煤矿生产监测设备数据校正
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国煤炭工业数字化进程的推进,安全生产监测的范围不断扩大,各项技术指标的要求越来越严格。微震、超声波、雷达、声纳、红外、光纤等各种技术系统陆续引入到煤矿生产的实时监测过程中。生产现场采集到的各类数据是确保煤矿安全生产的有力保障。本文立足于煤矿生产监测数据的校正方法研究,涉及到监测设备数据获取单元的模型建立、准确测试、自检以及校正方法研究,目的是保证煤矿安全生产监测设备的性能,确保其获取精准的监测数据,利于煤炭生产安全。
     煤矿安全生产监测设备种类繁多,数据获取单元的模型各不相同。衡量其性能的指标有多种,比较关键的有:采集精度、采样速率、有效位数、输入通频带等。这里通过对矿用几类典型设备的数据获取单元进行分析,建立了其前向通道数据模型以及几种不同类型数据获取单元的模型,提出了采用积分非线性作为关键技术指标来同时反映静态和动态性能,并推导了其与其它参数关系的表达式,给出仿真测试结果。
     针对煤炭安全生产监测系统对及时、准确数据流的要求,在对数据获取单元的静态与动态测试方法进行分析的基础上,提出了改进的加权最小二乘法动态曲线的拟合测试方法,推导出了直方图测试方法中对采样频率、采样数据量进行约束的公式,利用Cramér–Rao对测试信号的有效性进行了估计。
     针对煤矿安全生产监测设备需要自检功能的问题,提出一种适合煤矿监测设备短时自检方法,即基于非线性的斜坡码时测试方法,通过对斜坡信号的非线性解析,推导出煤矿生产监测系统的开机自检算法公式,误差分析可知,输入信号的非线性项可以被估计出来,仿真及实测数据表明该方法所需测试数据占据存储空间小,测试时间短,但有与直方图测试方法相当的测试精度,能实现煤矿监测设备的自检功能。
     针对煤矿监测设备数据获取单元通道中存在的大量误差,极大的限制了系统检测的精度问题,对Dither信号的特性展开分析,挖掘出其对煤矿生产监测设备数据获取单元的动态和静态性能具有补偿作用,在此基础上提出了基于Dither的数据校正方法,并设计出复杂的数据获取系统性能校正框架。通过将Dither校正方法与Volterra级数校正方法、纠正矩阵校正方法等从校正时间、校正算法的综合对比,表明该方法具有易于实现的特性,适合煤矿生产监测设备在线或离线校正,并具有较好的测试精度。
     在对目前存在的几种不同校正方式的优缺点分析的基础上,将矿山监测设备数据获取单元的非线性误差拓展到二维空间,提出了基于Dither技术的非线性纠正矩阵数据校正(Dither Combined with Correction Nonlinear Matrix:DCNM)方法。讨论了构成纠正矩阵的三个组成部分对纠正矩阵构成的影响、纠正矩阵校正的限制条件,验证了二维纠正矩阵校正的可行性,进而建立了校正有效性的评价方法;仿真实验结果表明DCNM方法可以有效的改善系统的性能。
     最后设计并制作了可用于地矿勘探的雷达数据获取高速采集硬件,其不但支持一般的采集任务,还能够完成自检、校正功能;然后采用本文提出的DCNM方法,分别对标准的高频信号、掘进爆破信号进行测试与跟踪,并与传统测试方法进行了比较,结果表明,本文提出的DCNM方法具有测试时间短、校正数据精准度高的特点,该校正方法可以推广到煤矿监测的其它设备应用。
With the promotion of China's coal industry digitization and the expansion of productionprocess safety monitoring range in-depth, many detection techniques are gradually introducedinto the process of real-time monitoring in mine production, such as microseisms, ultrasonic,radar, sonar, infrared, optical fiber. Various types of data gathering from production site is astrong guarantee to ensure mine safety production. The correction method of mineproduction’s accurate monitoring data is studied in this paper, including modeling,measurement, self-testing and and error compensation of the mine equipment’s dataacquisition part, and the purpose is to ensure the performance of coal mine production safetymonitoring equipment, to access to accurate monitoring data, help the safe coal production.
     There is a wide range of monitoring devices for coal mine safety production, whichinvolving a considerable number of sensor types and different data acquisition unit models.There are several indicators to measure its performance, the key is sampling accuracy,sampling rate, effective number of bits, input passband etc. The nonlinear error of the generaldata acquisition unit is caused by both static and dynamic aspects of distortion, therefore it’snecessary to weigh test methods carefully. For the purpose of determining the key parameters,there analyzed the obtained data of several types of typical devices in mine, established aforward channel data model and several different types of core models. Integral nonlinearityas its key performance indicator is proposed, and the expression of relationship among otherparameters is derived, with the given simulation test results.
     Aiming at the data requirements of timeliness and accuracy in coal safety productionmonitoring system, based on the analysis of static and dynamic testing methods in the dataacquisition unit, an improved weighted least squares dynamic curve fitting method isproposed. Data selection formula of sampling frequency and amount of sampling data arederived in histogram test methods, and the validity of test signal is estimated using the Cramér–Rao bounds.
     Aiming at the problem of self-test function of mine safety production monitoring devices,a short-term self-test method which is suitable for coal mine monitoring devices is proposed,which is the test method of the ramp test signal code. According to nonlinear analysis of theramp signal, the algorithm formula of power-on-self-test in mine production monitoringsystem is derived. The error analysis shows that nonlinear terms of the input signal can beestimated. Simulation and measured data show that the required test data in this methodaccount for a small storage space and need short test time. But test accuracy is equivalent tothe histogram test method and able to achieve self-test for the coal mine monitoring devices.
     Aiming at the problem of too large errors existing in data acquisition unit channel ofmine monitoring devices which greatly limits the accuracy of system detect, the dithersignal’s characteristics are analyzed, which digged out that it has compensation to thedynamic and static performance of data acquisition unit in mine production monitoringdevices. On this basis, a data correction method based on Dither is proposed and aperformance calibration framework of complex data acquisition system is designed.Comparing Dither correction method with Volterra series correction method and correctivematrix correction method from aspects of calibration time and correction algorithm show thatthis method is easy to implement and fit for online or offline correction of mine productionmonitoring devices with good test accuracy.
     Based on the analysis of the advantages and disadvantages of several different correctionmethods currently exist, the nonlinear error of data acquisition unit in mine monitoringdevices are expanded to two-dimensional space. A dither combined with correction nonlinearmatrix method is proposed. The impact of three components which constitute a correctivenonlinear matrix, the constitute of corrective matrix and restrictions of corrective matrixcorrection are discussed. The feasibility of two-dimensional corrective matrix correction areverified. Thereby, the evaluation method of correction validity is established. The simulationresults show that the DCNM method can effectively improve the performance of the system.
     At last, high-speed acquisition hardware for obtaining radar data which can be used forgeology and mineral exploration is designed and made. It not only supports the generalacquisition task, but also can be able to complete self-test and correction function. Then theDCNM method is used to test and track the standard high-frequency signal, blasting signal.The method is compared with the traditional test methods, which show that the DCNMmethod has the characteristics of short test time and high accuracy of correction data. Thiscorrection method can be extended the application to other coal mine monitoring devices.
引文
[1]张申,丁恩杰,赵小虎等.数字矿山及其两大基础平台建设[J].煤炭学报.2007(9):997-1001.
    [2]刘进军.开展动态地质工作是煤矿生产过程中的基础保障[J].煤炭技术,2007,26(4):115-116.
    [3] Gro,B; Blum, L.; De Haart, L.G.J. Development of a Solid Oxide Fuel Cell for theutilization of coal mine gas[J],2011,196(12).pp.5309-5316.
    [4] Michael M. Murphy, Erik C. Westman, Anthony Iannacchione,et al. Relationshipbetween radiated seismic energy and explosive pressure for controlled methane and coaldust explosions in an underground mine[J],2012,28(1), pp.278-286.
    [5] Subir Kumar Ghosh, Sudipta Bhattacharjee, Dr. K.U.M Rao, et al.Underground coalmine instrumentation using electromagnetic sensors for roof health monitoring and fallprediction[J]. International Journal of Earth Sciences and Engineering,2011,4(2) pp.328-335.
    [6] Calizaya, F.; Stephens, M.; Gillies, S. Utilization of booster fans in underground coalmines[A], SME Annual Meeting and Exhibit, SME Annual Meeting and Exhibit2010.03: pp.443-447.
    [7] Salap Seda, Mahmut Onur Karsl o lu, Nuray Demirel. Development of a GIS-basedmonitoring and management system for underground coal mining safety[J],International Journal of Coal Geology,2009,80(2), pp.105-112.
    [8] R.A. Franks, G.F. Friel, J.C. Edwards, et al. In-mine evaluation of smart mine firesensor,Society for Mining[C], Metallurgy and Exploration-SME Annual Meeting andExhibit2008:"New Horizons-New Challenges",2008.3, pp332-338.
    [9] N. Verma, A.P. Chandrakasan. An Ultra Low Energy12-bit Rate-Resolution ScalableSAR ADC for Wireless Sensor Nodes[J]. IEEE Journal of Solid-State Circuitsvol(42),No62007. pp.1196-1205.
    [10]I.E. Martin, A. Rusu, M. Ismail,et al. A flexible algorithmic ADC for wireless sensornodes[J]. Electronics, Circuits and Systems,2008. pp.1213-1216.
    [11]Wang MM, Cao JN,Li J et al. Middleware for Wireless Sensor Networks: A Survey[J].Journal of Computer Science And Technology vol(23) no(3)2008. pp.305-326.
    [12]中国地球物理学会,中国工程地球物理检测技术,北京:地震出版社,2001.
    [13]B. Murmann. A/D Converter Trends: Power Dissipation, Scaling and Digitally AssistedArchitectures[J]. Proc.IEEE Custom Integrated Circuits Conference (CICC) CICC, Sep.2008. pp.105–112.
    [14]Asad A. Abidi. The Path to the Software-Defined Radio Receiver[J], IEEE J. Solid-StateCircuits, vol(42), no.5, May2007. pp.954-966.
    [15]M. Vanden Bossche, J. Schoukens, J. Renneboog, Dynamic testing and diagnosis of ADconverters, IEEE Transactions.on Circuits and Systems [J],1986.pp.775–785.
    [16]E.Balestrieri, J.Blair, et al. parameters and characteristics[J], IEEE Instrumentation&Measurement Magazine, vol.8, No.5, December2005.pp.44-54.
    [17]IEEE1057-2007, IEEE Standard for Digitizing Waveform Recorders, April2008.
    [18]IEEE Std1241-2000IEEE Standard for Terminology and Test Methods forAnalog-to-Digital Converters,2000.
    [19]Zhurang Zhao, Andre Ivanov. Embedded servo loop for linearity testing[J],Microelectronics Journal33,2002, pp.773–780.
    [20]Alegria F., Arpaia P., Daponte P., Serra. et al. An histogram test based onsmall-amplitude waves[J], Measurement, Elsevier Science,2002, vol(31), no.4, pp.271-279.
    [21]F. C. Alegria, P. Arpaia, A. C. Serra, et al. Performance analysis of an histogram testusing small triangular waves[J], IEEE Trans. on Instrum. and Meas.,2002, vol.51, no.4,pp.723-729.
    [22]李庆忠.地震勘探分辨率与信噪比谱的关系——答云美厚“地震分辨力新认识”一文[J].石油地球物理勘探.2008,43(2):244-245.
    [23]姜福兴,XUN Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [24]云美厚.地震分辨力新认识[J].石油地球物理勘探.2005,40,(5):603-608.
    [25]曹安业,窦林名,秦玉红等.微震监测冲击矿压技术成果及其展望[J].煤矿开采2007.12(1):20-25.
    [26]徐学锋,张银亮.爆破诱发冲击矿压的原因及微震信号的波谱分析[J].煤矿安全,2010,41(9):123-125.
    [27]张义平,李夕兵,赵国彦等.爆破震动信号的时频分析[J].岩土工程学报,2005,27(12):1472-1477.
    [28]陆菜平,窦林名,吴兴荣等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525.
    [29]孔令海,姜福兴,杨淑华等.基于高精度微震监测的特厚煤层综放工作面顶板运动规律[J].北京科技大学学报,2010,32(5):552-558.
    [30]张海明,董山.基于微震监测技术的深部岩爆预警和断层突水监测[J].金属矿山,2011,(6):16-19.
    [31]唐守锋,童敏明,潘玉祥等.煤岩破裂微震信号的小波特征能谱系数分析法[J].仪器仪表学报,2011,32(7):1521-1527.
    [32]刘超,唐春安,薛俊华等.煤岩体微震事件属性识别与标定综合分析方法[J].采矿与安全工程学报,2011,28(1):61-65.
    [33]陆菜平,窦林名,吴兴荣等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [34]刘超,唐春安,张省军等.微震监测系统在矿山灾害救援中应用[J].辽宁工程技术大学学报(自然科学版),2009,28(6):929-932.
    [35]袁子龙,李婷婷.△-∑A/D转换技术及在地震勘探中的应用[J].地球物理学进展,2004,19(2):300-303.
    [36]谢明璞.大规模陆上地震仪器结构设计的关键技术[D].中国科学技术大学,2009.
    [37]马毅超.大规模陆上地震仪器中高速可靠数据传输方法的研究[D].中国科学技术大学,2011.
    [38]袁子龙,韩刚,于玲等.地震勘探仪器主要技术性能分析及改进探讨[J].地球物理学进展,2007,22(6):1970-1974.
    [39]曹广华,袁子龙.高分辨率地震仪∑A/D转换器的噪声整形[J].大庆石油学院学报,2002,26(1):8-12.
    [40]王忠,黄跃等.高速、大动态范围瞬变电磁接收机的研制[J].仪器仪表学报2006.4:416-419
    [41]刘振庆,于景屯等.矿井瞬变电磁法在探查迎头前方构造中的应用[J].物探与化探2011.35(1):140-142
    [42]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报,2007,4(4):291-295
    [43]刘禹,孟积渐.非接触式超声波技术在煤矿管道瓦斯流量监测中的应用[J];煤矿安全2010.11:30-33
    [44]王家胜,董文中,曾晟等.超声波在煤粉中的衰减特性的仿真[J].锅炉技术,2005.36(1).:49-52.
    [45]李迅波,廖述剑,陈光搞等.基于数字处理技术的动态测试及分析,仪器仪表学报,2000,vol.21(3):293-296.
    [46]李迅波.高速动态特性测试的理论研究与实现[D].电子科技大学,2000.
    [47]Dominique Dallet,Jose Machado da Silva. Dynamic Charcterisaztion of Analogue toDigital Converters, Hardcover-Nov72005.
    [48]S. Rapuano, P. Daponte, E. Balestrieri, et al. parameters and characteristics[J], IEEEInstrumentation& Measurement Magazine, vol(8)2005. pp.44-54.
    [49]J. Blair. Histogram measurement of nonlinearities[J], IEEE Transactions onInstrumentation and Measurement, vol(43),1994, pp373–383.
    [50]Kollár, I. and J. J. Blair. Improved Determination of the Best Fitting Sine Wave inTesting[J], IMTC/2004, Proc. IEEE Instrumentation and Measurement TechnologyConference, IMTC/2004, Como, May20-22,2004. pp.829-834.
    [51]Attila S′arhegyi, Istv′an Koll′ar. Robust sine wave fitting in Testing[J], IEEEInstrumentation and Measurement Technology Conference, IMTC/2006,2006, pp.914-919.
    [52]V. Kerzérho, S. Bernard, J.M. Janik, et al. Comparison between spectral-based methodsfor INL estimation and feasibility of their implantation[J]. Proceedings of the11th IEEEInternational Mixed-Signal Testing Workshop (IMSTW '05), Cannes, France, June2005.pp.270-275.
    [53]J.M. Janik. Estimation of A/D converter nonlinearities from complex spectrum[J], Proc.8th International Workshop on Modelling and Testing (IW), September2005, pp.205–208.
    [54]赵立永,邓永红,段绪华.煤矿安全生产监控系统的发展历程分析研究[J].华北科技学院学报,2011,(03)
    [55]张保奎.煤矿安全监控系统数据集成方式研究[D].西安科技大学,2006
    [56]C.Wegener, Hard-Fault Detection and Diagnosis During the Application ofModel-Based Data Converter[J]. Testing Journal of Electronic Testing vol(23), No6,2007pp513-525.
    [57]Carsten Wegener, Michael Peter Kennedy, Hard-Fault Detection and Diagnosis Duringthe Application of Model-Based Data Converter Testing[J], Journal of ElectronicTesting: Theory and Applications, vol(23) No6,2007pp.513-525.
    [58] Carsten Wegener, Michael Peter, Kennedy. Linear Model-Based Testing ofNonlinearities[J]. IEEE Transactions on Circuits And Systems, vol(51), No.1,2004,pp.213-218.
    [59]A. Baccigalupi, P. Daponte, M. D’Apuzzo, An improved error model of data acquisitionsystems[J], IEEE Trans. Instrum.Meas.vol(43) No21994pp.220–225.
    [60]P. Arpaia, P. Daponte, and S. Rapuano, A state of the art on modelling[J], ComputerStandards and Interfaces, vol.26, no.1,2004.pp.31-42.
    [61]A. Cruz Serra, P. Daponte, L. Michaeli.Adc and dac modeling and testing state of theart[J],Meas. Syst.2005;12(3/2005) pp.231-248.
    [62]Daniel Belega, Dan Stoiciu. Polynomial Approximation of the Transfer Function of anAnalog to Digital Converter[J]. ELEC ENERG. vol(17), December2004, pp.443-453.
    [63]Schmidt, C. Cousseau, J. E. Figueroa, J.L.Wichman, R. et al. post-compensation using aHammerstein model[J]. Micro-Nanoelectronics, Technology and Applications,2009.EAMTA2009. Argentine School of Volume, Issue,1-2Oct.2009. pp:71–76.
    [64]Martin Kolla, Peter Michalko. A new approach in differential nonlinearity testing of theanalog-to-digital converters[J], Measurement vol40,2007,pp520–526.
    [65]S. Medawar, N. Bj rsell, P. H ndel,et al. Dynamic characterization of analog digitalconverters non-linearities[C]. Mosharaka International Conference on WirelessCommunications and Mobile Computing, Amman, Jordan6-8September2007.
    [66]L.Michaeli, P.Michalko, J.Saliga. Unified Nonlinearity Error Model for SARMeasurement[J], vol41.2006. pp198-204.
    [67]Henrik Lundin, Peter Handel, Mikael Skoglund. Accurate prediction of analog to digitalconverter performance after post-correction. XVII Imeko World Congress Metrologyfor a Sustainable Development September,2006, pp.17–22.
    [68] Serra A. C., da Silva M. F., Ramos P., et al. Combined Spectral and HistogramAnalysis for Fast Testing[J]. IEEE Transactions on Instrumentation and Measurement,vol(54), no.4, August2005. pp.1617-1623.
    [69] P.Suchanek, D.Slepicka, V.Haasz. Several Approaches to ADC transfer fcunctionapproximation and their application for non-linearity correction[J]. metrology andmeasurement systems. vol.(15), Num4.2008. pp.501-511.
    [70] Michaeli L, Michalko P, Saliga J. Fast Testing of Using Unified Error Model[C].Proceedings of the17th IMEKO world congress, Dubrovnik, Croatia,2003. pp.534–537.
    [71]R. Holcer, L. Michaeli, and J. Saliga. DNL Testing by the Exponential Shaed Voltage[J],IEEE trans. on Instrumentation and Measurement, vol.(52),2003. pp.946-949.
    [72]Francisco Corrêa Alegria, Antonio Moschitta, Paolo Carbone, et al. Effective LinearityTesting[J]. IEEE Trans CAS, vol(52), No7July2005
    [73] Subrt, O.Martinek, P. Wegener, et al. A Contribution to Advanced Extraction Methodsfor Static Nonlinearity[C]. Instrumentation and Measurement Technology ConferenceProceedings,2007. IMTC2007. IEEE pp.1-4.
    [74]Antonio Moschitta, Paolo Carbone. Cramér–Rao Lower Bound for ParametricEstimation of Quantized Sinewaves[J]. IMTC2004Instrumentation and MeasurementTechnology Conference Corn. May2004. pp.18-20.
    [75]F. Corrêa Alegria, A. Cruz Serra. Error in the estimation of transition voltages with thestandard histogram test[J], Measurement, Elsevier Science, June2004, vol.35, n.4,pp.389-397
    [76]F. Corrêa Alegria, A. Cruz Serra, Uncertainty in the transition voltages determined withthe histogram method[J], Proceedings of the6thWorkshop on Modeling and Testing,Lisbon, Portugal, September13–14,2001, pp.28-32
    [77]J. Saliga, L. Michaeli, and R. Holcer. Noise Influence on exponential Histogram test[J],in Workshop on modelling and testing, Athens,2004.
    [78]A. Moschitta, P. Carbone, and D. Petri. Statistical performance of Gaussian histogramtest[J], In Proceedings of the8th International Workshop on Modelling and Testing.Perugia, Italy: IMEKO, Sept.2003, pp.213-217.
    [79] F.Alegria, P.Arpaia, A.M. Serra, et al. Performance analysis of an histogram test usingsmall triangular waves[J], IEEE Trans Instrum. Meas., vol(51), Aug.2002, pp.723–729.
    [80]P. Handel, N. Bjorsell, M. Jansson. Model based dynamic characterization ofanalog-digital-converters at radio frequency[C].9th International Symposium on SignalProcessing and Its Applications,2007. pp.1-6.
    [81]A. B. Sripad, D. L. Snyder. A necessary and sufficient condition for quantization errorsto be uniform and white[J], IEEE Trans. on Acoust. Speech and Signal Processing,ASSP-25(5), October1997, pp.442-448.
    [82]Philip Fong, Alan Teruya, and Mark Lowry. Characterization and Compensation ofHigh Speed Digitizers[C].IMTC2005–Instrumentation and Measurement TechnologyConference,vol(1),May2005. pp.417-421.
    [83] N.Giaquinto, M. Savino, A.Trotta. Linearization of Nonlinear Dynamic Systems[J].IEEE Trans Instrum. Meas., vol(53), No4,2004, pp.1245–1248.
    [84]L. Michaeli, P. Michalko, J. Saliga. Identification of unified error model by triangulartesting signal[C],10th Workshop on modelling and testing, Gdynia/Jurata, Poland,2005,pp.605-610.
    [85]O. Aumala, J. Holub. Information transfer of dithered A/D converters[C], in Proc. of5thIMEKO TC-4Euro Workshop on Modelling and Testing, vol(X), Wien, Austria,September2000. pp.45-50.
    [86]Bernard Widrow. Statistical Theory of Quantization[J]. IEEE Trans. Instrum. Meas.vol(45), no.2,1996. pp.353-361.
    [87]Bernard Widrow. Quantization Noise, Roundoff Error in Digital Computation[J], SignalProcessing, Control, and Communications.2008
    [88]解本钊非均匀采样信号理论与DITHER技术应用研究.[D].哈尔滨工业大学,2004
    [89]P. Carbone. Effect of additive dither on the resolution of ideal quantizers[J]. IEEE Trans.Instrum.Meas, vol(43), no.3,,June1994, pp.389-396.
    [90]Abuelma'atti, M.T. Harmonic and intermodulation performance of analogue-to-digitalconverters with multibit errors and additive dither[J], Proc. Inst. Elect. Eng. Science,Measurement Technology, vol(149), No.3, May2002pp.127-137.
    [91]T. Watanabe, T. Mizuno, T. Terasawa, et al. An all-digital A/D converter for increasedresolution with a222-delay-unit TAD architecture using moving-average filtering[C],in Proc. of8th IMEKO TC4Workshop on Modelling and Testing, Perugia, Italy,,September2003. pp.81-84.
    [92]R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy. A Theory of Non-SubtractiveDither[J]. IEEE Transactions on Signal Processing, vol.(48),2000. pp.499-516
    [93]R.A.Wannamaker, S.P.Lipshitz, J.Vanderkooy, et al. A mathematical theory ofnon-subtractive dither[J]. IEEE Trans. on Signal Processing, vol(48) no.2, Feb.2000.pp.499–516.
    [94]张占鹏. Dither在ADC中的研究与应用[D].电子科技大学,2007
    [95]宋克检,杨军.基于FPGA的快速均匀分布随机数发生器[J].云南大学学报,2007,19(S2).:279-282
    [96]P. A. Traverso, D. Mirri, G. Pasini, et al. A nonlinear dynamic S/H-device model basedon a modified Volterra series: identification procedure and commercial CAD toolimplementation[J],IEEE Trans. Instrum. Meas., vol(52), no.4, Aug.2003, pp.1129–1135.
    [97]P. Arpaia, P. Mikulik, Dynamic error correction of integrating analog-to-digitalconverters by using Volterra filtration[C], Proceedings of5th. International Workshopon Modelling and Testing, Vienna Sept.25-28,2000. pp.39-44.
    [98]Pavol Mikulik, Jan Saliga.Volterra Filtration Technique for Error Correction, Based onan A-priori Error model[J]. IEEE Instrumentation and Measurement TechnologyConference Budapest, Hungary, May2001.pp.21-23.
    [99] H. Lundin, Post-correction of analog-to-digital converters[D], Royal Inst. ofTechnology, Stockholm, Sweden,2003.
    [100] Concei o Líbano Monteiro, Pasquale Arpaia, António Cruz Serra. Analytical designof dual-tone signal for phase-plane testing[J]. Measurement vol(43)No32010pp.434-446.
    [101] Conceigio Libano Monteiro, Pasquale Arpaia, Antonio Cruz Serra. Phase-planecharacterization of analog-to-digital converters[C]. IMTC2004-Insmmentation andMeasuremen Technology Conference.2004.pp.537-542.
    [102] N. Giaquinto, M. Savino, A. Trotta. Detection, digital correction and global effect ofA/D converters nonlinearities[J], Smolenice Castle, Slovakia,1996, pp.122-127.
    [103] P. Arpaia, L. Michaeli, S. Rapuano. Compensation of intrinsic nonlinearity ofSAR’s[J], in Proc. of Instrumentation and Measurement Technology Conference, vol.1,Anchorage, AK, May2002. pp.725-730.
    [104] Jian-Yi Wu, Zhenyong Zhang, Rajaram Subramoniam, et al. A107.4dB SNRMulti-Bit Sigma Delta With1-PPM THD at0.12dB From Full Scale Input[J]. IEEEJOURNAL OF SOLID-STATE CIRCUITS, vol(44), no.11,2009pp.3060-3066.
    [105] X.Wang, P.Kiss, U.Moon, et al. Digital estimation and correction of DAC errors inmulti-bit delta-sigma’s[J]. Electron.Lett.,vol.37, No.7,2001. pp.414–415.
    [106] X. Wang, P.Kiss, U.Moon, et al, Digital correlation technique for the estimation andcorrection of DAC errors in multibit MASH delta-sigma’s[C], in Proc. of4th IEEADDA–7th IMEKO TC-4Workshop on Modelling and Testing, Prague, CzechRepublic, June2002. pp.39-42.
    [107] A Panigada, I Galton. Digital background correction of harmonic distortion inpipelined adc[J]. IEEE Trans. Circuits Syst. I, vol(53), No.92006, pp.1885-1895.
    [108] S. Sonkusale, J. Van der Spiegel, Mixed-signal calibration of pipelinedanalog-to-digital converters[J], in Proc. of IEEE Int. on Systems-on-Chip (SOC),September2003. pp.327-330.
    [109] Y. Chiu, C.W. Tsang, B. Nikolic. Least mean square adaptive digital backgroundcalibration of pipelined analog-to-digital converters[J], IEEE Trans. on Circuits andSyst. I, vol.51, No.1, January2004. pp.38–46.
    [110] A. Delic-Ibukic, D. M. Hummels, Continuous digital calibration of pipelineA/Dconverters[J], in Proceedings of IEEE International Instrumentation and MeasurementTechnology Conference, May2005, pp.2–6.
    [111] J.Ming, S. H. Lewis, An8-bit80-Msample/s pipelined analog-to-digital converter withbackground calibration[J], IEEE Journal of Solid-State Circuits, vol(36), Oct.2001pp.1489–1497.
    [112] Bjorsell N, Handel P. Achievable Performance by Postcorrection Utilizing DynamicModeling of the Integral Nonlinearity[J]. EURASIP Journal on Advances in SignalProcessing, Volume2008, Article ID497187,10pages.
    [113] Saada N. H., Guindi R. S., Salama A. E, A New Approach for Modeling theNonlinearity of Analog to Digital Converters Based on Spectral Components[J].Behavioral Modeling and Simula-tion Workshop, Proceedings of the2006IEEEInternational, September2006, pp.120–125.
    [114] Henrik F.Lundin, Peter H ndel, Mikael Skoglund. Bounds on the performance ofanalog-to-digital converter look-up table post-correction[J].Measurement vol(42)2009.pp.1164–1175.
    [115] Henrik Lundin.Achievable performance by post correction utilizing dynamic modelingof the integral nonlinearity[J]. EURASIP Journal on Advances in Signal Processing,2008. pp.704-714.
    [116] L.Michaeli, J. aliga, L.Sochová. Integral Nonlinearity Correction Algorithm Based onError Table Optimizing and Noise Filtering[J]. MEASUREMENT SCIENCEREVIEW, vol(8), Section1, No.2,2008,pp.29-32.
    [117] C.L.Monteiro, P.Arpaia, A.C.Serra. Dual-tone analysis for phase-plane coverage inmetrological characterization[J]. Proc. of IEEE IMTC2003,Vail,USA,May2003,pp1334–1339.
    [118].Blair. Selecting test frequencies for two-tone phase-plane analysis of ADCs[J], IEEETrans. Instrum. Meas., vol(51) no.5, Oct.2002. pp.976–979.
    [119] H.Lundin, T.Andersson, M.Skoglund, et al. Analog-to-digital converter errorcorrection using frequency selective tables[C], in Proceedings of the Radio Vetenskapoch Kommunikation (RVK '02), Stockholm, Sweden, June2002. pp.487-490.
    [120] H.Lundin, M.Skoglund, and P.H ndel. A Criterion for Optimizing Bit-ReducedPost-Correction of AD Converters[J], IEEE Transactions on Instrumentation andMeasurements, vol(53),2004. pp.1159-1166.
    [121] Boris Murmann.Limits on ADC power dissipation[J]. Analog Circuit Design.2006,Part III,pp.351-367.
    [122] D.Dardari. Joint clip and quantization effects characterization in OFDM receivers[J],IEEE Trans. Circ. and Syst. I: Regular Papers, vol.53, no.8, Aug.2006, pp.1741–1748.
    [123] Mingdeng Chen. Low-voltage low-power LVDS drivers[J], Solid-State Circuits, IEEEJournal of, vol.40, no.2, Feb.2005,pp.472-479.
    [124] V Bratov, J Binkley, V Katzman, et al. Architecture and implementation of alow-power LVDS output bus for high-speed applications[J], Circuits and Systems I:Regular Papers, IEEE Transactions on Circuits and Systems I: Funda-mental Theoryand Applications, IEEE Transactions on, vol.53, no.10, Oct.2006. pp.2101-2108.
    [125] Steven M. Kay著,罗鹏飞等译.统计信号处理基础——估计与检测理论[M].第一版,北京:电子工业出版社,2003:24.