用户名: 密码: 验证码:
复杂系统的容错控制技术及其在近空间飞行器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着社会的快速发展与进步,复杂控制系统的规模越来越大,人们对这类复杂系统的安全性、可靠性及可维护性要求越来越高。为了大量的减少灾难性事故发生、减少环境污染、减少社会经济损失以及保障人民的生命安全,复杂控制系统的故障诊断与容错控制技术为解决上述问题提供了一条选择之路。在过去的几十年里,复杂控制系统的故障诊断与容错控制技术得到了长足发展,尤其最近十几年,伴随着计算机网络技术、模式识别、机器学习和各种先进控制算法的快速发展,许多新方法和新技术被引入到该研究领域中,大大丰富了复杂控制系统故障诊断与容错控制技术的研究内容。
     近空间飞行器是目前世界上各主要发达国家竞相研制的一种能够跨越“空”“天”两个不同空域进行机动飞行的高超声速飞行器。这类复杂的飞行器飞行速度一般都在5马赫以上,飞行空域为距离海平面20-100公里,它按照任务需求采用垂直火箭助推发射或者由大型运输机携至空中水平发射,以碳氢或者氢为燃料使用吸气式超燃冲压发动机作为推进动力进行高超声速飞行,预计可以在2小时内可到达全球任意地方。对于这样一个非常复杂的飞行器而言,在其控制系统的设计过程中,必须考虑故障诊断与容错控制技术的应用,以便增强该飞行器的安全性、可靠性及可维护性。
     目前美、俄、法、英、日等航空航天强国对近空间飞行器高超声速飞行技术的研究投入了大量的人力和物力,已取得了大量的研究成果,有些关键性技术已进入工程化验证阶段,而我国在这方面的研究则刚刚处于起步阶段,国内相关高校和研究所对近空间飞行器的关键性基础问题(如材料、动力、控制等)正在展开深入的研究,并取得了一定的成果。本研究主要是在基于前人已有的研究基础上,进一步研究近空间飞行器控制系统的容错控制技术(包含主动容错和被动容错)。本研究内容主要分为如下五部分:
     第一:针对近空间飞行器的纵向飞行动态系统,将其在某一平衡点附近线性化,同时考虑攻角不确定性和外部未知扰动对系统模型的影响,通过采用鲁棒控制技术,对执行机构发生控制增益损失故障情况下的近空间飞行器纵向飞行动态系统,设计了一个鲁棒被动容错控制器,应用李亚普诺夫稳定性理论分析了闭环控制系统的稳定性。最后通过Matlab仿真,验证了所设计的容错控制器在部分执行机构出现控制增益损失情况下具有较好的容错能力。
     第二:针对近空间飞行器的复杂非线性姿态控制系统,通过选取攻角和角速率变量为模糊规则的前件变量,将其由一组T-S模糊系统来近似拟合。对于所建立的模糊系统,充分考虑参数摄动对系统模型的影响,通过采用鲁棒控制技术,对执行机构发生控制增益部分损失故障情况下的近空间飞行器姿态控制系统,设计了一个模糊被动容错控制器。在李亚普诺夫稳定意义下证明了闭环控制系统是鲁棒渐近可靠的,最后通过仿真比较,验证了提所方法在执行机构发生故障情况下仍然具有良好的动态特性。
     第三:针对近空间飞行器姿态控制系统的T-S模糊模型,充分考虑外部扰动因素对被控系统的影响,通过采用广义扩张系统方法,对传感器发生未知时变故障情况下的近空间飞行器姿态控制系统,提出了一种新颖的故障估计和补偿策略。最后通过Matlab仿真,验证了所提出方法在部分传感器出现时变故障情况下的可行性。
     第四:针对近空间飞行器姿态控制系统的T-S模糊模型,在部分执行机构发生卡死故障的情况下,通过设计了一个迭代学习观测器,可以实时的观测被控系统的动态变化,一旦某些执行机构发生卡死故障,即可产生故障补偿控制输入项,在线的减少卡死故障对被控对象的影响,从而起到渐近调节故障的效果。最后通过Matlab仿真,验证了所提出方法在部分执行机构出现卡死故障情况下的有效性。
     第五:针对近空间飞行器的非线性姿态控制系统,通过考虑飞行器再入飞行过程中的动态特点,假设地球的自转运动和飞行器自身的平移运动不影响飞行器的旋转运动,在控制力矩出现突变故障的情况下,通过设计一个非线性鲁棒自适应观测器,及时的检测系统故障是否发生,然后基于内外双环滑模控制策略提出了一个主动容错跟踪控制律。最后通过Matlab仿真,验证了所提出主动容错控制方法在控制力矩出现突变恒偏差故障时具有良好的控制效果。
At present, with the rapid development and progress of the society, the scale of the complexcontrol system becomes biger and biger, the demands for the satety, reliability and maintainability ofthese complex control systems are increasing. In order to reduce the number of catastrophic accidents,reduce the environment pollution, reduce the losses of social economic assets and protect the lives ofthe people, the technology about fault diagnosis and fault tolerant control of comolex control systemsprovides an alternative road for solving the problems described above. In the past few decades, thetechnology about fault diagnosis and fault-tolerant control of the complex control system has madeconsiderable progress. Especially in the past ten years, along with the quickly development of thecomputer network, pattern recognition, machine learning and all kinds of advanced control algorithms,many new methods and technologies are introduced into the fields of fault diagnosis and fault tolerantcontrol, which greatly enrich the research contents of fault diagnosis and fault-tolerant controltechnology.
     Near Space Vehicle (NSV) is a class of hypersonic aircraft, which can acrosses "air""space" twodifferent regions for maneuver flying, it has attracted the research interesting of all developedcountries. The flight speed of this kind of complex aircraft is more than Mach5or higher. The flightregion of this aircraft is the20-100km from the sea level, according to the mission requirement, thiscomplex aircraft take vertical rocket-propelled launch or air level launch by the large transport aircraft,which mkes use of hydrocarbon or hydrogen as fuel and ultilizes air-breathing scramjet engine as thepropulsion for hypersonic flight, the complex aircraft can reach evrywhere of the world within2hours.For such kind of complex aircraft, the technology about fault diagnosis and fault tolerant control mustbe considered in the designing of the flight control systems in order to enhance the safety, reliabilityand maintainability of this kind of aircraft.
     Currently United States, Russia, France, United Kingdom, Japan and other aerospace powercountries have put a lot of manpower and material resources for developing the flight technology ofnear space hypersonic vehicle, they have achieved lots of research results, even some keytechnologies have entered the engineering verification phase, while, the research on near spacehypersonic vehicle in our country is in the initial stage. The related universities and institutes aredoing some key basic researches (such as materials, power, control, etc.), and they have achievedsome important results. Based on the existing research results, this study is further investigating the technology about fault tolerant control of near space vehicle control (including active fault tolerancecontrol and passive fault tolerance control). This research is divided into the following five sections:
     First: The longitudinal flight dynamical systems of near space hypersonic vehicle aretransformed into a linearized model at the equilibrium point by using the small perturbationlinearization technique. Meanwhile, this study takes into account the effects of the attack angleuncertainty and unknown disturbance input on the controlled systems, and makes use of the robustcontrol technique designing a robust passive fault tolerant cotroller for the the longitudinal flightdynamics of near space hypersonic vehicle in the presence of the partial loss fault of controleffectiveness. Then, the stability of the closed-loop control system is analysed using Lyapunovstability theory. Finally, simulation results are given to show the good fault tolerance ability of theproposed control approach.
     Second: For the complex nonlinear attitude control systems of near space vehicle, we selectangle of attack and angular velocity as the antecedent variables of fuzzy rules. Then the attitudecontrol system of near space vehicle is transformed into a Takagi–Sugeno (T-S) fuzzy model. For theestablished T-S fuzzy model, we consider the effects of unknown parameter perturbation, and design apassive fault tolerant fuzzy controller for the T-S fuzzy model of near space vehicle under someactuator failures case by using robust control technique. In the sense of Lyapunov stability, theclosed-loop control systems is proved to be robust asymptotic reliable. Finally, simulation results aregiven to verify the good dynamic characteristics of the proposed passive fault tolerant approach bydoing simulation comparison.
     Third: For the T-S fuzzy model of near space vehicle attitude control system, this study takes intoaccount the impact of external disturbance factors to the controlled system, and based on thegeneralized extended system approach, a novel fault estimation and compensation strategies isdeveloped for the attitude control systems of near space vehicle with sensor time varying fault. Finally,Matlab simulation results are given to illustrate the feasibility of the proposed sensor fault estimationand compensation technology.
     Fourth: For the T-S fuzzy model of near space vehicle attitude control system in some actuatorstuck faults case, this study design an iterative learning observer, which can be used for observeringthe dynamic change of the controlled system real-time. Once an actuator stuck fault occurs, the faultcompensation control input is produced on line by using the observer error signal, which can reducethe effect of the actuator stuct fault to the controlled system. Thus, the purpose of faultaccommodation is achieved. Finally, Matlab simulation results are given to illustrate the effectivenessand potential of the proposed control strategy.
     Fifth: For the nonlinear attitude control system of near space vehicle in re-entry flight phase, thisstudy assumes that the rotation movement of Earth and the translational motion of aircraft hardly affectthe rotational motion of aircraft. When an abrupt fault occurred in the dynamic equations of nearspace vehicle, this study design a nonlinear fault detection observer for monitoring the dynamic changeof the controlled systems. Then, an active fault tolerant control scheme is presented on the basis of thedouble-loop sliding mode control strategy for the faulty system. Finally, Matlab simulation resultsdomenstrate that the proposed active fault tolerant control approach has a satisfactory controlperformance in spite of actuator fault.
引文
[1]姜连祥,李华旺,杨根庆,杨勤荣,黄海宇。航天器自主故障诊断技术研究进展。宇航学报,30(4):1320-1326,2009。
    [2]周东华,叶银忠。现代故障诊断与容错控制,清华大学出版社,2000。
    [3]姜斌,杨浩。飞控系统主动容错控制技术综述。系统工程与电子技术,29(12):2106-2110,2007。
    [4]王彦广,李健全,李勇,姚伟。近空间飞行器的特点及其应用前景。航天器工程,16(1):50-57,2007。
    [5]崔尔杰。近空间飞行器研究发展现状及关键技术问题。力学进展,39(6):658-673,2009。
    [6]朱云骥,史忠科。高超声速飞行器飞行特性和控制的若干问题。飞行力学,23(3):5-8,2005。
    [7] H. Buschek, A. J. Calise. Uncertainty Modeling and Fixed Order Controller Design for aHypersonic Vehicle Model. Journal of Guidance, Control and Dynamics.20(1):42-48,1997.
    [8] C. I. Marrison, R. F. Stengel. Design of Robust Control Systems for a Hypersonic Aircraft. Journalof Guidance, Control and Dynamics.21(1):58-63,1998.
    [9] Q. Wang, R. F. Stengel. Robust Nonlinear Control of a Hypersonic Aircraft. Journal of Guidance,Control and Dynamics.23(4):577-585,2000.
    [10] E. Mooij. Numerical Investigation of Model Reference Adaptive Control for Hypersonic Aircraft.Journal of Guidance, Control and Dynamics.24(2):315-323,2001.
    [11] H. J. Xu, M. D. Mirmirani, P. A. Ioannou. Adaptive Sliding Mode Control Design for aHypersonic Flight Vehicle. Journal of Guidance, Control and Dynamics.27(5):829-838,2004.
    [12] J. T. Parker, A. Serrani, S. Yurkovich, M. A. Bolender, D. B. Doman. Control-Oriented Modelingof an Air-Breathing Hypersonic Vehicle. Journal of Guidance, Control and Dynamics.30(3):856-869,2007.
    [13] D. O. Sigthorsson, P. Jankovsky, A. Serrani, S. Yurkovich, et al. Robust Linear Output FeedbackControl of an Airbreathing Hypersonic Vehicle. Journal of Guidance, Control and Dynamics.31(4):1052-1066,2008.
    [14] L. Fiorentini, A. Serrani, M. A. Bolender, David B. Doman. Nonlinear Robust Adaptive Control ofFlexible Air-Breathing Hypersonic Vehicles. Journal of Guidance, Control and Dynamics.32(2):401-416,2009.
    [15] Z. D. Wilcox, W. MacKunis, S. Bhat, R. Lind, W. et. al. Lyapunov-Based Exponential TrackingControl of a Hypersonic Aircraft with Aerothermoelastic Effects. Journal of Guidance, Control andDynamics.33(4):1213-1224,2010.
    [16]程晓丽,苗文博,王强。面向持续战域感知的近空间飞行器技术。飞机设计,29(4):64-74,2009。
    [17]段锋。临近空间飞行器现状与发展。航空科学技术,6:22-25,2007。
    [18]尉建利,于云峰,闫杰。高超声速飞行器鲁棒控制方法研究。宇航学报,29(5):1526-1530,2008。
    [19]高道祥,孙增圻,罗熊,杜天容。基于Backstepping的高超声速飞行器模糊自适应控制。控制理论与应用,25(5):805-810,2008。
    [20]敬忠良,朱亮,陆平,胡士强。基于轨迹线性化方法的近空间飞行器鲁棒自适应控制.空间控制技术与应用,34(1):83-34,2008。
    [21]鲍文,姚照辉。综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究。宇航学报,30(1):128-133,2009。
    [22]李菁菁,任章,黎科峰,张庆振,刘存佳。高超声速飞行器再入段的动力学建模与仿真.系统仿真学报,21(2):534-537,2009。
    [23]张军,姜长生,方炜。变结构近空间飞行器大飞行包络控制特性研究。宇航学报,30(2):543-549,2009。
    [24]李惠峰,孙文冲。基于指数趋近律的高超声速飞行器滑模控制器设计.空间控制技术与应用,25(4):39-43,2009。
    [25]黄显林,葛东明。吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制。宇航学报,31(7):1789-1797,2010。
    [26]吴宏鑫,孟斌。高超声速飞行器控制研究综述.力学进展,39(6):756-765,2009。
    [27] H. Li, L. Wu, Y. Si, H. Gao, X. Hu. Multi-objective fault tolerant output tracking control of aflexible air-breathing hypersonic vehicle. Proc. IMechE Part I: Journal of Systems and ControlEngineering.224(6):647-667,2010.
    [28] P. Chi, Z. J. Chen, R. Zhou, C. Wei. Autonomous control reconfiguration of aerospace vehiclebased on control effectiveness estimation. Chinese Journal of Aeronautics,20(5):443-451,2007.
    [29]吴宏鑫。航天控制的发展方向-航天器智能自主控制。控制工程,5:40-46,2001.
    [30] A. Niederlinski. A heuristic approach to the design of linear multivariable interacting controlsystems. Automatica,7(6):691-701,1971.
    [31] D. D. Siljak. Reliable control using multiple control systems. International Journal of Control.31(2):303-329,1980.
    [32] G. H. Yang, J. L. Wang, Y. C. Soh. Reliable H∞controller design for linear systems.Automatica,37(5):717-725,2001.
    [33] G. Tao, S. M. Joshi, X. L. Ma. Adaptive state feedback and tracking control of systems withactuator failures. IEEE Transactions on Automatic Control,46(1):78-95,2001.
    [34] H. N. Wu. Reliable LQ fuzzy control for continuous-time nonlinear systems with actuator faults.IEEE Transactions on Systems, Man, and Cybernetics-part B: cybernetics,34(4):1743-1752,2004.
    [35] H. N. Wu, H. Y. Zhang. Reliable mixed L2/H∞fuzzy static output feedback control for nonlinearsystems with sensor faults. Automatica,41(11):1925-1932,2005.
    [36]王敏,周东华,陈茂银。一类非线性系统的输出反馈容错控制。控制理论与应用,23(6):861-866,2006。
    [37]罗小元,武晓晶,关新平.非线性时滞系统的鲁棒完整性容错控制。弹箭与制导学报,27(5):179-182,2007。
    [38]王友清,周东华。非线性系统的鲁棒容错控制。系统工程与电子技术,28(9):1378-1383,2006。
    [39] Z. H. Mao, B. Jiang, P. Shi. Observer based fault-tolerant control for a class of nonlinearnetworked control systems. Journal of the Franklin Institute,347(6):940-956,2010.
    [40] H. Yang, B. Jiang, M. Staroswiecki. Supervisory fault tolerant control for a class of uncertainnonlinear systems.Automatica,45(10):2319-2324,2009.
    [41] Y. Jiang, Q. L. Hu, G. F. Ma. Adaptive backstepping fault tolerant control for flexible spacecraftwith unknown bounded disturbances and actuator failures. ISA Transactions,49(1):57-69,2010.
    [42] Y. Y. Guo, B. Jiang, Y. M. Zhang, J. F. Wang. Novel robust fault diagnosis method for flightcontrol systems. Journal of Systems Engineering and Electronics,19(5):1017-1023,2008.
    [43] D. F. Zhang, Z. Q. Wang, S. S. Hu. Robust satisfactory fault tolerant control of uncertain lineardiscrete-time systems: an LMI approach. International Journal of Systems Science,38(2):151-165,2007.
    [44] F. Liao, J. L. Wang, G. H. Yang. Reliable robust flight tracking control: an LMI approach. IEEETransactions on Control Systems Technology,10(1):76-89,2002.
    [45] Q. L. Hu, B. Xiao, M.I. Friswell. Robust fault tolerant control for spacecraft attitude stabilisationsubject to input saturation. IET Control Theory and Applications,5(2):271-282,2011.
    [46] X. Z. Jin, G. H. Yang. Robust adaptive fault tolerant compensation control with actuator failuresand bounded disturbances. Acta Automatica Sinica,35(3):305-309,2009.
    [47] L. L. Fan, Y. D. Song. On fault tolerant control of dynamic systems with actuator failures andexternal disturbances. Acta Automatica Sinica,36(11):1620-1625,2010.
    [48] M. Vidyasagar, N. Viswanadham. Reliable stabilization using a multi-controller configuration.Automatica,21(5):599-602,1985.
    [49] H. N. Wu, H. Y. Zhang. Reliable H∞fuzzy control for continuous-time nonlinear systems withactuator failures. IEEE Transactions on Fuzzy Systems,14(5):609-618,2006.
    [50] R. J. Veillette, J. V. Medanic, W. R. Perkins. Design of reliable control systems. IEEETransactions on Automatic Control,37(2):290-304,1992.
    [51]孙金生,李军,徐蕾,王执铨。动态大系统的分散容错控制。南京理工大学学报,2(2):117-120,1998。
    [52] H. N. Wu, H. Y. Zhang. Reliable H∞Fuzzy control for a class of discrete-time nonlinearsystems using multiple fuzzy lyapunov functions. IEEE Transactions on Circuits and Systems-II:Express Brief,54(4):357-361,2007.
    [53]谢德晓,张登峰,黄鹤,王执铨。一类不确定网络控制系统的鲁棒容错控制。信息与控制,39(4):472-478,2010。
    [54]陈雪芹,耿云海,王峰,张迎春。基于LMI的鲁棒容错控制及其在卫星姿态控制系统中的应用。控制理论与应用,25(1):95-99,2008。
    [55] S. J. Ye, Y. M. Zhang, X. M. Wang, B. Jiang. Fault Tolerant Control for a Class of UncertainSystems with Actuator Faults. Tsinghua Science&Technology,15(2):174-183,2010.
    [56] Z. H. Huo, Y. Zheng, C. Xu. A robust fault tolerant control strategy for networked control systems.Journal of Network and Computer Applications,34(2):708-714,2011.
    [57] X. D. Tang, G. Tao, L. F. Wang, J. A. Stankovic. Robust and adaptive actuator failurecompensation designs for a rocket fairing structural-acoustic model. IEEE Transactions on Aerospaceand Electronic Systems,40(4):1359-1366,2004.
    [58] Y. W. Zhang, H. Zhou, S. J. Qin. Decentralized fault diagnosis of large-scale processes usingmultiblock kernel principal component analysis. Acta Automatica Sinica,36(4):593-597,2010.
    [59]陶洪峰,胡寿松。执行器饱和T-S模糊系统的鲁棒耗散容错控制。控制理论与应用,27(2):205-210,2010。
    [60] A. A. G. Siqueira, M. H. Terra, C. Buosi. Fault-tolerant robot manipulators based onoutput-feedback H∞controllers. Robotics and Autonomous Systems,55(10):785-794,2007.
    [61] Z. H. Mao, B. Jiang, P. Shi. Observer based fault tolerant control for a class of networked controlsystems with transfer delays. Journal of the Franklin Institute,348(4):763-776,2011.
    [62]张绍杰,刘春生,胡寿松。一类非线性系统的执行器组合故障自适应容错控制。系统工程与电子技术,32(3):634-637,2010。
    [63]张绍杰,刘春生,胡寿松。一类MISO最小相位系统的执行器故障自适应容错控制。控制与决策,25(7):1084-1087,2010。
    [64] W. Liu. An on-line expert system-based fault tolerant control system. Expert Systems withApplications,11(1):59-64,1996.
    [65] L. F. Xu, J. Q. Li, M. G. Ouyang, J. F. Hua, X. J. Li. Active fault tolerance control system of fuelcell hybrid city bus. International Journal of Hydrogen Energy,35(22):12510-12520,2010.
    [66] W. Zhao, Y. H. Song, Y. Min. Wavelet analysis based scheme for fault detection and classificationin underground power cable systems. Electric Power Systems Research,53(1):23-30,2000.
    [67] A. Widodo, B. S. Yang. Wavelet support vector machine for induction machine fault diagnosisbased on transient current signal, Expert Systems with Applications,35(1-2),307-316,2008.
    [68] S. R. Yin, G. J. Chen, Y. L. Xie. Wavelet neural network based fault diagnosis in nonlinear analogcircuits. Journal of Systems Engineering and Electronics,17(3):521-526,2006.
    [69] S. E. Safty, A. E. Zonkoly. Applying wavelet entropy principle in fault classification. InternationalJournal of Electrical Power and Energy Systems,31(10):604-607,2009.
    [70] H. Wang, T. Y. Chai, J. L. Ding, M. Brown. Data driven fault diagnosis and fault tolerant control:some advances and possible new directions. Acta Automatica Sinica,35(6):739-747,2009.
    [71] X. D. Zhang, T. Parisini, M. M. Polycarpou. Adaptive fault-tolerant control of nonlinear uncertainsystems: an information-based diagnostic approach. IEEE Transactions on Automatic Control,49(8):1259-1274,2004.
    [72]顾伟,黄志毅,刘小雄,章卫国。一种容错飞行控制的神经网络方法研究。计算机测量与控制,18(6):1307-1311,2010。
    [73] D. L. Yu, T. K. Chang, D. W. Yu. Adaptive neural model based fault tolerant control formulti-variable processes. Engineering Applications of Artificial Intelligence,18(4):393-411,2005.
    [74] M. M. Abdelhameed, H. S. Darabi. Neural network based design of fault-tolerant controllers forautomated sequential manufacturing systems. Mechatronics,19(5):705-714,2009.
    [75] Y. Q. Xiao, Y. G. He. A novel approach for analog fault diagnosis based on neural networks andimproved kernel PCA. Neurocomputing,74(7):1102-1115,2011.
    [76]陈拥军,袁慎芳,吴键,张英杰。无线传感器网络故障诊断与容错控制研究进展。传感器与微系统,29(1):1-5,2010。
    [77]袁芳,朱大奇,叶银忠。无人水下机器人在线故障辨识及滑模容错控制。系统仿真学报,23(2):351-357,2011。
    [78] A. P. Deshpande, S. C. Patwardhan, S. S. Narasimhan. Intelligent state estimation for fault tolerantnonlinear predictive control. Journal of Process Control,19(2):187-204,2009.
    [79] Y. Y. Guo, B. Jiang. Multiple Model based Adaptive Reconfiguration Control for Actuator Fault.Acta Automatica Sinica,35(11):1452-1458,2009.
    [80] Y. M. Zhang, J. Jiang. Issues on integration of fault diagnosis and reconfigurable control in activefault tolerant control systems. Fault Detection, Supervision and Safety of Technical Processes2006,2007, Pages1437-1448.
    [81] D. Chilin, J. F. Liu, M. David, P. D. Christofides, J. F. Davis. Detection, isolation and handling ofactuator faults in distributed model predictive control systems. Journal of Process Control,20(9):1059-1075,2010.
    [82] C. Peng, D. Yue, E. G. Tian, Z. Gu. Observer based fault detection for networked control systemswith network quality of services. Applied Mathematical Modelling,34(6):1653-1661,2010.
    [83] Y. Y. Guo, B. Jiang, Y. M. Zhang, J. F. Wang. Novel robust fault diagnosis method for flightcontrol systems. Journal of Systems Engineering and Electronics,19(5):1017-1023,2008.
    [84] H. Niemann. A setup for Active Fault Diagnosis. IEEE Transactions on Automatic Control,51(9):1572-1578,2006.
    [85] M. Bodson, J. E. Groszkiewicz. Multivariable adaptive algorithms for reconfigurable flightcontrol. IEEE Transactions on Control Systems Technology,5(2):217-229,1997.
    [86]王伟,梁雪,陈璐璐,任章。一种新型鲁棒容错控制器在飞控系统中的应用。系统仿真学报,23(1):104-107,2011。
    [87] P. Cui, Z. X. Weng, R. Patton. Novel active fault tolerant control scheme and its application to adouble inverted pendulum system. Journal of Systems Engineering and Electronics,19(1):134-140,2008.
    [88] H. Yang, M. Staroswiecki, B. Jiang, J. Y. Liu. Fault tolerant cooperative control for a class ofnonlinear multi-agent systems. Systems and Control Letters,60(4):271-277,2011.
    [89] Z. Lin, Y. Lin, W. Zhang. H∞stabilisation of non-linear stochastic active fault-tolerant controlsystems: fuzzy-interpolation approach. IET Control Theory&Applications,4(10):2003-2017,2010.
    [90] K. M. Zhou, Z. Ren. A new controller architecture for high performance, robust, and fault-tolerantcontrol. IEEE Transactions on Automatic Control,46(10):1613–1618,2001.
    [91] H. Yang, B. Jiang, V. Cocquempot Supervisory fault-tolerant regulation for nonlinear systems.Nonlinear Analysis: Real World Applications,12(2):789-798,2011.
    [92]马广富,姜野,胡庆雷。卫星姿态时延反步容错控制。航空学报,31(5):1066-1072,2010。
    [93]陈雪芹,耿云海,王峰,张迎春。卫星姿态容错控制系统的鲁棒自适应逆最优控制。中国空间科学技术,2:35-41,2008。
    [94] G. Tao, X. D. Tang, S. H. Chen, J. T. Fei, S. M. Joshi. Adaptive failure compensation of two-stateaircraft morphing actuators. IEEE Transactions on Control Systems Technology,14(1):157-164,2006.
    [95] X. D. Tang, G. Tao, S. M. Joshi. Adaptive actuator failure compensation for nonlinear MIMOsystems with an aircraft control application. Automatica,43(11):1869-1883,2007.
    [96] A. Paoli, M. Sartini, S. Lafortune. Active fault tolerant control of discrete event systems usingonline diagnostics. Automatica,47(4),639-649,2011.
    [97] J. C. Ponsart, D. Theilliol, C. Aubrun. Virtual sensors design for active fault tolerant controlsystem applied to a winding machine. Control Engineering Practice,18(9):1037-1044,2010.
    [98] Y. W. Zhang. Actuator fault tolerant control for discrete systems with strong uncertainties.Computers&Chemical Engineering,33(11):1870-1878,2009.
    [99] Y. W. Zhang, S. J. Qin. Adaptive actuator fault compensation for linear systems with matching andunmatching uncertainties. Journal of Process Control,19(6):985-990,2009.
    [100] Z. H. Mao, B. Jiang, P. Shi. Fault-tolerant control for a class of nonlinear sampled-data systemsvia a Euler approximate observer. Automatica,46(11):1852-1859,2010.
    [101] J. H. Richter, W. P. M. H. Heemels, N. V. D. Wouw, J. Lunze. Reconfigurable control ofpiecewise affine systems with actuator and sensor faults: stability and tracking. Automatica,47(4):678-691,2011.
    [102] T. H. Chien, J. S. H. Tsai, S. M. Guo, J. S. Li. Low-order self-tuner for fault-tolerant control of aclass of unknown nonlinear stochastic sampled-data systems. Applied Mathematical Modelling,33(2):706-723,2009.
    [103] M. Rodrigues, D. Theilliol, D. Sauter. Active actuator fault tolerant control design for polytopicLPV systems. Fault Detection, Supervision and Safety of Technical Processes,2006,2007, Pages462-467.
    [104] H. Alwi, C. Edwards. Fault tolerant control using sliding modes with on-line control allocation.Automatica,44(7):1859-1866,2008.
    [105] Z. H. Qu, C. M. Ihlefeld, Y. F. Jin. Apiwat Saengdeejing. Robust fault tolerant self-recoveringcontrol of nonlinear uncertain systems. Automatica,39(10):1763-1771,2003.
    [106] Y. Q. Wang, D. H. Zhou, L. H. Liu. Robust and active fault tolerant control for a class ofnonlinear uncertain systems. International Journal of Automation and Computing,3(3):309-313,2006.
    [107] F. Tao, Q. Zhao. Synthesis of active fault-tolerant control based on Markovian jump systemmodels. IET Control Theory and Applications,1(4):1160-1168,2007.
    [108] H. N. Wu, M. Z. Bai. Active fault tolerant fuzzy control design of nonlinear model tracking withapplication to chaotic systems. IET Control Theory and Applications,3(6):642-653,2009.
    [109] Y. M. Zhang; J. Jiang. Integrated active fault tolerant control using IMM approach. IEEETransactions on Aerospace and Electronic Systems,37(4):1221-1235,2001.
    [110] Y. M. Zhang, J. Jiang. Active fault tolerant control system against partial actuator failures. IEEProceedings Control Theory and Applications,149(1):95-104,2002.
    [111] W. C. Cai, X. H. Liao, Y. D. Song. Indirect robust adaptive fault tolerant control for attitudetracking of spacecraft. AIAA Journal of Guidance, Control, and Dynamics,31(5):1456-1463,2008.
    [112] H. Yang, V. Cocquempot, B. Jiang. Robust fault tolerant tracking control with application tohybrid nonlinear systems. IET control Theory and applications,3(2):211-224,2009.
    [113] P. Mai, C. Hillermeier. Fault tolerant tracking control for nonlinear systems based on derivativeestimation. American Control Conference,6486–6493,2010.
    [114] D. Ye, G. H. Yang. Adaptive fault-tolerant tracking control against actuator faults withapplication to flight control. IEEE Transactions on Control Systems Technology,14(6):1088-1096,2006.
    [115] G. J. Liu, D. J. Wang, Y. C. Li. Active fault tolerant control with actuation reconfiguration. IEEETransactions on Aerospace and Electronic Systems,40(3):1110-1117,2004.
    [116] J. D. Shaughnessy, S. Z. Pinckney, J. D. McMinn, et al. Hypersonic vehicle simulation model:winged-cone configuration. NASA TM-102610,1990.
    [117] M. Gregory, R. S. Chowdhry, J. D. McMinn, et al. Hypersonic vehicle model andcontrol law development using H∞and μ synthesis. NASA TM-4562,1994.
    [118] M. Corless, J. Tu. State and input estimation for a class of uncertain systems. Automatica,34(6),757–764,1998.
    [119] C. H. Lien, K. W. Yu. LMI optimization approach on robustness and H∞control analysis forobserver-based control of uncertain systems. Chaos, Solitons and Fractals,36(3):617-627,2008.
    [120] C. Dong, Y. Hou, Y. Zhang, Q.Wang. Model reference adaptive switching control of a linearizedhypersonic flight vehicle model with actuator saturation. Proc. IMechE Part I: J. Systems and ControlEngineering,224(3):289-303,2010.
    [121] Z. D. Wang, G. L. Wei, G. Feng. Reliable H∞control for discrete-time piecewise linearsystems with infinite distributed delays.Automatica,45(12):2991-2994,2009.
    [122] J. Klamka. Controllability of Dynamical Systems. Kluwer Academic Publishers. Dordrecht. TheNetherlands.1991.
    [123] B. Liang, G. R. Duan. Observer-based H∞fault tolerant control against actuator failures fordescriptor systems. Proceedings of the Fifth World Congress on Intelligent Control and Automation,1007-1011,2004.
    [124]王玉惠,吴庆宪,姜长生,黄国勇。基于模糊前馈的空天飞行器再入姿态的模糊鲁棒跟踪控制。29(1):150-155,2008。
    [125]王玉惠,吴庆宪,姜长生,黄国勇。具有极点约束的空天飞行器再入姿态的H2模糊保性能控制。信息与控制,37(3):298-304,2008。
    [126]张春雨,方炜,姜长生。基于T-S模糊系统的空天飞行器鲁棒自适应轨迹线性化控制。航空学报,28(5):1153-1161,2007。
    [127] Y. H. Wang, Q. X. Wu, C. S. Jiang, G. Y. Huang. Guaranteed cost fuzzy output feedback controlvia LMI method for re-entry attitude dynamics. Journal of Uncertain Systems,1(4):291-302,2007.
    [128]蔡俊伟,胡寿松,李志宇。二次D稳定约束下不确定T-S模糊系统的L∞鲁棒可靠控制。系统工程与电子技术,32(1):142-146,2010。
    [129]王玉惠。空天飞行器基于模糊理论的鲁棒自适应控制研究。南京航空航天大学博士学位论文,2008。
    [130] H. J. Gao, Y. Zhao, J. Lam, K. Chen. H∞fuzzy filtering of nonlinear systems with intermittentmeasurements. IEEE Transactions on Fuzzy Systems,17(2):291–300,2009.
    [131] D. S. Du, B. Jiang, P. Shi. Sensor fault estimation and compensation for time-delay switchedsystems, International Journal of Systems Science, In Press,2010.
    [132] C. Lennon, R. Walker, A. Rodney. Sensor fault detection for UAVs using a nonlinear dynamicmodel and the IMM-UKF algorithm. Information, Decision and Control,2007.
    [133] K. C. Fu, L. K. Dai, T. J. Wu, M. Zhu. Sensor fault diagnosis of nonlinear processes based onstructured kernel principal component analysis. Control Theory and Applications.7(3):264-270,2009.
    [134] Y. Q. Wang, D. H. Zhou, S. J. Qin, H. Wang. Active fault tolerant control for a class ofnonlinear systems with sensor faults. International Journal of Control, Automation, and Systems,6(3):339-350,2008.
    [135] Z. W. Gao, S. X. Ding. Sensor fault reconstruction and sensor compensation for a class ofnonlinear state-space systems via a descriptor system approach. IET Control Theory and Application,1(3):578–585,2007.
    [136] Z. W. Gao, X. Y. Shi, S. X. Ding. Fuzzy state/disturbance observer design for T-S fuzzysystems with application to sensor fault estimation. IEEE Transactions on Systems, Man andCybernetics, Part B: Cybernetics,38(3):875-880,2008.
    [137] G. H. Yang; K. Y. Lum. Fault tolerant flight tracking control with stuck faults. AmericanControl Conference,521-526,2003.
    [138]杜凤怀,王萧,孙虎元。舵机卡死故障的导弹容错控制研究,弹箭与制导学报,28(5):67-70,2008。
    [139]王永,郭志伟,李飞。推力矢量导弹升降舵卡死故障的自修复控制。宇航学报,29(6):1901-1907,2008。
    [140]郭志伟,王永,高强,邵长星。结构自适应反步容错控制器设计。光电与控制,17(4):61-65,2010。
    [141]胡庆雷,张友明,霍星,肖冰。执行器卡死的航天器姿态自适应积分型滑模控制。中国航空学报(英文版),24(1):32-45,2011。
    [142]刘春生,胡寿松。一类执行器卡死的T-S模糊自适应容错控制。系统工程与电子技术,30(6):1122-1126,2008。
    [143] W Chen, J. Jiang. Fault-tolerant control against stuck actuator faults. IEE Proceeding of ControlTheory and Applications,152(2):138-146,2005.
    [144] Y. Miyazawa, T. Motoda, T. Izumi, T. Hata. Longitudinal landing control law for an autonomousreentry vehicle. AIAA Journal of Guidance, Control and Dynamics,22(6):791-800,1999.
    [145] Ramses M. Agustin, Rami S. Mangoubi, RogerM. Hain, and Neil J. Adams. Robust failuredetection for reentry vehicle attitude control systems. AIAA Journal of Guidance, Control andDynamics,22(6):839-845,1999.
    [146]Y. B. Shtessel, J. Jim Zhu, Dan Daniels. Reusable launch vehicle attitude control usingTime-varyiing sliding modes. AIAA Guidance, Navigation, and Control Conference. Paper Number:AIAA2002-4779.
    [147] R. R. Costa, Q. P. Chu, J. A. Mulder. Reentry flight controller design using nonlinear dynamicinversion. AIAA Journal of Spacecraft and Rockets,40(1):64-71,2003.
    [148] J. J. Recasens, Q. P. Chu and J. A. Mulder. Robust model predictive control of a feedbacklinearized system for a lifting-body re-entry vehicle. AIAA Guidance, Navigation, and ControlConference, Paper Number: AIAA2005-6147.
    [149]张军,毕贞法,邵晓巍。一种高超声速飞行器的非线性再入姿态控制方法。空间控制技术与应用,34(4):51-54,2008。
    [150]张阳,黎科峰,张庆振,任章。反作用控制系统在RLV再入复合控制中的研究。航天控制,26(3):19-24,2008.
    [151] Nathan Harl, S. N. Balakrishnan. Reentry terminal guidance through sliding mode control. AIAAJournal of Guidance, Control and Dynamics,33(1):186-199,2010.
    [152] A. Falcoz, D. Henry, A. Zolghadri. Robust fault diagnosis for atmospheric reentry vehicles acase study. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A:SYSTEMS AND HUMANS,40(5):886-899,2010.
    [153] C. I. Ahn, Y. D. Kim, H. J. Kim. Adaptive sliding mode controller design for fault tolerant flightcontrol system. AIAA Guidance, Navigation, and Control Conference, Paper Number: AIAA2006-6089.
    [154] Y. B. Shtessel, C. E. Hall, M. Jackson. Reusable launch vehicle control in multiple-time-scalesliding modes. AIAA Journal of Guidance, Control, and Dynamics,23(6):1013-1020,2000.
    [155] X. D. Zhang, L. F. Ramos, K. Rattan. Adaptive fault-tolerant fuzzy control of robotic systems.The28th North American Fuzzy Information Processing Society Annual Conference.2009.
    [156] Y. M. Zhang, J. Jiang. Bibliographical review on reconfigurable fault tolerant control systems.Annual Reviews in Control,32(2):229-252,2008.
    [157]姜斌,冒泽慧,杨浩,张友民。控制系统的故障诊断与故障调节。国防工业出版社,2009。
    [158] H. Yang, B. Jiang, and V. Cocquempot. Fault Tolerant Control Design for Hybrid Systems.Springer-Verlag Berlin Heidelberg,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700