用户名: 密码: 验证码:
基于激光熔覆技术制备高结合强度陶瓷涂层的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料由于具有优异的耐磨、耐蚀、耐热和抗高温氧化性能,而使其成为金属防护涂层的首选。但由于陶瓷涂层材料与金属基体材料在物理性能方面存在较大差异,使得现有表面技术在基体表面制备的陶瓷涂层,其结合力低,在高温环境中使用,涂层在温度变化中会产生较大内应力,容易涂层剥落。本文以高结合强度(超过传统的等离子喷涂及激光熔覆等离子喷涂制备的涂层结合强度,同时,在高温的使用过程中,结合强度的提高能够改善涂层的使用寿命)为目标,基于激光熔覆技术,利用高频感应辅助的方法,对陶瓷涂层的制备进行了基础研究。在镍基高温合金表面成功制备了MCrAlY/Al2O3-13%TiO2陶瓷涂层以及具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层。对上述两种涂层进行对比研究。
     针对于所制备的陶瓷涂层,本文首先从激光与陶瓷材料相互作用的机理着手,对激光的作用模型进行分析。通过实验与理论相结合的方式对激光与陶瓷的相互作用模型进行探讨研究。在激光的作用下,陶瓷材料的烧结主要分为吸收、烧结、凝固三个步骤进行。根据烧结过程的机理,选用Al2O3-13%TiO2陶瓷材料进行实验分析。从中得出,陶瓷材料的颗粒形状、尺寸及密度对陶瓷材料的烧结性能影响较大。当陶瓷材料尺寸达到纳米量级,呈球型时其烧结性能最优越,陶瓷材料的烧结性能随着坯体的致密度的增加而增加。而激光温度场对陶瓷材料的烧结性能影响较大,温度更加均匀的温度场将会减小陶瓷材料形成裂纹的热应力,晶粒之间析出明显,但尺寸有所增加。
     根据现有高温陶瓷涂层的失效机理进行分析判断,提出了高结合强度陶瓷涂层整体设计方案。基于激光熔覆技术,设计了MCrAlY/Al2O3-13%TiO2陶瓷涂层以及具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层。MCrAlY/Al2O3-13%TiO2陶瓷涂层采用传统的涂层设计理念,利用MCrAlY黏结层缓解陶瓷层与基体金属之间的物理性能差异,同时对设计涂层进行可行性验证。结果表明,在预置高致密度陶瓷粉体后,通过高频感应辅助激光熔覆技术可以成功制备上述设计涂层。基于高温工作原理的需求,本文设计了一种具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层,将黏结层设计成为微孔结构,利用微孔结构的高抗热震性、低热膨胀系数的特点减少黏结层与陶瓷层之间的热应力,使得涂层具有更加优异的高温性能。同样,对激光烧结微孔金属进行了可行性验证,以使得涂层的设计更加具有科学性。
     利用SEM、XRD等分析手段对MCrAlY/Al2O3-13%TiO2陶瓷涂层和具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层的组织结构、成分进行了详细分析。MCrAlY/Al2O3-13%TiO2陶瓷涂层界面元素明显扩散,呈现良好的化学结合特性,体现了涂层的高结合强度;而具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层则由于黏结层材料成分改变及多孔特性的原因,使得涂层界面之间没有明显的扩散现象。但由于微孔的铆接作用,陶瓷层与黏结层依旧结合紧密。
     对上述制备试样进行了结合强度、高温氧化实验、热震实验综合实验,以判断涂层的高温结合性能及失效形式。结果表明,MCrAlY/Al2O3-13%TiO2陶瓷涂层具有很高的结合强度及抗高温氧化性能,但随着热震次数的增加其结合强度大幅度下降。结合残余应力测试综合分析,该系列涂层产生的热应力较大,容易产生微裂纹,适合在低温条件下使用。具有微孔结构黏结层的Al2O3-13%TiO2陶瓷涂层结合强度略低,但体现了良好的高温抗氧化性能及高温抗热震性能。其最终为热疲劳失效。
     综合上述研究结果,本文对激光原位自生陶瓷涂层进行了研究。采用MCrAlY/Al系反应材料,基于激光熔覆技术,利用Al元素原位氧化形成Al2O3原理,原位生成厚度原位40m的陶瓷层。涂层的微观结构表明,陶瓷层与反应层之间结合相当紧密,且在界面处生成大量晶须,这将大大增加涂层之间的结合力,说明该方法是一种非常有应用前景的陶瓷涂层制备工艺。
Ceramics are priority applied for protective coating because of their excellent wear and corrosionresistance, heat resistance and high temperature oxidation resistance. However, ceramic coating showlow adhesion prepared by surface coating technique due to huge difference of Ceramic coatingmaterial and metal matrix material in physical performance. Ceramic coatings are easy to failure as aresult of huge thermal stress in the high temperature environment. In the paper, a fundamentalresearch on the high bonding strength ceramic coating prepared by laser cladding. A series of researchon the samples of MCrAlY/Al2O3-13%TiO2ceramic coating and microporous structure adhesivelayer/Al2O3-13%TiO2ceramic coating, which prepared by high frequency assisted laser cladding.
     Prepared for the ceramic coating, firstly, the sintering mechanism of the mechanism of ceramicmaterials under the action of laser was researched. Meanwhile, the model of laser was analyzed. Aresearch on the mechanism was carried out according to combination of experimental and theoreticalmethods. It can be divided into absorption, sintering, solidification three stages during ceramicmaterials sintering. According to the mechanism of sintering process, Al2O3-13%TiO2ceramic wereuse to experimental analysis. The result showed that, ceramic particle, shape, size and density have asuperior influence on the sintering properties of ceramic materials. Ceramic sintering was the mostsuperior performance when the size reaches the nanometer ceramic and spherical shape. Meanwhile,sintering properties of ceramic were increased significantly with the density of green body increases.While the temperature field of laser has a superior influence on sintering properties of ceramicmaterials. The thermal stress which induced microcrack will be reduced when the uniformtemperature field, and the separation was precipitated between the grains, but the size increased.
     A whole design scheme of high bonding strength was proposed according to the existingmechanism of high temperature ceramic coating failure analysis. It is designed MCrAlY/Al2O3-13%TiO2ceramic coating and microporous structure adhesive layer/Al2O3-13%TiO2ceramic coatingprepared based on idea of laser cladding. MCrAlY/Al2O3-13%TiO2ceramic coatings useconventional coating design. It is used MCrAlY bond layers reduce the differences of physicalproperties between the ceramic layer and matrix metal. Meanwhile, the feasibility verifying tests arecarried under different cladding conditions. The results showed that, ceramic coating can be preparedby high frequency assisted laser cladding pre-high density ceramic powder. A creative design whichproposed based on the needs of high-temperature work, it is microporous structure adhesive layer/Al2O3-13%TiO2ceramic coating. In the design, the adhesive layer is designed to be porousstructure, ceramic coating will has excellent high temperature properties result of microporousstructure has a high thermal shock resistance, low thermal expansion coefficient, can be used toreduce thermal stress of ceramic layer and matrix metal. Similarly, the feasibility verifying tests ofmicroporous structure sintering by laser are carried in order to prove scientific of the coating design.
     Scanning electron microscopy (SEM) and X-ray diffraction (XRD) was applied to analyze thecomposition and microstructure of the MCrAlY/Al2O3-13%TiO2ceramic coating and microporousstructure adhesive layer/Al2O3-13%TiO2ceramic coating. The result showed that, MCrAlY/Al2O3-13%TiO2ceramic coating has a excellent chemical combination due to elements obviouslydiffused in the interface, will increase bonding strength of coating. In comparison with MCrAlY/Al2O3-13%TiO2ceramic coating, There is no obvious elements diffused in the interface ofmicroporous structure adhesive layer/Al2O3-13%TiO2ceramic coating result of the existence of alarge number of holes and changes in composition of adhesive layer. However, the interface is stilltightly under the action of microporous riveting.
     In order to estimate high temperature properties and failure mode of coating, bonding strength,high temperature oxidation and thermal shock of coating samples were tested respectively. The resultsshowed that MCrAlY/Al2O3-13%TiO2ceramic coating has good bonding strength and excellenthigh-temperature oxidation resistance, however,bonding strength of coating dramatically decreasedwith increasing thermal shock times. The microcracks are easily formed in the high temperature resultof huge thermal stress by residual stress test, add to use at low temperatures. Comparatively,microporous structure adhesive layer/Al2O3-13%TiO2ceramic coating had a slightly lower bondingstrength and excellent high-temperature oxidation resistance, but displayed a good thermal shockresistance. Final failure mode is thermal fatigue failure.
     Comprehensive result of work, a research on in-situ ceramic coating prepared by laser claddingwas carried out. MCrAlY/Al were used to in-situ about40mceramic coating prepared by lasercladding according to principle of Al in-situ oxidation. The result of study on microstructure showedthat in-situ ceramic coating and reaction layer combined closely to each other, meanwhile, there are alot of whiskers formed in the interface of the coating, the bonding strength will greatly increase,shows that the method is a very promising preparation of ceramic coatings.
引文
[1] Fleischer R L, Dimiduk D M, Lipsitt H A. Intermetallic compounds for stronghigh-temperature materials: status and potential. Annual Review of Materials Science,1989,19(1):231~263.
    [2] Shaw M C. The effects of strength probabilistics on the fracture mode of ceramic/metalmultilayers[J]. Engineering Fracture Mechanics,1998,61(1):49-74
    [3] Liu A H, Li B S, Nan Hai, et al. Study of Interfacial Reaction between TiAl Alloys and FourCeramic Molds[J]. Rare Metal Materials and Engineering,2008,37(6):956-959
    [4] Fedrizzi L, Rossi S, Cristel R, et al. Corrosion and wear behaviour of HVOF cermet coatingsused to replace hard chromium. Electro-chimica Acta,2004,49(17~18):2803~2814.
    [5]高亚丽. AZ91HP镁合金激光表面改性研究[博士学位论文].大连:大连理工大学,2006.
    [6] Yadroitsev I, Bertrand P, Laget B, et al. Application of laser assisted technologies forfabrication of functionally graded coatings and objects for the International ThermonuclearExperimental Reactor components. J. Nuclear Materials,2007,362(2-3):189-196.
    [7] Liang G Y, Su J Y. The microstructure and tribological characteristics of laser-clad Ni–Cr-Alcoatings on aluminium alloy[J]. Materials Science and Engineering,2000, A290:207-212.
    [8] Hu Y P, Chen C W.,Mukherjee K. Measurement of temperature distributions during lasercladding process[J]. Journal of Laser Applications,2000,12(3):126-130.
    [9] Meriaudezu F, Truchetet F. Control and optimization of the laser cladding process using matrixcameras and image processing[J]. Journal of Laser Applications,1996,8:317-324.
    [10] Ma H B, Zhang W P, Microstructure and Properties of Co-Based Alloy Laser Clad Layer onTitanium Alloy Surface[J]. Rare Metal Materials and Eenginerring,2010,39(12):2189-2192.
    [11] Ahrens M, Va en R, St ver D. Stress distributions in plasma-sprayed thermal barrier coatingsas a function of interface roughness and oxide scale thickness[J]. Surface and CoatingsTechnology.2002,161(1):26-35.
    [12] Nychka J A,Clarke D R. Damage quantification in TBCS by photo-stimulated luminescencespect roscopy [J]. Surface and Coatings Technology,2001,146/147:110-116.
    [13] Padture N P,Gell M,Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(4):280-284.
    [14] Movchan B A, Malashenko I S, Yu K, et a1. Two and three-layer coatings produced bydeposition in vacuum for gas turbine blade protection[J]. Surface and Coatings Technology,1994,67:55-63.
    [15] Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics. Acta Materialia,2000,48(1):307~322.
    [16] Yang R, Cui Y Y, Dong L M, et al. Alloy Development and Shell Mould Casting of GammaTiAl [J]. Journal of Material ProcessingTechnology,2003,135:179-188.
    [17] Loria E A. Gamma titanium aluminides as prospective structural materials. Intermetallics,2000,8(9~11):1339~1345.
    [18] Viswanathan R, Scherier S T. Materials technology for advanced land based gas turbines[C].The Proceeding of7th International Conference on Creep and Fatigue at ElevatedTemperatures, Tsukuba, Japan, Shinanomachi Rengakan Bldg,2001:7-21
    [19] Chen Y, Wang H M. Growth morphologies and mechanism of TiC in the laser surface alloyedcoating on the substrate of TiAl intermetallics. Journal of Alloys and Compounds,2003,351(1~2):304~308.
    [20] Liu X B, Yu R L. Influences of precursor constitution and processing speed on microstructureand wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy. Materialsand Design,2009,30(2):391~397.
    [21] Liu X B, Shi S H, Guo J, et al. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2composite coating on γ-TiAl intermetallic alloy prepared by Nd: YAG laser cladding. AppliedSurface Science,2008,255(11):5662~5668.
    [22]王华明,郭淑平,史岗. TiAl金属间化合物合金的激光气体合金化表面改性研究.中国激光,1997,24(11):1049~1052.
    [23] Cecilia B, Teodoro V, Mario Tului. Plasma spray deposition and high temperaturecharacterization of ZrB2–SiC protective coatings [J]. Surface and Coatings Technology.2002,115(2-3):260-273.
    [24]陈孟成,霍晓,高阳等.高温涂层的研究和发展[J].材料工程,1999,(6):40-45
    [25] He Y D, Li D Z, Wang D R. Corrosion resistance of Zn-Al-Co cementation coatings on carbonsteels[J]. Materials Letters,2002,56:554
    [26] Resuel-Moreno F, Jakab M, Tailleart N, et al. Corrosion-resistant metallic coatings[J].Materials Today,2008,11(10):14-23.
    [27] Pint B A. The role of chemical composition on the oxidation performance of aluminidecoatings [J]. Surface and Coatings Technology,2004,188-189:71-78.
    [28] Liang J, Gao W, Li Z, et al. Hot corrosion resistance of electrospark-deposited Al and Ni Crcoatings containing dispersed Y2O3particles[J]. Materials Letters,2004,58(26):3280-3284
    [29] Yang S W, Zhang F Y, Li L, et al. High temperature oxidation morphology of Al-Si coatingon the superalloy K438[J]. High Temperature Material Processes.2005,9(4):619-624.
    [30] Umebayashi R, Akao N, Hara N, et al. Corrosion and its mechanism of Al-10%Sialloy-coated steel in methanol containing H2O, NaCl, and HCOOH [J]. Journal of TheElectrochemical Society,2002,149(3): B75-B83.
    [31]曲彦平,程涛,张欢,等.真空离子镀Al-Si-Y涂层的高温性能研究[J].沈阳工业大学学报.2008,30(3):293-297.
    [32] Nadia V, Daniel M. Effect of Pt and Al content on the long-term, high temperature oxidationbehavior and interdiffusion of a Pt-modified aluminide coating deposited on Ni-basesuperalloys[J]. Surface and Coatings Technology,2006,201(7):3846-3851.
    [33]林翠,杜楠,赵晴.高温涂层研究的新进展[J].材料保护,2001,4(36):4-7.
    [34] Aurrecoechea J M, Hsu L L, Kubarych K G. Field Experience of Platinum Aluminide CoatedTurbine Blades[J]. Materials and Manufacturing Processes,1995,10(5):1037-1051.
    [35] Pant B K, Arya V, Mann B S. Development of low-oxide MCrAlY coatings for gasturbineapplications[J]. Journal of Thermal Spray Technology,2007,16(2):275-280.
    [36] Demasi J T, Gupta D K. Protective coatings in the gas turbine engine [J]. Surface and CoatingsTechnology,1994,68/69:1-9.
    [37] Put A V, Lafont M C, Oquab D, et al. Effect of modification by Pt and manufacturing processeson the microstructure of two NiCoCrAlYTa bond coatings intended forthermal barrier systemapplications[J]. Surface and Coatings Technology,2010,205(3):717-727.
    [38] Choi J H, Lee D B. High temperature oxidation characteristics of NiCoCrAlY coating for gasturbines[J]. Journal of Ceramic Processing Research.2006,7(2):136-139.
    [39] Guo M H, Wang Q M, Gong J, et al. Oxidation and hot corrosion behavior of gradientNiCoCrAlYSiB coatings deposited by a combination of arc ion plating andmagnetronsputtering techniques[J]. Corrosion Science.2006,48(6):2750-2764.
    [40] Miller R A. Current status of thermal barrier coatings-an overview[J]. Surface and CoatingsTechnology,1987,30:1-11.
    [41] Miller R A. Thermal barrier coatings for aircraft engines: History and directions[J]. Journal ofThermal Spray Technology,1997,6(1):35-42.
    [42] Vassen R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings[J].4thWorkshop on Les Recontres Internationales sur la Projection Thermique,2010,205(4):938-942
    [43] Bobzin K, Lugscheider E, Bagcivan N. Thermal cycling behavior of Yttria StabilizedZirconia and Lanthanum Zirconate, as graded and bilayer EB-PVD thermal barriercoatings[J].High Temperature Material Processes,2006,10(1):103-115.
    [44] Byung K J. Thermal conductivity of nanoporous ZrO2–4mol%Y2O3multi layer coatingsfabricated by EB-PVD[J]. Surface&Coatings Technology.2008,202:1568-1573.
    [45] Qi H Y, Ma H Q, Li X, et al. Thermal Fatigue of Thermal Barrier Coatings by AtmosphericPlasma Spraying[J].7th International Conference on Fracture and Damage Mechanics,2008,385-387:405-408.
    [46] Zhong X H, Wang Y M, Xu Z H, et al. Influence of laser-glazing on hot corrosion resistance ofyttria-stabilized zirconia TBC in molten salt mixture of V2O5and Na2SO4[J].Materials andCorrosion,2009,60(11):882-888.
    [47]管恒荣,李美姮,孙晓峰,等.高温合金热障涂层的氧化和失效研究[J].金属学报,2002,38(11):1133-1140.
    [48]范瑞麟,纪艳玲,张建苏.热障涂层(TBC)稳定性的研究[J].材料工程,1995,(12):35-37.
    [49] Mauer G, Sebold D, Vassen R, et al. Characterization of Plasma-Sprayed Yttria-StabilizedZirconia Coatings by Cathodoluminescence[J]. Journal of Thermal Spray Technology.2009,18(4):572-577.
    [50] Byeon J W, Jayaraj B, Sohn Y H. Characterization of isothermally oxidized ZrO2-8wt.%Y2O3thermal barrier coatings by electrochemical impedance spectroscopy[J].6thInternational Symposium on Eco-Materials Processing and Design,2005,486-487:145-148.
    [51] Ramachandra C, Lee K N, Tewari S N. Durability of TBCs with a surfaceenvironmental barrier layer under thermal cycling in air and in molten salt[J]. Surface&Coatings Technology,2003,172(2~3):150~157.
    [52] Rangaraj S, Kokini K. Multiple Surface cracking and its effect on interface cracks infunctionally graded thermal barrier coatings under thermal shock[J]. Journal of AppliedMechanics,2003,70(2):234~245.
    [53] Toscano J, Vaβen R, Gil A, et al. Parameters affecting TGO growth and adherence onMCrAlY-bond coats for TBCS[J]. Surface&Coatings Technology,2006,201(7):3906~3910.
    [54]齐红宇,王亚梅,杨晓光,等.等离子工艺热障涂层的热疲劳分析[J].失效分析与预防,2008,3(1):15-18.
    [55] GLEITER H. Nanostructured materials: state of the art and perspectives [J]. Nanostruct Mater,1995,6:3-14.
    [56]田明原,施尔畏,仲维卓,等.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报,1998,13(2):129—137.
    [57] Niihara K. New Design Concept of Structural Ceramics-Ceramic Nanocomposites[J].Journal of the Ceramic Society of Japan,1991,99(10):974-982.
    [58] Izaki K, Hakkei K, Ando K, et a1.In:Mackenzie J D,Ulrich D R eds. Ultrastructureprocessing of advanced ceramics[J],New York:John Wiley,1988:891~900.
    [59]陈辉,苟国庆,刘艳,等.等离子喷涂纳米WC-17Co涂层高温磨损性能[J].焊接学报,2008,29(12):53-56.
    [60] Gell M, Jordan E H, Sohn Y H, et al. Development and implementation of plasma sprayednanostructured ceramic coatings[J]. Surface&Coatings Technology,2001,146:48~54.
    [61] Lima R S, Kucuk A, Berndt C C. Evaluation of micro-hardness and elastic modulus ofthermally sprayed nanostructured zirconia coatings[J]. Surface and Coatings Technology,2001,135:166—172.
    [62]吴静,朱丽娟,袁福河. K417G高温合金纳米氧化锆热障涂层的制备与性能[J].中国表面工程,2006,19(5):26-31.
    [63] Lima R S, Marple B R. Enhanced ductility in thermally sprayed titania coatingsynthesized using a nanostructured feedstock[J]. Materials Science&Engineering A,2005,395(1/2):269~280.
    [64] Lima R S, Kucuk A, Senturk U, et al. Properties and microstructures of nanostructured partiallystabilized zirconia coatings[J]. Journal of Thermal Spray Technology,2001,10(1):150~152.
    [65] Wang D S, Tian Z J, Shen L D, et al. Microstructural characteristics andformationmechanism of Al2O3-13wt.%TiO2coatings plasma-sprayed with nanostructuredagglomerated powders[J]. Surface&Coatings Technology,2009,203(10~11):1298~1303.
    [66] Wang D S, Tian Z J, Shen L D, et al. Influences of laser remelting on microstructure ofnanostructured Al2O3-13wt.%TiO2coatings fabricated by plasma spraying[J]. Applied SurfaceScience,2009,255(8):4606~4610.
    [67] Wang D S, Tian Z J, Shen L D, et al. Preparation and characterization ofnanostructured Al2O3-13wt.%TiO2coating by plasma spraying[J]. Rare Metals,2009,28(5):465-470.
    [68]王东生,田宗军,沈理达,等.等离子喷涂纳米复合陶瓷涂层的组织结构及其形成机理[J].中国有色金属学报,2009,19(1):77~83.
    [69]高雪松,黄因慧,田宗军,等.等离子喷涂纳米ZrO2复合陶瓷涂层冲蚀行为[J].材料热处理学报,2010,31,31(10):136-140.
    [70]袁晓敏,龚佑品,何宜柱,等. TiB2对Ni基合金激光熔覆层组织与性能的影响[J].焊接学报,2007,28(5):41-44.
    [71]渠通洋,赵海云,欧阳洁.激光熔覆TiC-Ni2Al基复合涂层的高温稳定性研究[J].稀有金属与硬质合金.2008,36(1):11-15.
    [72]花国然,黄因慧,赵剑锋,等.激光重熔纳米SiC复合陶瓷涂层组织和性能研究[J].中国机械工程,2004,15(8):739-743.
    [73]花国然,黄因慧,赵剑锋,等.激光熔覆纳米A12O3等离子喷涂陶瓷涂层[J].中国有色金属学报.2004,14(2):199-203.
    [74]花国然,罗新华,黄因慧,等.以纳米SiC为填料的激光重熔等离子喷涂陶瓷涂层组织及耐腐蚀性能的研究[J].应用激光.2004,24(4):203-206.
    [75]花国然,罗新华,黄因慧,等.激光重熔改性等离子喷涂陶瓷涂层的组织及其耐腐蚀性能[J].中国有色金属学报.2004,14(6):934-938.
    [76] C. Batista, A. Portinha, R.M. Ribeiro, et al. Surface laser-glazing of plasma-sprayed thermalbarrier coatings[J]. Applied Surface Science.2005,247:313-319.
    [77] Parka J H, Kimb J S, Leec K H, et al. Effects of the laser treatment and thermal oxidationbehavior of CoNiCrAlY/ZrO2–8wt%Y2O3thermal barrier coating[J]. Journal of materialsprocessing technology,2008,201:331-335.
    [78]陈传忠,王文中,张建新.45钢表面激光熔覆Al2O3陶瓷涂层的研究[J].金属学报,1999,35(9):989-994.
    [79]陈传忠.激光熔覆Al2O3+TiO2复合陶瓷涂层的微观结构[J].硅酸盐学报,2000,28(2):133-138.
    [80]陈传忠,雷廷仅. Al2O3—CoCrAlY复合陶瓷激光熔覆层的组织与性能[J].硅酸盐学报,1999,27(4):445-451.
    [81]张学萍,水丽,庞红.激光重熔热障涂层热震行为研究[J].沈阳工业学院学报.2002,21(2):15-20.
    [82]杜宝帅,邹增大,王新洪,等.激光熔覆原位自生TiB2-TiC/FeCrSiB复合涂层研究[J].应用激光.2007,27(4):269-272.
    [83]魏仑,陈庆华,龙晋明,等.激光熔覆原位自生复相陶瓷颗粒增强涂层[J].激光技术.2002,26(4):246-249.
    [84] Li M H, Christofides P D. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF)Thermal Spray: A Tutorial Review[J]. Journal of Thermal Spray Technology,2009,18(5-6):753-768.
    [85] Chen S, Qu S J, Liang J, et al. Effects of heat treatment on mechanical properties of ODSnickel-based superalloy sheets prepared by EB-PVD [J]. Rare Metals.2011,30(1):76-80.
    [86] Prabhu V V, Fuke I V, Cho S, et al. Rapid manufacturing of rhenium components usingEB-PVD [J]. Rapid Prototyping Journal,2005,11(2):66-73.
    [87]钱苗根,姚寿山,张少宗.现代表面技术[M].机械工业出版社.2008:217.
    [88] Guo J T, Sheng L Y, Xie Y, et al. Microstructure and mechanical properties of Ni3Al andNi3Al-1B alloys fabricated by SHS/HE[J]. Intermetallics.2011,9(2):137-142.
    [89] Xu J, Zhang B L, Li W L, et al. Pressureless sintering of TiN/Y-(alpha/beta)-sialonceramics from SHS powder[J]. Ceramics International,2006,32(5):599-602.
    [90]叶明慧,郭焕升,杜心康,等. SHS反应火焰喷涂Al2O3陶瓷涂层修复工艺研究[J].中国表面工程.2006,19(5):187-202.
    [91]董斌,张永泉.火焰筒耐热搪瓷漆熔烧工艺实验研究[J].热能动力工程.2002,17(101):472-474.
    [92]耿瑞.热障涂层强度分析及寿命预测研究[D].北京航空航天大学.2001.
    [93]吕毓雄,马宗义,平德海.金属和陶瓷界面对复合材料特性的影响[J].材料工程,1994,14(3):1-5.
    [94] Ernst F. Metal-Oxide Interfaces[J]. Materials Science and Engineering,1995,14:97-156.
    [95]李洪涛,张文清.金属/陶瓷界面的第一原理热力学研究[J].中国材料进展,2009,28(3):13-16.
    [96] Klomp J T. Interfacial Reactions Between Metals and Oxides During Sealing[J].American Ceramic Society of Bulletin,1980,59(8):794.
    [97]卫字梢,杨锦伟.金属和陶瓷界面的研究[J].武汉工业大学学报,1989,(2):115-122.
    [98] Liu L M, Wang S Q, Ye H Q. First principles study of polar Al/TiN(111) interfaces[J].ActaMaterialia,2004,52(12):3681—3688.
    [99] Liu L M, Wang S Q, Ye H Q. First principles study of metal/nitride polar interfaces:Ti/TiN[J].Surface and Interface Analysis,2003,35(10):835—841.
    [100] Liu L M, Wang S Q, Ye H Q. Adhesion and bonding of the Al/TiC interface[J]. Surface Science,2004,550(123):46-56.
    [101]杨元政,刘正义.等离子喷涂Al2O3+13wt%TiO2陶瓷涂层的金属/陶瓷界面[J].兵器材料科学与工程,1998,21(2):8-10.
    [102] Kreibig U, Phys J. Electronic properties of small silver particles: the optical constants and theirtemperature dependence[J]. Journal of Physics F: Metal Physics.1974,4:999-1014.
    [103] Xu H B, Gong S K, Deng L. Preparation of thermal barrier coatings for gas turbine blades byEB-PVD[J]. Thin Solid Films.1998,(334):98-102.
    [104]邓世均等.热喷涂材料技术手册[M].机械工业出版社,北京,1991:295-301.
    [105] Pejryd L, Wigren J, Gougeon P, et al. Effect of in-flight particle characteristics on the propertiesof plasma sprayed NiCrAlY&NiCoCrAlY[J]. Journal of Thermal Spray Technology,1998,1/2:785-790.
    [106] Li H W, Chang E, Wu B C, et al. Effects of bond coat preoxidation on the properties ofZrO2-8wt.%/Ni-22Cr-10Al-1Y thermal barrier coatings[J]. Oxidation of Metals,1991,36(3-4):221-238.
    [107] Schmitt T K G, Dietl U. Thermal barrier coatings with improved oxidation resistance[J].Surfaceand Coatings Technology,1994,68/69:113-115.
    [108]徐前岗,唐建新,王宁,等.粘结层表面预处理对EB-PVD热障涂层循环氧化的影响[J].航空材料学报,2004,24(4):30-34.
    [109]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-11.
    [110]李志林,吴远启.粘结层中的Co对热障涂层界面结合因子的影响[J].北京化工大学学报,2004,31(4):36-40.
    [111]李志林,吴远启.粘结层中的Cr对热障涂层界面结合因子的影响[J].中国有色金属学报,2004,14(9):1477-1453.
    [112] Park M B, Hwang S J, Cho N H. Effect of the grain size and chemical features on the phasetransition and physical characteristics of nano-grained BaTiO3ceramics [J]. Materials Scienceand Engineering B,2003,99(1-3):155-158.
    [113]曾涛,董显林,毛朝梁.孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究[J].物理学报,2006,55(6):3073-3078.
    [114] Bertrand Ph, Bayle F, Combe C, et al. Ceramic components manufacturing by selective lasersintering[J]. Applied Surface Science,2007,254:989-992.
    [115] Cawley J D, Heuer A H, Newman S, et a1. Computer aided manufacturing oflaminated engineering materials[J]. American Ceramic Society Bulletin,1996(75):75~79.
    [116]郑启光,辜建辉.激光与物质相互作用[M].华中理工大学出版社.武汉,1996.
    [117] Yong A S. Experimental Study of the Basic Process Mechanism For Direct Selective LaserSintering of Low-Melting Metallic Powder[J]. Annals of the CIRP.1997,46(1):127-130.
    [118]陆建.激光与材料相互作用物理学[M].机械工业出版社.北京,1996.
    [119] Allmen M Von. Laser-Beam Interactions With Materials Physical Principles andApplications[M]. Verlag Berlin Heidelberg.1987,9-10.
    [120]赵剑锋.基于选区激光烧结快速成形的快速制造技术研究[D].南京航空航天大学,1999:34.
    [121] Saihiyakuma M, Gnanam F D. Ifluence of MnO and TiO2additives on density,microstructure and mechanical properties of Al2O3[J]. Ceramics International,2002,28:195-200.
    [122] Akrira N, Gary L M. Liquid-phase sintering of alumina coated with magnesiumaluminosillicate[J]. Journal of the American Ceramic Society,1998,81(5):1163-1172.
    [123] Heady R B, Cahn J W. An Analysis of the Capillary Forces in Liquid-Phase Sintering ofSpherical Particles[J]. Metallurgical and Materials Transactions B.1970,1(1):185-189.
    [124]果世驹.粉末烧结理论[J].冶金工业出版社,北京,1998:169.
    [125] Sabari G V, Sarathi R, Chakravarthy S R, et al. Studies on production andcharacterization of nano-Al2O3powder using wire explosion technique[J]. Materials Letters,2004,58(6):1047-1050.
    [126] Zhang Y H, Weidenkaff A, RelleR A. Mesoporous structure and phase transition ofnanocrystalline TiO2[J]. Materials Letters,2002,54(5-6):375-381.
    [127] Gu D D, Shen Y F, Xiao J. Influence of processing parameters on particulate dispersion indirect laser sintered WC–Cop/Cu MMCs[J]. International Journal of Refractory Metals andHard Materials,2008,26(5):411-422.
    [128] Burke J E, Turnbull D. Recrystallization and grain growth[J]. Progress in Metal Physics.1952,3:220-292.
    [129] Eadie R L, Miller W A, Weatherly G C. Random close packing and sintering: Someimplications for initial-stage shrinkage[J]. Scripta metall,1974,8(7):755-762.
    [130]曾令可,李秀艳.纳米陶瓷技术[M].广州,华南理工大学出版社,2006:131.
    [131] Kolar D, Pejovnik S. Sintering-Therory and practice[M]. New York, Elsevier ScientificPublishing Company,1982:75.
    [132] Eugene A O. Theory of sintering: from discrete to continuum[J]. Materials Science andEngineering,1998, R23:41-100.
    [133]刘维良.先进陶瓷工艺学[M].武汉,武汉理工大学出版社,2004:109.
    [134] Rahaman M N. Ceramic Processing and Sintering[M]. New York, Marcel Dekker,2003:34.
    [135]王东生. TiAl合金表面等离子喷涂MCrAlY及热障陶瓷涂层的激光重熔研究[D].南京航空航天大学,2009:36.
    [136] Onur S, Faruk S, Erdal C, et al. Thermal stress analysis of Wc–Co/Cr–Ni multilayercoatings on316L steel substrate during cooling process[J]. Materials&Design,2009,30(3):770-774.
    [137] Brian L. Fracture of Brittle solids[M]. Press syndicate of the Cambridge, New York,1993:174.
    [138] Rice R W. Mechanical properties of ceramics and composites: grain and particle effects[M].Taylor&Francis e-Library, New York,2005.
    [139] Leach C, Vernon-Parry K. The effect of sintering temperature on the development of grainboundary traps in zinc oxide based varistors[J]. Journal of Materials Science,2006,41(12):3715-3819.
    [140]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995:289.
    [141] Ludwig A. Limit of absolute stability for crystal growth into under cooled alloy melts[J]. ActaMetallurgica et Materialia,1991,39(11):2795-2798.
    [142] Gell M, Jordan E, Vaidyanathan K, et al. Bond strength, bond stress and spallation mechanismsof thermal barrier coating[J]. Surface and coatings Technology,1999,120:53-60.
    [143] Shaw L L, Barber B, Jordan E H, et al. Measurements of the Interfacial Fracture Energy ofThermal Barrier Coating[J]. Scripta Materialia,1998,39(10):1427-1434.
    [144] Herman H, Shankar N R. survivability of thermal barrier coatings[J]. Materials Science andEngineering,1987,88:69-74.
    [145] Ahrens M,Vassen R, Stoever D. Strss distributions in plasma-sprayed thermalbarriercoating as a function of interface roughness and oxide scale thickness[J]. Surface andCoatings Technology,2002,161:26-35.
    [146] Karlsson A M, Levi C G, Evans A G. A model study of displacement instabilities during cyclicoxidation[J]. Acta Materialia,2002,50:1263-1273.
    [147]高雪松,黄因慧,田宗军,等.纳米TiO2在Al2O3涂层中的特征及作用机理[J].材料工程,2009,12:45-48.
    [148] Michael F A, Anthony E, Norman A F, et al. Metal foams: A design guide[M]. America:Butterworth-Heinemann,2000.
    [149]李彤.69111、GH4169材料的研究与应用[J].科技资讯,2010,(6):39-40.
    [150]邓波,张荣武,杨玉荣.热处理对GH4169合金组织和力学性能的影响[J].材料工程,1993,(6):11-15.
    [151] Brindley W J, Miller R A. Thermal barrier coating life and isothermal oxidation oflow-pressure plasma-sprayed bond coat alloys[J]. Surface and Coatings Technology,1990,43-44(1-3):446~457.
    [152] Stecura S. Two-layer thermal barrier coatings. I. effects of composition and temperature onoxidation behavior and failure[J]. Thin Solid Films,1989,182(1-2):121~139.
    [153] Longa Y, Takemoto M. IR-laser treatment of thermal sprayed NiCoCrAl-Y2O3coatings andtheir high temperature corrosion behavior[J]. Materials and Manufacturing Processes,1995,10(2):217~227.
    [154] Fox A C, Clyne T W. Oxygen Transport Through the Zirconia Top Coat in Thermal BarroerCoating System[C]. Materials Park Ohio USA: ASM International.1589-1594.
    [155] Buchanan R C, Pope S. Optical and Electrical Properties of Yttria Stabilized ZirconiaCrystals[J]. J Electrochem Soc,1983,130(4):962-966.
    [156] Enrique, R. R, Paul F. B, Edgar L.C. Unión entre metales y cerámicos[J]. Rev SocQuím Méx.2004,48:146-150.
    [157] David J.G. An Introduction to the Mechanical Properties of Ceramics[M]. London: CambridgeUniversity Press,1998:210-231
    [158] Uskokovic D P, Exner H E. Kinetics of contact formation during sintering by diffusionmechanisms[J]. Science of Sintering,1977,9(3):265-303.
    [159] He J, Kang YL, Ren Xueping. FEM Analysis of Density Flaw of Ceramic Powders during ColdIsostatic Pressing[J]. Powder Metallurgy Technology,2001,19(6):339-342.
    [160]曹学强.热障涂层材料[M].北京:科学出版社,2007:23-25.
    [161] Rhee S K. Wetting of Ceramics by Liquid Metals[J]. Jam Ceram Soc,1971,54(7):332-334.
    [162]刘培生.多孔材料引论[M].北京:清华大学出版社,2004.
    [163]牛爱军,党新安,杨立军.基于选区激光烧结技术成形多孔金属材料的工艺研究[J].金属功能材料,2009,16(1):13-19.
    [164]沈以赴,吴鹏,顾冬冬,等.激光烧结制备藕状316不锈钢多孔材料的微孔结构特征[J].航空学报,2007,28(5):7321-1421.
    [165]姜斌.粉末冶金—添加造孔剂法制备开孔泡沫铝及其性能研究[D].天津大学,2006:33.
    [166] Longa Y, Takemoto M. IR-laser treatment of thermal sprayed NiCoCrAl-Y2O3coatingand theirhigh temperature corrosion behavior[J]. Materials and Manufacturing Processes,1995,10(2):217-227.
    [167] Salas H N. A thermo gravimetric study of the oxidation growth of Al2O3/Al alloycomposites[J]. Journal of Materials Research,1991,(6):1964-1981.
    [168]王相庆. DLMS技术致密度提高及微观缺陷消除的试验研究[J].南京航空航天大学,2007:40.
    [169]杨永强.钇在MCrAlY激光熔覆层中的存在形式及作用[J].华南理工大学学报,1998,26(9):65-68.
    [170]朱永长,荣守范,杨涵崧,等.国内外原位生长柱状晶增韧氧化铝陶瓷研究的现状[J].铸造设备研究,2008,(1):46-49.
    [171] Song E P, Ahn J, Lee S, et al. Effects of critical plasma spray parameter and spraydistance onwear resistance of Al2O3–8wt.%TiO2coatings plasma-sprayed with nanopowders. Surface&Coatings Technology,2008,202(15):3625~3632.
    [172] Wang Y, Tian W, Yang Y. Thermal shock behavior of nanostructured and conventionalAl2O3/13WT%TiO2coatings fabricated by plasma spraying[J]. Surface&CoatingsTechnology,2007,201(8):7746~7753.
    [173]马庆芳,方荣生,项立成,等.实用热物理性质手册.北京:中国农业机械出版社,1986.
    [174]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.
    [175]赵军.聚苯乙烯空心微球及其复合材料的制备与性能研究[D].武汉理工大学,2009.
    [176]李春华.聚苯乙烯降解过程研究[D].天津大学,2006.
    [177] Karadum A, Simsek E. H, Cicek B, et al. Flash pyrolysis of polystrene wastes in afree-fallreactor under vacuum[J]. Journal of Analytical and Applied Pyrolysis,2001,60:179-186.
    [178]沈理达.钛合金表面纳米陶瓷涂层制备基础研究[D].南京航空航天大学,2008.
    [179]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程.硅酸盐学报,1995,23(4):365~372
    [180]王宝棣,陈国,温静娴.超高压烧结Si_3N_4陶瓷断口形貌与韧性的研究[J].广西大学学报,1998,23(4):331-334.
    [181] Cluzel C, Baranger E, Ladevèze P, et al. Mechanical behaviour and lifetime modelling ofself-healing ceramic-matrix composites subjected to thermomechanical loading in air[J].Composites Part A: Applied Science and Manufacturing,2009,40(8):976-984.
    [182] Hasselman D P H. Elastic energy at fracture and surface energy as design criteria for thermalshock [J]. Journal of the American Ceramic Society,1963,46(11):535~540.
    [183] T J Lu, N A Fleck. The thermal shock resistance of solids [J]. Acta materialia,1998,46(13):4755~4768.
    [184] I Levin, W D Kaplan, D G Brandon, et al. Effect of SiC submicrometer particle size andcontent on fracture toughness of Al2O3-SiC “nano composite”[J]. Journal of the AmericanCeramic Society,1995,78(1):254~256.
    [185] S. Gorsse, J. P. Chaminade,Y. Le Petitcorps. In situ preparation of titanium base compositesreinforced by TiB single crystals using a powder metallurgy technique[J]. Applied Science andManufacturing,1998,29(9-10):1229-1234.
    [186] Jihong She, Sven Scheppokat, Nils Claussen, et al. Reaction-Bonded Three-LayerAlumina-Based Composites with Improved Damage Resistance[J]. Shanghai Institute ofCeramics,1998.
    [187]张保林.原位合成Al基复合材料制备工艺研究[D].兰州理工大学,2009.
    [188]孙耀宁. Ni3Si基复合材料的激光原位合成与组织性能研究[D].兰州理工大学,2007.
    [189]高明霞,潘颐, F.J.OLIVERIA等.自发熔渗法制备TiC/NiAl复合材料和其微观组织特征[J].复合材料学报,2004,21(5):11-15.
    [190]余校娟.原位合成Ti3AlC2/A12O3复合材料及其性能研究[D].武汉理工大学,2008.
    [191] Genc A, Banerjee R, Hill D, Fraser HL. Structure of TiB precipitates in laserdeposited in situ, Ti-6Al-4V-TiB composites[J]. Materials Letters,2006,60(7):859-863.
    [192]吴朝锋,马明星,刘文今,等.激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J].金属学报,2009,45(8):1013-1018.
    [193]吴朝锋,马明星,吴爱平,等.激光原位制备颗粒增强铁基复合涂层中碳化物相的形貌分析[J].金属学报,2009,45(9):1091-1098.
    [194] Zhang S, Wu W T, Wang M C, et al. In-situ synthesis and wear performance of TiC particlereinforced composite coating on alloy Ti6Al4V[J]. Surface&Coatings Technology,2001,138(1):95-100.
    [195] Zhou XY, Tan YH. Fabrication of Ceramic Composites by Directed Metal Oxidation[J]. Journalof Wuhan University of Technology-Materials Science,2004,19(1):48-50.
    [196] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crustal growth.[J]. AppliedPhysics letters.1964, v4(5):89~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700