自动乳腺全容积成像技术诊断乳腺病变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:ABVS与HHUS鉴别乳腺良恶性病变诊断价值的比较
     目的比较自动乳腺全容积成像技术(ABVS)与常规超声对乳腺良恶性病变的诊断价值。
     方法前瞻性研究213例患者共239个乳腺病变,并与手术病理对照,分别计算自动乳腺全容积成像技术(ABVS)与常规超声的诊断敏感性、特异性、正确性、阳性预测值及阴性预测值。诊断准确性再按病变大小进一步分类评估。
     结果239个乳腺病变中,良性154(64.4%)个,恶性85(35.6%)个。ABVS与常规超声对乳腺病变诊断价值的比较:敏感性(95.3%vs.90.6%),特异性(80.5%vs.82.5%),准确性(85.8%vs.85.3%),阳性预测值(73.0%vs.74.0%),及阴性预测值(93.3%vs.94.1%)。 ROC曲线下面积分别为0.948及0.928。
     结论虽然ABVS与HHUS对乳腺病变的诊断准确性无明显差异,但ABVS可提供新的诊断信息。ABVS可帮助区分真正的占位性病变与不均质的片状回声区,发现恶性病变的卫星灶,及更清晰的显示导管病变。ABVS有很好的临床应用前景。
     第二部分:乳腺病变ABVS超声图像的观察者间一致性研究
     目的回顾性评估超声医生使用三维乳腺超声特有的术语以及超声乳腺影像报告和数据系统(BI-RADS)术语描述和诊断自动乳腺容积技术(ABVS)超声图像的观察者间一致性。
     方法患者已提供知情同意书。2010年8月一12月,208位患者在仰卧位接受ABVS检查,数据自动存入ABVS工作站。2位超声医生通过ABVS工作站回顾性独立评估234个乳腺病变(病理已证实为148个良性病变和86个恶性病变)的超声图像。观察者不知道钼靶图像、病史和病理结果。通过Cohen's kappa statistic评估观察者间的差异。
     结果观察者间的一致性为病变周边回声(κ=0.42)、纠集征(κ=0.54)的中等,形态(κ=0.79),纵横比(κ=0.74),边缘(κ=0.76),回声(K=0.69),后方回声(κ=0.68),钙化(κ=0.71),最终诊断(κ=0.70)的良好。
     结论ABVS获取的乳腺病变超声图像评估重复性好,但病变周边回声以及冠状切面所特有的纠集征一致性中等。
Part I Differentiation of benign and malignant breast lesions:A comparison between automatically generated breast volume scans and handheld ultrasound examinations
     Objective:To assess the diagnostic value of automated breast volume scanning (ABVS) or conventional handheld ultrasonography (HHUS) for the differentiation of benign and malignant breast lesions.
     Materials and methods:The study prospectively evaluated239lesions in213women who were scheduled for open biopsy. The patients underwent ABVS and conventional HHUS. The sensitivity, specificity, accuracy, false positive rate, false negative rate, and positive and negative predictive values for HHUS and ABVS images were calculated using histopathological examination as the gold standard. Additionally, diagnostic accuracy was further evaluated according to the size of the masses.
     Results:Among the239breast lesions studied, pathology revealed85(35.6%) malignant lesions and154(64.4%) benign lesions. ABVS was similar to HHUS in terms of sensitivity (95.3%vs.90.6%), specificity (80.5%vs.82.5%), accuracy (85.8%vs.85.3%), positive predictive value (73.0%vs.74.0%), and negative predictive value (93.3%vs.94.1%). The area under the receiver operating characteristic (ROC) curve, which is used to estimate the accuracy of the methods, demonstrated only minor differences between HHUS and ABVS (0.928and0.948, respectively).
     Conclusions:The diagnostic accuracy of HHUS and ABVS in differentiating benign from malignant breast lesions is almost identical. However, ABVS can offer new diagnostic information. ABVS may help to distinguish between real lesions and inhomogeneous areas, find small lesions, and demonstrate the presence of intraductal lesions. This technique is feasible for clinical applications and is a promising new technique in breast imaging.
     Part II Inter-observer Variability of Sonograms of Breast Lesions Obtained by Automated Breast Volume Scanner
     OBJECTIVE:To evaluate the interobserver agreement of radiologists in the description and final assessment of breast sonograms obtained using an automated breast volume scanner (ABVS) using a unique descriptor of three-dimensional ultrasound (3D US) and the Breast Imaging Reporting and Data System (BI-RADS) US lexicon.
     METHODS:From August to December2010,208patients were subjected to an ABVS examination in the supine position, and data were automatically sent to the ABVS workstation. Two radiologists independently evaluated234breast masses (148benign and86malignant masses) using a unique descriptor from the3D US and the BI-RADS US lexicon. The reviewers were blinded to the patient's mammographic images, medical history, and pathologic findings. The interobserver agreement was measured using kappa statistics.
     RESULTS:Substantial agreement was obtained for lesion shape, orientation, margin, echo pattern, posterior acoustic features, calcification and final assessment (κ=0.79,0.74,0.76,0.69,0.68,0.71and0.70, respectively). Fair agreement was obtained for retraction phenomenon and lesion boundary (κ=0.54and0.42, respectively).
     CONCLUSIONS:The interobserver agreement for breast sonograms obtained by ABVS is good, especially for lesion shape and margin; however, the interobserver agreement for the retraction phenomenon, which is a unique descriptor of coronal-plane3D US, needs to be improved.
引文
1 Athanasiou A, Tardivon A, Ollivier L, et al. How to optimize breast ultrasound. Eur J Radiol 2009;69:6-13.
    2 Cho N,Moon WK, Cha JH, et al. Differentiating benign from malignant solid breast masses:comparison of two-dimensional and three-dimensional US. Radiology 2006; 240(1):26-32.
    3 Wang J, Shih TT, Hsu JC, et al. The evaluation of false negative mammography from malignant and benign breast lesions J Clin Imag 2000;24:96-103.
    4 Youk JH, Kim EK, Kim MJ, et al. Performance of hand-held whole-breast ultrasound based on BI-RADS in women with mammographically negative dense breast. Eur Radiol 2011; 21:667-75.
    5 Zhang J, Lai XJ, Zhu QL,et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner. Eur J Radiol 2011; doi:10.1016/j.ejrad.2011.06.043.
    6 Lin X, Wang J, Han F, et al.Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2011; doi:10.1016/j.ejrad.2011.02.038.
    7 Wohrle NK, Hellerhof K, Notohamiprodjo M, et al. Automated Breast Volume Scanner (ABVS). A new approach for breast imaging(in German). Der Onkologe 2011;DOI10.1007/s00761-011-2040-x.
    1 Chang JM 1, WK Moon, N Cho, et al. Breast cancers initially detected by hand-held ultrasound:detection performance of radiologists using automated breast ultrasound data. Acta Radiologica 2011; 52:8-14.
    2 Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol,2010;20(3):734-42.
    3 Tozaki M, Isobe S, Yamaguchi M, et al. Optimal scanning technique to cover the whole breast using an automated breast volume scanner. Jpn J Radiol 2010;28(4):325-8.
    4 Chou YH, Tiu CM, Chen J, et al. Automated Full-field Breast Ultrasonography:The Past and The Present. J Med Ultrasound 2007;15(1):31-44.
    5 Watermann DO, Foldi M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 2005;25(6):592-8.
    6 Lin X, Wang J, Han F, et al.Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2011; doi:10.1016/j.ejrad.2011.02.038.
    7 Wohrle NK, Hellerhof K, Notohamiprodjo M, et al. Automated Breast Volume Scanner (ABVS). A new approach for breast imaging(in German). Der Onkologe 2011;DOI 10.1007/s00761-011-2040-x.
    8 Richter K, Heywang-Kobrunner SH, Winzer KJ, et al.Detection of malignant and benign breast lesions with an automated US system:results in 120 cases. Radiology 1997;205:823-30.
    9 Bassett LW, Kimme-Smith C,Sutherland LK, et al. Automated and hand-held breast US:effect on patient management. Radiology 1987; 165:103-8.
    10 Kopans DB, Meyer JE, Lindfors KK. Whole-breast US imaging:four-year follow-up.Radiology 1985; 157:505-7.
    11 Jackson VP, Kelly-Fry E, Rothschild PA, et al. Automated breast sonography using a 7.5-MHz PVDF transducer:preliminary clinical evaluation. Work in progress. Radiology 1986; 159:679-84.
    12 Kotsianos-Hermle D, Wirth S, Fischer T et al.First clinical use of a standardized three-dimensional ultrasound for breast imaging. Eur J Radiol 2009;71:102-8.
    13 Kotsianos-Hermle D, Hiltawsky KM,Wirth S, et al. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009;71(1):109-15.
    14 Am WW, Chu WC, Tang AP, et al. Role of radiologic features in the management of papillary lesions of the breast. Am J Roentgenol 2006;186:1322-1327.
    15 Shkenazi I, Ferrer K, Sekosan M, et al. Papillary lesions of the breast discovered on percutaneous large core and vacuum-assisted biopsies:reliability of clinical and pathological parameters in identifying benign lesions. Am J Surg 2007;194:183-188.
    16 Puglisi F, Zuiani C, Bazzocchi M, et al. Role of mammography, ultrasound and large core biopsy in the diagnostic evaluation of papillary breast lesions. Oncology 2003;65:311-315.
    17 Mercado CL, Hamele-Bena D, Oken SM, et al. Papillary lesions of the breast percutaneous core-needle biopsy. Radiology 2006;238:801-808.
    18 Renshaw AA, Derhagopian RP, Tizol-Blanco DM, et al. Papillomas and atypical papillomas in breast core needle biopsy specimens:risk of carcinoma in subsequent excision. Am J Clin Pathol 2004; 122:217-221.
    19 Sydnor MK, Wilson JD, Hijaz TA, et al. Underestimation of the presence of breast carcinoma in papillary lesions initially diagnosed at core-needle biopsy. Radiology 2007;242:58-62.
    20 Rosen PP. Papilloma and related benign tumors. In:Rosen PP, ed. Rosen's Breast Pathology.2nd ed. Philadelphia, PA:Lippincott Williams & Wilkins; 2001:77-119.
    21 Ganesan S, Karthik G, Joshi M, et al. Ultrasound spectrum in intraductal papillary neoplasms of breast. Br J Radiol 2006;79:843-849.
    22 Tohno E, Cosgrove DO, Sloane JP. Benign processes-tumors. In:Tohno E, Cosgrove DO, Sloane JP, editors. Ultrasound diagnosis of breast diseases. Edinburgh:Churchill Livingstone,1994:94-97.
    23 Kasumi F. Ultrasound of breast diseases. Shinohara-shuppan Co., Tokyo,1983. Cited in Benign processes-Tumors, Intraductal Papilloma, In:Tohno E, Cosgrove DO, Sloane JP, editors. Ultrasound diagnosis of breast diseases. Edinburgh:Churchill Livingstone,1994:94.
    24 Cilotti A, Bagnolesi P, Napoli V, et al. Solitary intraductal papilloma of breast. An echographic study of 12 cases. Radiol Med (Torino) 1991;82:617-620.
    25 Cole-Beuglet CM, Goldberg BB, Patchefsky AS, et al. Normal breast structure and its ultrasound characteristics. In:Telles NC, ed. Atlas of Breast Ultrasound. Philadelphia: Thomas Jefferson University Hospital,1980:38.
    26 Tominaga J, Hama H, Kimura N, Takahashi S. Magnetic resonance imaging of intraductal papillomas of the breast. J Comput Assist Tomogr.2011;35:153-157.
    27 Sehgal CM, Weinstein SP, Arger PH, Conant EF. A Review of Breast Ultrasound. J Mammary Gland Biol Neoplasia 2006;11:113-123.
    28 Wenkel E, Heckmann M, Heinrich M, et al. Automated breast ultrasound:lesion detection and BI-RADS classification-a pilot study. Rofo 2008;180(9):804-8.
    29 Cho KR, Seo BK, Lee JY, et al. A comparative study of 2D and 3D ultrasonography for evaluation of solid breast masses. Eur J Radiol 2005;54(3):365-70.
    30 Athanasiou A, Tardivon A, Ollivier L, et al. How to optimize breast ultrasound. Eur J Radiol 2009;69:6-13.
    31 Cho N,Moon WK, Cha JH, et al. Differentiating benign from malignant solid breast masses:comparison of two-dimensional and three-dimensional US. Radiology 2006; 240(1):26-32.
    32 Zhang J, Lai XJ, Zhu QL,et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner. Eur J Radiol 2011, doi:10.1016/j.ejrad.2011.06.043.
    33 Wang J, Shih TT, Hsu JC, et al. The evaluation of false negative mammography from malignant and benign breast lesions J Clin Imag 2000;24:96-103.
    34 Youk JH, Kim EK, Kim MJ, et al. Performance of hand-held whole-breast ultrasound based on BI-RADS in women with mammographically negative dense breast. Eur Radiol 2011; 21:667-75.
    1 Abdullah N, Mesurolle B, El-Khoury M, et al. Breast imaging reporting and data system lexicon for US:interobserver agreement for assessment of breast masses. Radiology 2009;252(3):665-672.
    2 Lazarus E, Mainiero MB, Schepps B, et al. BIRADS lexicon for US and mammography:interobserver variability and positive predictive value. Radiology 2006;239(2):385-391.
    3 Lee HJ, Kim EK, Kim MJ, et al. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound. Eur J Radiol 2008;65(2):293-298.
    4 Park CS, Lee JH, Yim HW, et al. Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, First Edition (2003). Korean J Radiol 2007;8(5):397-402.
    5 Lin X, Wang JW, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with hand held ultrasound. Eur J Radiol 2011;doi:10.1016/j.ejrad.2011.02.038.
    6 American College of Radiology. BI-RADS:ultrasound.1st ed. In:Breast imaging reporting and data system:BI-RADS atlas.4th ed. Reston, VA:American College of Radiology,2003.
    7 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159-174.
    8 Cho KR, Seo BK, Lee JY, et al. A comparative study of 2D and 3D ultrasonography for evaluation of solid breast masses. Eur J Radiol 2005;54(3):365-70.
    9 Kalmantis K, Dimitrakakis C, Koumpis Ch, et al. The contribution of three-dimensional power Doppler imaging in the preoperative assessment of breast tumors:a preliminary report. Obstet Gynecol Int 2009;doi:10.1155/2009/530579.
    10 Kotsianos-Hermle D, Hiltawsky KM, Wirth S, et al. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009;71(1):109-115.
    11 Chang JM, Moon WK, Cho N, et al. Radiologists'performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS). Eur J Radiol 2011;78(1):99-103.
    1 Ntziachristos V, Chance B. Probing physiology and molecular function using optical imaging:applications to breast cancer. Breast Cancer Res 2001;3(1):41-6.
    2 Srinivasan S, Pogue BW, Brooksby B, et al. Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction. Technol Cancer Res Treat 2005;4(5):513-26.
    3 Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971; 285(21):1182-6.
    4 Zhu Q, Cronin EB, Currier AA,et al. Benign versus malignant breast masses:optical differentiation with US-guided optical imaging reconstruction. Radiology 2005;237(1):57-66.
    5 Zhu Q, Kurtzma SH, Hegde P,et al. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia 2005; 7(3):263-70.
    6 You SS, Jiang YX, Zhu QL,et al. US-guided diffused optical tomography:a promising functional imaging technique in breast lesions. Eur Radiol 2010; 20(2):309-17.
    7 Zhu Q, Cronin EB, Currier AA, et al.Benign versus malignant breast masses:optical differentiation with US-guided optical imaging reconstruction. Radiology 2005;237(1):57-66.
    8 Ophir J, Cespedes I, Pormekanti H, et al. Elastography:a quantitative method for imaging the elasticity Of biological tissue. ultras Imaging 1991; 13:111-134.
    9 Cho N, Moon WK, Kim HY. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. Ultrasound Med 2010; 29(1):1-7.
    10 Raza S, Odulate A, Ong E M. Using realtime tissue elustography for breast lesion evaluation:our initial experience. Ultrasound Med 2010; 29(4):551-563.
    11 Itoh A, Ueno E, Tohno E, et al. Breast disease clinicall application of US elastography for dingnosis. Radiology 2006; 239(2):341-350.
    12 Kedar RP, Cosgrove D, Mccready VR, et al. Microbubble contrast agent for color Doppler US:effect on breast masses.Work in progress. Radiology 1996;198(3) 679-686.
    13 Moon WK, Im JG, Noh DY, et al. Non-palpable breast lesions:evaluation with color Doppler U S and a microbubble contrast agent-initial experience. Radiology 2000; 217(1):240-246.
    14 Stuhrmann M, Aronius R, Schietz el M.Tumor Vascularity of breast lesions:pot-entials and limits of contrast enhanced Doppler sonography. AJR 2000; 175:1585-1589.
    15 Albrecht T, Patel N, Cosgrove DO, et al.Enhancement of power Doppler signals from breast lesions with the ultrasound contrast agent Echogen emulsion:subject-ive and quantitative assessment. Acad Radiol 1998; 5 (S 1):S195-198.
    16 Huber S, Helbich T, K et tenbach J, et al.Effects of a microbubble contrast agent onbreast tumors:computer-assist ed quantitative assessment with color Doppler US:early experience. Radiology 1998; 208(2):485-489.
    17 Prompeler HJ, Del FC, Haekeloer BJ, et al. A new Doppler signal enhancing signal agent for flow assessment in breast lesions. Eur J Ultrasound 2000;12(2):123-130.
    18 Yang WT, Metreweli C, Lam PK, et al.Benign and malignant breast masses andaxillary nodes:evaluat ion w ith echo-enhanced color power Doppler US Radiology 2001; 220(3):795-802.
    19 Sever A, Jones S,Cox K,et al. Preoperative localization of sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasonography in patients with breast cancer.Br J Surg 2009;96:1295-1299.
    20 Coreioni B, Seatilli L, Quercia s, et al.Constrast-enhanced US and MRI for assessing the response of breast cancer to neoadjuvant chemotherapy.J Ultrasound 2008; 11(4):143-150.
    21 Cho KR, Seo BK, Lee JY, et al. A comparative study of 2D and 3D ultrasonography for evaluation of solid breast masses. Eur J Radiol 2005;54(3):365-70.
    22 Watermann DO, Foldi M, Hanjalic-Beck A, et al. Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 2005;25(6):592-8.
    23 Kotsianos-Hermle D, Wirth S, Fischer T et al.First clinical use of a standardized three-dimensional ultrasound for breast imaging. Eur J Radiol 2009;71:102-8.
    24 Kotsianos-Hermle D, Hiltawsky KM,Wirth S, et al. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound. Eur J Radiol 2009;71(1):109-15.
    25 Forsberg F, Goldberg BB, Merritt CR, et al. Diagnosing breast lesions with contrast-enhanced 3-dimensional power Doppler imaging. J Ultrasound Med 2004; 23(2):173-182.
    26 Chou YH, Tiu CM, Chen J, et al. Automated Full-field Breast Ultrasonography:The Past and The Present. J Med Ultrasound 2007;15(1):31-44.
    27 Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol2010;20(3):734-42.
    28 Lin X, Wang J, Han F, et al.Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol2011;doi:10.1016/j.ejrad.2011.02.038.
    29 Chang JM 1, WK Moon, N Cho, et al. Breast cancers initially detected by hand-held ultrasound:detection performance of radiologists using automated breast ultrasound data. Acta Radiologica 2011; 52:8-14.
    30 Tozaki M, Isobe S, Yamaguchi M, et al. Optimal scanning technique to cover the whole breast using an automated breast volume scanner. Jpn J Radiol 2010;28(4):325-8.
    31 Wohrle NK, Hellerhof K, Notohamiprodjo M, et al. Automated Breast Volume Scanner (ABVS). A new approach for breast imaging(in German). Der Onkologe 2011;DOI 10.1007/s00761-011-2040-x.
    32 Athanasiou A, Tardivon A, Ollivier L, et al. How to optimize breast ultrasound. Eur J Radiol 2009;69:6-13.
    33 Zhang J, Lai XJ, Zhu QL,et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner. Eur J Radiol 2011, doi:10.1016/j.ejrad.2011.06.043.