用户名: 密码: 验证码:
土地利用/覆被变化信息遥感图像自动分类识别与提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】以陕西省横山县1986年8月2日和2003年8月17日的两期TM图像作为基础数据源,研究适用于农牧交错带土地利用/覆被专题信息提取的数字图像处理技术和自动分类识别方法,并依据所获取的专题信息分析区域土地利用/覆被动态变化特征。【方法】结合实地调查和相关专题图件对原始图像进行系统的预处理,对比分析多种图像增强和特征变换方法增强目标类别光谱特征的效果,包括小波滤波、LBV变换等,然后利用多特征知识建立研究区各种土地利用/覆被类型的目视解译方法。分析各类别常用专题信息提取方法应用在本区出现的问题。分别在Ln{MNDWI}–NDVI、Albedo-NDVI、TM5-MNDWI特征空间中构建描述研究区水体、沙地和居民用地的专题指数CWI、CSI、CRI。验证面向对象分割的方法识别本区各个地类的适用性,并在对TM图像面向对象分割后对比分析最大似然法、BP神经网络法和支持向量机法的分类精度。在此基础上,结合多层级图像分析和面向对象分类的方法为各地类设计专题信息提取流程,并通过测试样本对两期TM图像专题信息提取结果进行目视评判和定量评价。最后利用两期专题信息提取结果得到土地利用/覆被转移矩阵、土地利用动态度和土地利用/覆被转换图谱,从土地利用/覆被数量变化、速度变化和类型变化3个方面分析研究区17年来土地利用/覆被的时空变化特征。【结果】分别对CWI、CSI、CRI进行阈值分割,可以快速分离出与居民用地、水体、沙地光谱特征相近的各种背景地类信息。在对TM图像进行SVM分类前执行面向对象分割操作,能够有效降低分类结果中的椒盐效应,适用于除沙地、荒草地以外的其它地类的专题信息提取过程。不同地类的专题信息提取方法均能够有效减少对同谱地物的误判,取得较高的制图精度和用户精度。【结论】横山县地处毛乌素沙漠东南部与黄土丘陵沟壑区的交接过渡地带,地形、地貌复杂,地表破碎,直接对TM图像分类得到各地类的提取精度有限,并且分类后的图斑散碎、椒盐效应显著,分类结果无法用于专题图制作和土地利用/覆被动态变化分析。试验依据多层级图像分析处理的思想为各个地类设计专题信息提取流程,实现了对各地类精准分布信息的逐步优化和逼近,应用在本区具有较高的可靠性和适用性。试验取得的主要研究成果如下:
     (1)选取Coiflet3作为小波母函数,采用软阈值函数对TM图像进行阈值滤波处理,能够在较好保持图像清晰度的同时,有效去除较大图斑内部孤立的像元和碎斑,增强图斑同质性,为比差值型光谱指数(NDVI、MNDWI、NDBI等)设置分割阈值和图像分类创造条件。在提取沙地、荒草地时设置小波分解尺度J=3;提取旱耕地、灌木林地、草地等类别时设置小波分解尺度J=2。
     (2)专题指数CRI、CWI和CSI图像中目标类别与背景类别具有显著的光谱差异,很多光谱微弱并受到相邻地物干扰的目标类别小斑,如细小水流线、道路线和居民点均能够被准确识别。分别对CRI、CWI和CSI图像进行阈值分割和掩膜运算,能够在完整保留目标类别的同时快速分离出大部分背景干扰信息。之后再对阈值分割结果分类,可有效简化分类过程的复杂性,准确区分同谱地物,提高分类结果的制图精度和用户精度。
     (3)对TM图像进行LBV变换能够增强水浇地、旱耕地、有林地、灌木林地、草地等类别的光谱特征,平滑较大图斑内部细微的光谱差异,提高图斑同质性、增强边缘特征,为准确选取面向对象分割尺度创造条件。
     (4) TM图像面向对象分割后的基本单元是由相邻、匀质像元组成的同质对象,对对象分类可以降低选取典型训练样本、设置组内聚类中心的难度,有效抑制椒盐效应。在识别水体、居民用地、水浇地、旱耕地、灌木林地和有林地的过程中,试验通过从全图多个位置选取典型训练样区并进行分割测试,确定分割尺度SC。识别上述类别时SC分别取6.2、9.0、7.0、4.2和5.3。
     (5)相对于BP神经网络法、最小距离法和最大似然法,支持向量机法分类后的沙地、荒草地、草地、灌木林地、旱耕地的图斑相对完整、连续,得到的制图精度和用户精度更高。对于水体、居民用地和道路,试验组合数学形态学开、闭运算作为一对形态滤波器优化初始提取结果的二值图像,在保持各地类较大图斑形状特征基本完好的同时有效去除了噪声图斑,消除细小孔洞,补平缺损并连接断线,并且操作过程简捷、灵活。
     (6)横山县1986年草地、未利用土地、耕地、林地、水域、居民用地的面积分别为141185.61hm~2、128043.90hm~2、87037.38hm~2、61474.77hm~2、5687.82hm~2、137.70hm~2,未利用土地中沙地的面积比例为56.08%,耕地中旱耕地的面积比例为81.24%,林地中灌木林地的面积比例为84.90%。横山县2003年草地、林地、耕地、未利用土地、水域、居民用地、公路用地的面积分别为181424.88hm~2、84919.95hm~2、80475.30hm~2、72379.44hm~2、3747.51hm~2、394.38hm~2,225.72hm~2。林地中灌木林地的面积比例为88.15%,耕地中旱耕地的面积比例为72.73%,未利用土地中沙地的面积比例为42.06%。
     (7)横山县1986-2003年间沙地、荒草地、水域、旱耕地面积显著减少。分别有26.96%、23.56%的沙地净转变为草地和荒草地;41.53%、8.21%的荒草地净转变为草地和灌木林地;28.42%的水域面积转变为水浇地;14.22%、5.74%的旱耕地净转变为草地和灌木林地。横山县1986-2003年间水浇地、灌木林地、有林地、草地、居民用地面积增加。扣除逆转面积后分别有8.02%、7.36%、5.00%的水浇地来自灌木林地、水域和草地;13.18%、6.17%的灌木林地来自草地和荒草地;15.22%、12.58%的有林地来自草地和旱耕地;12.88%、10.67%的草地来自荒草地和沙地。31.36%、10.22%、的居民用地来自水浇地和旱耕地。
【Objective】Extracting accurate land use/land cover change informantion based on TMimages acquired in Augest2,1986and August17,2003, chosing Hengshan County located inthe farming-pastoral ecotone of Northern Shaanxi as study area.【Method】Firstly, the remotesensing images were pretreated by field survey and thematic maps. After that, methods ofvisual interpretation for each LUCC type were established by multi-feature knowledge.Secondly, different feature transformation and image enhancement methods were investigated,including principal component analysis, tasseled cap transformtion, LBV transformtion,wavelet filtering etc., then comparative analysis of the results were carried out. Thridly,spectral indices of waters, sandy land and residential area were established and described.Validation of object-oriented image segmentation for each LUCC type was carried out. Theclassification accuracy of4methods were compared, including minimum distance, maximumlikelihood, BP artificial neural net and support vector machine. On this basis, the thematicclassification flows for each LUCC type were designed by combining the hierarchical theoryand object-oriented image segmentation. Subsequently, results were visually inspected andquantitatively evaluated by test samples. Evaluation indices included map accurary, user’saccuracy, Kappa coefficient and overall accuracy rate. Finialy, On the basis of comparison ofclassification results, analysis of LUCC changes in Hengshan County from1986to2003wasrealized from the aspects of quantity change, speed change and land type change【.Result】Thegeneral information of residential area, waters, sandy land and waste grassland extracted fromTM image is more accurate by using threshold segmentation of CWI, CRI and CSI. Exceptfor sandy land and waste grass land, the accuracy of object-oriented image classification ismuch better than that of pixel-based classification, as well as salt and pepper effect hasdecreased substantially. Using method of combining object-oriented image segmentation andhierarchical theory,the LUCC thematic information extracted from TM images is moreaccurate and reliable than that of direct supervised classification schema.【Conclusion】Hengshan County is located in the transition zone of the southeast of the Mu Us Desert andloess hilly and gully region, having complex terrain and topography. As a result, fragmentizedpatches, mixed pixel, shadow, metameric substance of same spectrum, metameric spectrum of same substance are ubiquity in TM images. These factors bring too many difficulties inextracting thematic information using direct supervised classification schema. Theseclassification results can't be in the production of thematic maps and dynamic monitoring ofLUCC because of obvoius salt and pepper effect and low accuracy. Focused on theseproblems, this paper presents a thematic information extraction method of successiveapproximation. Based on this method the optimum sequence arrangement of hierarchicalextraction schema has been realized. And validation by visual inspection and quantitativeevaluation show that hierarchical extraction procedures is beneficial to decreasingmisclassification error the rate of wrong classification and rate of miss classification, theaccuracy and efficiency of LUCC thematic information extracion is improved substantially.
     Specific research content and its related innovation are carried out as following:
     (1) Wavelet soft-thresholding filtering to TM image data using Coiflet (order=3) asmother wavelet can give remarkably good results in removing isolated fine patches and pixelsinset bigger blocks and enhancing homogeneity of patches, while maintains image definitionwell. This set the stage for ratio-difference indices as NDVI, MNDWI, NDBI in settingthreshold or for classification. We choose3as the wavelet decomposition scale for extractingsand land and waste grassland, while use2for extracting dry land, shrubbery, grassland andother LUCC types.
     (2) Due to the marked differences of spectrum between target class and background inimages of CRI, CWI, and CSI index, the slight linear or area object of target class havingweak spectrum and subject to interference of other adjacent ground objects, such as thin river,road, and tiny residential area, can be able to recognition certainly. Combination of thresholdsegmentation and mask operation on CRI, CWI, and CSI images can retain the entire targetclass while separates background interference information from it quickly. Then furtherclassification to threshold segmentation can make the recognition more simply, distinguishobjects with same spectrum certainly, and improve the mapping accuracy.
     (3) LBV transformation can enhance spectral features of irrigable land, dry land,woodland, shrubbery, grassland and other vegetation type effectivly. Meanwhie it candecrease subtle spectral difference in large patchess. Homogeneity is improved and edgefeatures is also enhanced. Thus LBV transformation provides conditions for exactly choosingsegmentation scale in object-oriented method.
     (4) After object-oriented image segmentation, basic unit of remot sensing image is notthe pixel, but homogeneity object formed by adjacent and the same class type pixels.Classificating for object can make the selection of the training samples and setting clustering centers easier. In addition, it is favorable to decrease salt and pepper effect in classificationresults. Thus the rationality and applicability about image classify are improved. In theprocess of identifying waters, residential area, irrigable land, dry land, shrubbery, andwoodland, segmentation scale (SC) is confirmed by choosing the classic training samplingareas form multiple positions of the whole imagery, and the segmentation scales are6.2,9.0,7.0,4.2and5.3respectively.
     (5) The overall accuracy of support vector machine classification is much better than thatof minimum distance, maximum likelihood and BP artificial neural net, as well as betterintegrity and continuity of patches. Morphological bandpass filter is constructed by usingmorphological open-close operation, and it has a good applicability on optimizing binaryimage of classification results. In post classification phase, open-close operation ofmathematical morphology can filter noise speckles, connect broken lines, fill the holes inorder to improve precision of image classify, meanwhile keeping original shape of largpatches. The operating process of open-close operation has high calculating efficiency,especially for road, residential area and waters extraction.
     (6) In1986, grassland, unusable land, cultivated land, forest land, waters, residential areain Hengshan County covered141185.61hm~2,128043.90hm~2,87037.38hm~2,61474.77hm~2,5687.82hm~2,137.70hm~2respectively, which were account for33.33%,30.23%,20.55%,14.51%,1.34%,0.03%of the whole area of the county.56.08%of unusable landis sandy land;81.24%of cultivated land is dry land;84.90%of forest land is shrubbery. In2003, grassland, forest land, cultivated land, unusable land, waters, residential area, roadHengshan County covered181424.88hm~2,84919.95hm~2,80475.30hm~2,72379.44hm~2,3747.51hm~2,394.38hm~2,225.72hm~2respectively, which were account for42.83%,20.05%,19.00%,17.09%,0.89%,0.09%,0.05%of the whole area of the county.88.15%offorest land is shrubbery;72.73%of cultivated land is dry land;42.06%of unusable land issandy land.
     (7) In the period of1986to2003, the coverage area proportion of sandy land, wastegrassland, wters, dry land had certain reduction. Transfer matrix calculations indicated that:the decreased sandy land converted mainly to grassland, waster grassland, which wereaccount for26.96%,23.56%of sandy land area in1986respectively; the decreased wastergrassland converted mainly to grassland, shrubbery, which were account for41.53%,8.21%of waster grassland area in1986respectively; the decreased waters converted mainly toirrigable land, which were account for28.42%of waters area in1986; the decreased dry landconverted mainly to grassland, shrubbery, which were account for14.22%,5.74%of dry land area in1986respectively. From1986to2003, the coverage area proportion of irrigableland, shrubbery, woodland, residential area had certain increase. Transfer matrix calculationsindicate that: the increased irrigable land is converted mainly by shrubbery, waters, grassland,which were account for8.02%,7.36%,5.00%of the irrigable land area in2003respectively;the increased shrubbery is converted mainly by grassland, waster grassland, which wereaccount for13.18%,6.17%of the shurbbery area in2003respectively; the increasedwoodland is converted mainly by grassland, dry land, which were account for15.22%、12.58%of the woodland area in2003respectively; the increased grassland is converted mainly bywaster grassland, sandy land, which were account for12.88%,10.67%of the grassland areain2003respectively; the increased residential area is converted mainly by irrigable land, dryland, which were account for31.36%,10.22%of the residential area in2003respectively.
引文
安如,赵萍,王慧麟,冯学智,何凯.2005.遥感影象中居民地信息的自动提取与制图.地理科学.25(5):74-80
    边肇祺,张学工.2000.模式识别.北京:清华大学出版社
    查勇,倪绍祥,杨山.2003.一种利用TM图像自动提取城镇用地信息的有效方法.遥感学报.7(1):37-40
    常庆瑞.2002.土地资源学.陕西:西北农林科技大学出版社
    陈华芳,王金亮,陈忠,杨柳,习武俊.2004.山地高原地区TM影像水体信息提取方法比较—以香格里拉县部分地区为例.遥感技术与应用.19(6):479-484
    陈云浩,杜培军,李晓兵,史培军.2005.基于卫星遥感数据的地表信息特征—NDVI-Ts空间描述.武汉大学学报:信息科学版.30(1):11-14
    陈云浩,李晓兵,陈晋,史培军.2002.1983—1992年中国陆地植被NDVI演变特征.遥感学报.6(1):12-17
    陈志强,陈健飞.2006.基于NDBI指数法的城镇用地影像识别分析与制图.地球信息科学.8(2):137-140
    程磊,徐宗学,左德鹏,李林涛.2010.基于Landsat TM数据的黄土高原区水体识别方法研究.北京师范大学学报:自然科学版.46(3):424-430
    陈光伟,等.1994.黄土高原重点治理区资源与环境调查研究.北京:科学出版社
    陈光伟,等.1991.陕北黄土高原地区遥感应用研究.北京:科学出版社
    池宏康,陈维英,张海蕾.1999.遥感数据的裸沙土壤线校正方法.地理学报.54(5):454-461
    池宏康,周广胜,许振柱.2005.表观反射率及其在植被遥感中的应用.植物生态学报.29(1):74-80
    池宏康.1996.黄土高原地区提取植被信息方法的研究.植物学报.38(1):40-44
    池宏康.2000.沙地油蒿群落覆盖度的遥感定量化研究.植物生态学报.24(4):494-497
    戴昌达, T Vogt.1995.低湿地与土壤湿度的卫星遥感监测与制图.土壤学报.32(4):377-382
    戴昌达,唐伶俐,陈刚,王杰生.1993.从TM图像自动提取洪涝灾情的研究.自然灾害学报.2(2):50-54
    戴昌达,唐伶俐,陈刚.1995.卫星遥感监测城市扩展与环境变化的研究.环境遥感.10(1):1-7
    邓劲松,王珂,李君,董云奇.2005.决策树方法从SPOT-5卫星影像中自动提取水体信息研究.浙江大学学报:农业与生命科学版.31(2):171-174
    邓文胜,关泽群,王昌佐.2004.从TM影像中提取城镇建筑覆盖区专题信息的改进方法.遥感信息.(4):43-46
    丁建丽,塔西甫拉提·特依拜,熊黑钢.2002.塔里木盆地南缘绿洲荒漠化动态变化遥感研究—以策勒县为例.遥感学报.6(1):56-62
    都金康,黄永胜,冯学智,王周龙.2001. SPOT卫星影像的水体提取方法及分类研究.遥感学报.5(3):214-219
    杜明义,武文波,郭达志.2002.多源地学信息在土地荒漠化遥感分类中的应用研究.中国图象图形学报.7A(7):740-743
    杜云艳,周成虎.1998.水体的遥感信息自动提取方法.遥感学报.2(4):264-269.
    冯钟葵,李晓辉.2006.青海湖近20年水域变化及湖岸演变遥感监测研究.古地理学报.8(1):132-141
    符淙斌,温刚,周嗣松,吕杰.1992.我国大陆植被变化的气象卫星遥感.科学通报.37(1):1486-1488
    高尚武,王葆芳,朱灵益.中国沙质荒漠化土地监测评价指标体系.林业科学.34(2):1-10
    高志海,李增元,魏怀东,丁锋,丁国栋.2006.干旱地区植被指数(VI)的适宜性研究.中国沙漠.2(2):243-248
    郭兆元,黄自立,冯立孝,范淑琴,王惠君.1992.陕西土壤.北京:科学出版社
    候光良,等.1990.黄土高原地区农业气候资源图集.北京:气象出版社
    横山县土壤普查办公室.1981.横山县第二次土壤普查报告
    胡伟平,吴志峰,何建邦.2002. RS与GI S支持下珠江三角洲城镇近期发展对土壤资源利用的影响分析.自然资源学报.17(5):549-555
    胡振琪,王金,杨成兵.2008.基于RS与GIS的榆林地区土地动态变化分析.水土保持学报.22(4):82-85
    黄河水利委员会勘测规划设计院.1987.中国黄土高原地貌图集.北京:水利出版社
    姬可忠,贺家琦.1990.横山土地资源.陕西:陕西科学技术出版社
    贾永红,张春森,王爱平.2001.基于BP神经网络的多源遥感影像分类.西安科技学院学报.21(1):58-60
    姜青香,刘慧平.2004.利用纹理分析方法提取TM图像信息.遥感学报.8(5):458-464
    靳文戟,刘政凯.1995.多类别遥感图像的复合分类方法.环境遥感.10(4):298-302
    邝生爱,田淑芳,程博.2002.农牧交错带土地沙化遥感监测.国土资源遥感.52(2):10-14
    黎夏.1995.形状信息的提取与计算机自动分类.环境遥感.10(4):279-287
    李锐,杨文治,李壁成.2008.中国黄土高原研究与展望.北京:科学出版社
    李宝林,周成虎.2001.东北平原西部沙地近10年的沙质荒漠化.地理学报.56(3):307-315
    李宝林,周成虎.2002.东北平原西部沙地沙质荒漠化的遥感监测研究.遥感学报.6(2):117-122
    李朝峰,曾生根,许磊.2007.遥感图像智能处理.北京:电子工业出版社
    李登科,范建忠,王娟.2010.陕西省植被覆盖度变化特征及其成因.应用生态学报.21(11):2896-2903
    李登科,郭铌,何慧娟.2007.陕北长城沿线风沙区植被指数变化及其与气候的关系.生态学报.27(11):4620-4629
    李登科.2009.陕北黄土高原丘陵沟壑区植被覆盖变化及其对气候的响应.西北植物学报.29(5):1007-1015
    李金莲,刘晓玫,李恒鹏.2006. SPOT影像纹理特征提取与土地利用信息识别方法.遥感学报.10(6):926-931
    李小曼,王刚,田杰.2006. TM影像中水体提取方法研究.西南农业大学学报:自然科学版.28(4):580-582
    李旭文.1992.主成分变换和彩色变换在TM图像信息提取中的应用-以苏州市为例.环境遥感.7(4):251-260
    历华,柳钦火,邹杰.2009.基于MODI S数据的长株潭地区NDBI和NDVI与地表温度的关系研究.地理科学.29(2):262-267
    刘纪远,张增祥,庄大方,张树文,李秀彬.2006.20世纪90年代中国土地利用变化的遥感时空信息研究.北京:科学出版社
    刘纪远,庄大方,凌扬荣.1998.基于GIS的中国东北植被综合分类研究.遥感学报.2(4):285-291
    刘建波,戴昌达.1996. TM图象在大型水库库清监测管理中的应用.环境遥感.11(1):54-58
    刘良云,张兵,郑兰芬,童庆禧,刘银年,薛永祺,杨敏华,赵春江.1998.利用温度和植被指数进行地物分类和土壤水分反演.红外与毫米波学报.21(4):269-273
    刘明光.2010.中国自然地理图集(第3版).北京:中国地图出版社
    刘彦随,Jay Gao.2002.陕北长城沿线地区土地退化态势分析57(4):443-450
    刘志明,晏明,李铁强.2004.遥感与GIS支持下的松嫩平原农牧交错区土地沙漠化调查研究.第四纪研究.24(3):349-354
    陆灯盛,游先祥,崔赛华.1991. TM图像的信息量分析及特征信息提取的研究.环境遥感.6(4):267-274
    陆家驹,李士鸿.1992, TM资料水体识别技术的改进.环境遥感.7(1):17-23
    陆渝蓉,高国栋.1984.中国水分气候图集.北京:气象出版社
    马立鹏,韩光庆,李源.1996. TM影像在河西地区荒漠化土地调查中的应用.中国沙漠.16(4):401-406
    马荣华段洪涛唐军武陈兆波.2010.湖泊水环境遥感.北京:科学出版社
    牛宝茹.2005.基于遥感信息的沙漠化灾害程度定量提取研究.灾害学20(1):18-21
    潘时祥,朱述龙.1993.卫星遥感图像上居民地自动识别的研究.遥感信息.30(4):2-4
    乔平林,张继贤,林宗坚.2004.基于神经网络的土地荒漠化信息提取方法研究.测绘学报.33(1):58-62
    任红玲,廉毅,高枞亭.2002.中国东北西部地区荒漠化发展前沿区域的遥感研究.第四纪研究.22(2):136-140
    任志弼,色音巴图,石永怀,等.1990.陕北草地类型遥感解译与制图.中国草地.6:40-43
    沙占江,马海州,李玲琴,周笃君,曹广超,欧立业,杨海镇.2005.共和盆地龙羊峡库区1987—1999年间土地覆被变化过程.中国沙漠.25(1):20-26
    陕西省土地管理局.2000.陕西土地资源.陕西:陕西人民出版社
    盛永伟,陈维英,萧乾广.1995.利用气象卫星植被指数进行我国植被的宏观分类.科学通报.40(1):68-71
    盛永伟,肖乾广,陈维英.1994.应用FY-1B气象卫星监测1994年江淮洪水的研究.环境遥感.9(3):228-233
    盛永伟,肖乾广.1994.应用气象卫星识别薄云覆盖下的水体.环境遥感.9(4):247-254
    史培军,李晓兵,周武光.2000.利用“3S”技术检测我国北方气候变化的植被响应.第四纪研究.20(3):220-227
    史文中,朱长青,王昱.2001.从遥感影像提取道路特征的方法综述与展望.测绘学报.(3):257-262
    唐华俊,陈佑启,邱建军,陈仲新.2004.中国土地利用/土地覆盖变化研究.北京:中国农业科学技术出版社
    田庆久,闵祥军.1998.植被指数研究进展.地球科学进展.13(4):327-333
    田庆久,王晶晶,杜心栋.2007.江苏近海岸水深遥感研究11(3):373-379
    王桥,张兵,韦玉春,李旭文.2008.太湖水体环境遥感监测实验及其软件实现.北京:科学出版社
    王涛,吴薇,王熙章.1998.沙质荒漠化的遥感监测与评估—以中国北方沙质荒漠化区内的实践为例.第四纪研究.18(2):108-118
    王涛,吴薇,薛娴.2004.近50年来中国北方沙漠化土地的时空变化.地理学报.59(2):203-212
    王澄海,惠小英.2005.以植被指数0.12为指标看我国的荒漠化与草原界限的变化.中国沙漠.25(1):88-92
    王任华,霍洪涛,游先祥.2003.人工神经网络在遥感图像森林植被分类中的应用北京林业大学学报.25(4):1-5
    王铁成,刘兴文.1994.利用TM图像提取土地荒漠化信息的方法与效果—以阜康地区为例.遥感技术与应用.9(1):34-41
    王秀兰,包玉海.1999.土地利用动态变化研究方法探讨.地理科学进展.18(1):81-87
    王周龙.1993.沙漠化灾害遥感信息提取技术系统.中国沙漠.13(4):14-19
    吴薇.2001.土地沙漠化监测中TM影像的利用.遥感技术与应用.16(2):86-90
    吴炳方,刘海燕.1997.水稻种植面积估计的运行化遥感方法.遥感学报.1(1):58-63
    吴宏安,蒋建军,周杰,张海龙,张丽,艾莉.2005.西安城市扩张及其驱动力分析.地理学报.60(1):143-150
    吴文斌,杨鹏,唐华俊, Shibasaki Ryosuke,周清波,张莉.2009.基于NDVI数据的华北地区耕地物候空间格局.中国农业科学.42(2):552-560
    熊勤学,黄敬峰.2009.利用NDVI指数时序特征监测秋收作物种植面积.农业工程学报.25(1):144-148
    徐涵秋,陈本清.2003.厦门市植被变化的遥感动态分析.地球信息科学.6(2):105-108
    徐涵秋,张铁军.2011. ASTER与Landsat ETM+植被指数的交互比较.光谱学与光谱分析.31(7):1902-1907
    徐涵秋.2005.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报.9(5):589-595
    徐涵秋.2007.一种基于指数的新型遥感建筑用地指数及其生态环境意义.遥感技术与应用.22(3):301-308
    杨山.2000.发达地区城乡聚落形态的信息提取方法与分形研究—以无锡市为例.地理学报.55(6):671-678
    杨存建,周成虎,2001.利用RADARSAT SWA SAR和LANDSAT TM的互补信息确定洪水水体范围.自然灾害学报.10(2):79-83
    杨存建,周成虎.2000. TM影像的居民地信息提取方法研究遥感学报.24(4):146-150
    杨存建,周成虎.2001.基于知识发现的TM图像居民地自动提取研究.遥感技术与应用.16(1):1-6
    杨智翔,何秀凤.2010.基于改进的NDBI指数法的遥感影像城镇用地信息自动提取.河海大学学报:自然科学版.38(2):181-184
    殷青军,杨英莲.2005.基于EOS/MODIS数据的青海湖遥感监测.湖泊科学.17(4):356-360
    游先祥,杨晓明.1995.应用遥感信息复合方法的森林分类和动态监测研究.环境遥感.10(2):97-106
    榆林市统计局.2000.榆林统计年鉴2000.北京:中国统计出版社
    曾志远.卫星遥感图像计算机分类与地学应用研究.北京:科学出版社
    张峰,吴炳方,刘成林,罗治敏.2004.利用时序植被指数监测作物物候的方法研究.农业工程学报.20(1):155-159
    张锦水,潘耀忠,韩立建,苏伟,何春阳.2007.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究.遥感学报.11(4):500-510
    张友静,方有清.1992. K-T变换的林学意义及其在森林蓄积量估算中的应用.环境遥感.7(3):163-171
    张玉贵, F. R. Beernaert,刘华.1998. T M影像的计算机屏幕解译和荒漠化监测林业科学研究.11(6):599-606
    张增祥.2010.中国土地覆盖遥感监测.北京:星球地图出版社
    张宗祜,等.1989.中国黄土.北京:中国地质出版社
    章杨清,刘政凯.1994.利用分维向量改进神经网络在遥感模式识别中的分类精度.环境遥感.9(1):68-72
    郑春江,等.1994.中华人民共和国土壤环境背景值图集.北京:中国环境科学出版社
    赵萍,冯学智,林广发.2003. SPOT卫星影像居民地信息自动提取的决策树方法研究.遥感学报.7(4):309-315
    赵哈林,黄学文,何宗颖.1996.科尔沁地区农田土壤沙漠化演变的研究.土壤学报.33(3):242-248
    赵哈林,赵学勇,张铜会,张小由,李玉霖,刘立超.2011.我国西北干旱区的荒漠化过程及其空间分异规律.中国沙漠.31(1):1-8
    赵哈林,赵学勇,张铜会,周瑞莲.2002.北方农牧交错带的地理界定及其生态问题.地球科学进展.17(5):739-747
    赵哈林,周瑞莲,张铜会,赵学勇.2003.北方农牧交错带的地理界定及其生态问题.中国草地.25(3):1-8
    赵英时.2003.遥感分析原理与应用.北京:科学出版社
    中国科学院黄土高原综合科学考察队气候组.1990.黄土高原地区农业气候资源图集.北京:气象出版社
    中国科学院水利部西北水土保持研究所.1991.黄土高原综合治理试验示范区专题地图集.西安:测绘出版社
    周成虎,杜云艳,骆剑承.1996.基于知识的AVHRR影像的水体自动识别方法与模型研究.自然灾害学报.5(3):100-108
    周成虎,骆剑承,杨晓梅.1999.遥感影像地学理解与分析.北京:科学出版社
    Adams J B,Kapos V, Filho R A, Smith M O, Gillespie A R.1995. Classification of multispectralimages based on fractions of endmembers:application to land cover in the Brazilian Amazon. RemoteSensing of Environment,52:137-154
    Apan A A.1994. Landsat TM satellite images of forests: from enhancement to classification.Canadian Journal of Remote Sensing,20(6):17-26.
    Atkinson P M, Tatnall A R L.1997. Neural networks in remote sensing.Int. J. Remote Sensing,18(4):699-709.
    Backhaus R, Braun G.1998. Integration of Remotely and Model Data to Provide the SpatialInformation Basis for Sustainable Landuse. Acta Astronautica,42(9):541-546.
    C. petit, T. scudder and E. lambin.2001. Quantifying processes of land-cover change by remotesensing: resettlement and rapid land-cover changes in south-eastern Zambia. International Journal ofRemote sensing,22(7):3435-3456.
    Cao W F, Qin Q M.1998. A knowledge based research for road extraction from digital satellite images.Acta Scientiarum Naturalium University Pekinensis,34(2):254-263
    Cao Zhi-qing, DENC Xiang-zheng.2002. Analysys on Spatial Features of LUCC Based on RemoteSensing and GIS in China. Chinese Geographical Science,12(2):107-113.
    Carlson, T.N.,2003. Applications of remote sensing to urban problems. Remote Sensing ofEnvironment,86,273
    Chen L, Liu X and Zhang Y.2007. A study of image classification based on MLC combined withspectral angle. Engineering of Surveying and Mapping,16(3):40—47
    Christophe E, Englada J.2007. Robust road extraction for high resolution satellite images. In:Proceedings of the International Conference of Image Processing. Thessaloniki, Greece: IEEE.437-440
    Civco D.L., Hurd J.D., et al.,2002. Quantifying and describing landscapes in the northeast UnitedStates. Photogrammetric Engineering and Remote Sensing,68(10):1083-1090
    Coburn C A and Roberts A C B.2004. A multiscale texture analysis procedure for improved foreststand classification. Interna-tional Journal of Remote Sensing,25(20):4287–4308
    Collin Homer.2004. Development of2001National Land Cover Database For the United States.Photogrammetric Engineering and Remote Sensing,70(7):829-840
    Coppin, P.R., Bauer, M.E.1996. Change detection in forest ecosystems with remote sensing digitalimagery. Remote Sensing Reviews,13,207-234
    Dale V H.1997. The relationship between land-use change and climate change. EcologicalApplication,7(3):753-769.
    El-Magd I A and Tanton T W.2003. Improvements in land Use mapping for irrigated agriculture fromsatellite sensor data using a multi stage maximum likelihood classification. Inter-national Journal ofRemote Sensing,24(21):4197—4206
    Floyd M H, Zong-Guo Xiao.1997. Sar. application in human settlement detection, populationestimation and urban land use pattern analysis: a status report. IEEE Geoscience and Remote Sensing,35(1):93-101
    Frazier P S, Page K J.2000. Water body detection and delineation with Landsat TM data.Photogrammetric Engineering and Remote Sensing,66(12):1461-1466
    Gao B C.1996. NDWI-a normalized difference water index for remote sensing of vegetation liquidwater from space. Remote Sensing of Environment,58:257—266
    Gao Yan, J F MAS.2006.Comparison of pixel-based and object-oriented image classificationapproaches-a case study in a coal fire area,Wuda,Inner Mongolia,China.International Journal of RemoteSensing,27(18):4039-4055.
    Gillies, R.R., Box, J.B., Symanzik, J., et, al.,2003. Effects of urbanization on the aquatic fauna of theLine Creek watershed, Atlanta-a satellite perspective. Remote Sensing of Environment,86,411
    Green, K., Kempka, D., and Lackey, L.,1994. Using remote sensing to detect and monitor land-coverand land-use change. Photogrammetric Engineering&Remote Sensing,60,331-337
    Harris, P.M., Ventura, S.J.,1995. The integration of geographic data with remotely sensed imagery toimprove classification in an urban area. Photogrammetric Engineering and Remote Sensing.61(8):993-998
    He D P, Xiao Y, Xiao X G, Huang Y H and Zhou Q R.2006. Ap-plication of the support vectormachine in remote sensed image processing. Urban Geotechnical Investigation&Survey-ing,3:27—30
    He L M, Shen Z Q, Kong F S and Liu Z K.2007. Study on multi-source remote sensing imagesclassification with SVM. Journal of Image and Graphics,12(4):648—654
    Healey, S.P., Cohen, W.B., Zhiqiang., and Krankina, O,N.,2005. Comparison of Tasseled Cap-basedLandsat data structures for use in forest disturbance detection. Remote Sensing of Environment.97:301-310
    Helmer, E. H., and B. Ruefenacht.2005. Cloud-free satellite image mosaics with regression trees andhistogram matching. Photogrammetric Engineering and Remote Sensing,71(9):1079–1089
    Herold, M., Goldstein, N.C.2003. The spatiotemporal form of urban growth: measurement, analysisand modeling. Remote Sensing of Environment,86(3),286-302
    Huang C, Davis L S, Townshend J R G.2002. An assessment of support vector machines for landcover classification. International Journal of Remote Sensing,23(4):725-749
    Justin D Paola, Robert A Schowengerdt.1997. The effect of neural-network structure on amulti-spectral land-use/land-cove classification, PERS.63(5):535-544.
    Knorn J,Rabe A, Radeloff V C,Kuemmerle T, Kozak J and Hostert P.2009. Land cover mapping oflarge areas using chain classification of neighboring Landsat satellite images. Remote Sensing ofEnvironment,113(5):957–964
    Langley S K, Cheshire H M and Humes K S.2001. A comparison of single date and multitemporalsatellite image classification in a semi-arid grassland. Journal of Arid Environments,49:401—411
    Lee J B, Woodyat t A S, Berman M.1990. Enhancement of high spectral resolution remote sensingdata by a noise-adjusted principal component s transform. IEEE Transactions on Geoscience and RemoteSensing,28(3):295-304.
    Liu H, JEZEK K C.2004. Automated extraction of coastline from satellite imagery by integratingcanny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing,25(5):937—958
    Liang S.2001. Narrowband to broadband conversions of land surface albedo I: algorithms. Remotesensing of Envirment.76(2):213-238.
    Lobo A, Chic O and Casterad A.1996. Classification of mediterra-nean crops with multisensor data:per-pixel versus per-object statistics and image segmentation. International Journal of Remote Sensing,17:2385—2400
    Lu A X, Wang L H and Yao T D.2006. The study of Yamzho Lake and Chencuo Lake variation usingremote sensing in Tibet Plateau from1970to2000. Remote Sensing Technology and Application,21(3):173—177
    LU,D.S., Weng,Q.H.,2006. Use of impervious surface in urban land-use classfication. Remote Sensingof Environment.146-160
    LU,D.S., Weng,Q.H.,2009. Extraction of urban impervious surfaces from an IKONOS image.International Journal of Remote Sensing,1297-1311
    Lucas IFJ, Frans JM, Wel VD.1994. Accuracy assessment of satellite derived land-cover data: review.Photogram-metric Engineering&Remote Sensing,60(4):410-432.
    McFeeters S K.1996. The use of normalized difference water index (NDWI) in the delineation ofopen water features. International Journal of Remote Sensing,17(7):1425-1432.
    Mural H, OMATU S.1997. Remote sensing image analysis using a neural network andknowledge-based processing.INT. J. Remote Sensing,18(4):811-828.
    Ouma Y, Tateishi R.2006. A water index for rapid mapping of shoreline changes of five East AfricanRift Valley lakes: an empirical analysis using Landsat TM and ETM+data. International Journal OfRemote Sensing,27(15):3153-3181
    Qian Yu,Peng Gong.2006. Object-based Detailed Vegetation Classification with Airborne HighSpatial Resolution Remote Sensing Imagery.Photogrammetric Engineering&Remote Sensing,72(7):799-811.
    Ravanbakhsh M, Heipke C, Pakzad K.2007. Road junction extraction from high resolution aerialimages. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,36(3):131-138
    Rogan,J., and Roberts, D.A,2002. A comparison of methods for monitoring multitemporal Vegetationchange using Thematic Mapper imagery. Remote Sensing of Environment,80:143-156
    Sader,S.A.,D.E.Ah1, and Liu.W,1995. Accuracy of Landsat-TM and rele-based methods for forestwetland classification in Maine, Remote Sensing of the Environment,53:133-144
    Smith G M and Fuller R M.2001. An integrated approach to land cover classification: an example inthe Island of Jersey. International Journal of Remote Sensing,22:3123—3142
    Sunnar F.1998. An Analysis of Changes in a Multi-date Data Set: Case Study in the Ikitelli Area,Istanbul, Turkey. INT J Remote Sensing,19(2):331-344.
    Van Niel, T G. and McVicar, T R.2003. A simple method to improve field-level rice identification:toward operational monitoring with satellite remote sensing. Australian Journal of ExperimentalAgriculture,43:379—387
    Wang,Y., Mitchell, B.R., Nugranad-Marzilli, J., and Bonynge, G.,2009. Remote sensing of land-coverchange and landscape context of the National Parks: A case study of the Northeast Temperate Network.Remote Sensing of Environment,113(7):1453-1461.
    Wilkinson G G.1996. A review of current issues in the integration of GIS and remote sensing data. Int.J. Geographical Information Systems,10(1):85-101.
    Wilson E H, Sader S A.2002. Detection of forest harvest type using multiple dates of Landsat TMimagery. Remote Sensing of Environment,80:385-396
    Wu J P, Mao Z H, Chen J Y and Pan D L.2006. A new classifica-tion method for coast remote sensingimage. Journal of Martine Sciences,24(2):70—78
    Wu, C.,2004. Normalized spectral mixture analysis of monitoring urban composition using ETM+imagery, Remote Sensing of Environment,93(4):480-492
    Xian, G, Crain, M.,2005. Assessments of urban growth in Tampa Bay watershed using remote sensingdata. Remote Sensing of Environment,97(2):203-215
    Yansui Liu, Jay Cao,Yanfeng Yang,A Hulislic.2003. Approach Towards assessment of Severity ofLand Degradation Along the Great Wall in Northern Shaanxi Province,China. Environmental Monitioringand Assessment,82(2):187-202.
    Yoshida T, Omatu S.1994. Neural network approach to land cover mapping. IEEE Transactions onGeo-science and Remote Sensing,32:1103-1109.
    Zha Y, Gao J, Ni S.2003.Use of normalized diffference built-up index in automatically mapping urbanareas from TM imagery. International Journal of Remote Sensing,24(3):583-594.
    Zhang Q P, Couloigner I.2004.Automatic road change detection and GIS updating from high spatialremotely-sensed imagery. Geospatial Information Science,7(2):89-95
    Zhu,Z.L., Yang,L.M.,2007. Stephen and Raymond L.Czaplewski: Accuracy assessment for the U.S.geological survey regional land-cover mapping program: New York and New Jersey region.Photogrammetric Engineering&Remote Sensing,65(12):1425-1435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700