏.连续注排式自动平衡头设计及控制算法[D].北京:北京化工大学,2006.
    [136]胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700