W型火焰锅炉燃用无烟煤低NOx燃烧技术机理和模化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭在我国的能源战略上举足轻重,在S02得到有效控制的同时,NOx的污染严重性日渐显现,于是大量控制煤粉氮氧化物排放的方法与技术出现,但燃用无烟煤的W型火焰锅炉的NOx排放量远高于一般燃煤锅炉,由于无烟煤的燃烧特性和W炉的燃烧特点,还未出现有效的控制方法,于是了解无烟煤的燃烧和NOx排放特性,寻找有效的控制W型火焰锅炉燃用无烟煤的高NOx排放量的燃烧技术十分必要。
     本文按照“无烟煤燃烧和NOx生成机理研究—无烟煤一维悬浮燃烧试验——W炉冷态模化试验和数值模拟计算—W炉热态模化试验”的研究思路探究了无烟煤和W炉内的燃烧特性以及W炉燃用无烟煤时NOx的生成与控制方法。
     在热天平试验台上进行无烟煤燃烧动力学特性研究,并建立了综合燃烧评价模型,发现煤粉挥发分析出主要受煤质本身特性的影响,粒径对其影响甚微;无烟煤着火温度高,稳燃和燃尽性能一般,可燃性差;通过综合判别模型认定无烟煤为劣等燃烧效果的煤种。
     在固定床试验台上进行了无烟煤燃烧特性和NOx生成规律研究。无烟煤的燃烧速度很慢,其NO生成率随温度的升高而降低;无烟煤本身的挥发分含量是其煤质特性中影响其NO生成率最关键的因素,其N含量与NO生成率并没有必然的联系,O含量对NO生成率的影响规律与挥发分类似。
     利用固定床试验台对无烟煤燃料N的转化规律和其焦炭对NO的还原规律进行了研究,并对不同的研究方法进行了比对。在本文试验条件下,在1200℃,6%氧浓度和200-250目的煤粉粒径下,无烟煤挥发分N的转化率最低,而对于焦炭N来说,在1200℃,1%氧浓度和粒径为250-300目的条件下时转化率最低,1000℃的制焦温度对于控制NO生成来说是最差的;无烟煤燃料型NO中,焦炭NO占绝大部分;煤粉挥发分N向NO的转化率要高于燃料N,焦炭N最低;在800℃下制得的无烟煤焦炭在1200℃和粒径为200-250目条件下时还原活性最强;燃烧排放气体中的CO/CO2值越大表明焦炭还原效果越差;在条件相同的情况下,烟煤焦炭对NO的还原效果要优于无烟煤焦炭,这是同等工况下无烟煤燃烧NO生成率要高于烟煤的关键原因。
     基于固定床试验结论,建立了简化的燃料N转化模型和焦炭还原NO模型。燃料N转化模型可以准确地定性预测不同燃烧条件下燃料N的转化规律,发现在不同的燃烧条件下,对燃料N转化起主导作用的反应不相同;在焦炭还原NO模型中,发现公式RNO=4.18×10-4exp(-17500/T)A(?) PNO更适合用于计算焦炭还原NO量。
     在一维沉降炉试验台上,对无烟煤在实际悬浮燃烧过程中的燃烧特性及NOx排放特性进行试验研究。燃用无烟煤时,最佳的炉内温度在1400-C左右,如采用空气分级燃烧,主燃烧区域过量空气系数应选择0.8-0.9附近,燃尽区域则应选择在1.1附近;采用一维沉降炉燃用无烟煤燃尽率低,可通过增加炉内停留时间来提高燃尽率,因而W炉是燃用无烟煤的最优选炉型。
     根据机理研究和一维燃烧试验,简化燃料N转化过程中的复杂反应,建立了无烟煤一维燃烧燃料N的转化模型,得到的计算结果与实测结果较为吻和。通过该模型的应用发现,无烟煤粉粒径的变化对NO排放量的影响较小,在空气分级燃烧中主燃区过量空气系数控制在0.8-0.9之间较为适宜。
     针对W炉燃烧特性,提出HAP低NOx燃烧技术。利用FLUENT计算软件,对采用该技术的W炉内流场进行模拟计算,并进行热态计算观察其对炉内温度场及NOx排放的效果,同时根据数值模拟计算结果选择性进行了冷态模化试验。试验结果认为HAP低NOx燃烧技术较一般W炉燃烧方法有效优化炉内流场,改善炉内结渣情况,并可较大幅度降低NOx排放量;侧墙风喷口处于较高位置,下倾角度为36°,冷灰斗风喷口处于较低位置,上倾角度为90°时既可得到较长的主气流射流深度和较高的下炉膛充满度,又可以尽可能减少炉内结渣危险性。
     在国内最大的3.5MWe W炉热态模化试验台上,改造后进行热态模化试验,研究各种因素对炉内燃烧和NOx排放的影响,并对不同的W炉空气分级燃烧技术进行对比。不同的W炉空气分级燃烧技术中,带有OFA独立布置的燃烧技术要优于将乏气喷口置于上炉膛侧墙的燃烧技术,除去极限工况的情况下,通过燃烧调整NOx排放量最多可降低33.39%。HAP低NOx燃烧技术是一种适用于W炉燃用无烟煤且可在不降低燃烧效率的情况下有效降低NOx排放量的技术。
Coal is important to the energy strategy in our country. While the SO2was effectively controlled, the pollution of NOx is becoming more and more serious. Then a lot of method and technique of controlling the emission of coal NOx was coming to the fore. Howere, the emission of NOx by the down fired boiler burning anthracite is much higher than the general. Due to the complexity of burning anthracite and the down fired boiler, the effective control method has not been found yet. Thus it is necessary to know the characters of burning anthracite and the emission of NOx, and to look for the burning technique which can effectively control the high emission of NOx by down fired boiler with anthracite.
     The article investigated the combustion characteristics of anthracite and the down fired boiler, and technology to control NOx emission of the down fired boiler, in according with research idea of "anthracite combustion and NOx generation mechanism-one-dimensional combustion test of anthracite-numerical simulation and cold state modeling test of down fired boiler-thermal modeling test of down fired boiler".
     Investigation on coal combustion effect is carried out with a thermogravimetry analysis test bed, and on basis of existing combustion indexes, a model for synthesized combustion effect based on attribute mathematics and connection mathematics was built. It's found that pyrolysis of volatile is affected by coal quality mostly and the particle size has little influence on it; anthracite has high ignition temperature, common stable combustion and burn-off performance, and bad flammability; the anthracite was identified to be low-grade coal on combustion effect.
     Combustion characteristics and NOx formation mechanism of anthracite were investigated on a fixed bed test bed. The combustion velocity of anthracite is small, and NO generation reduces with higher temperature; the content of anthracite volatile is the key factor in coal quality, the content of N has no inevitable relationship with NO generation, and the influence of O on NO generation is similar with volatile.
     The transformation rule of anthracite fuel-N and NO reduction rule of anthracite char were investigated on a fixed bed system, and different research methods were compared. Under the test condition of this article, in1200℃,6%of O2concentration and66.5μm of particle size, the conversion rate of anthracite fuel-N is the lowest, but for char-N, the lowest point appears in1200℃,1%of O2concentration and44um of particle size; to make char in1000℃is the worst to control NO formation; char-NO takes up most of anthracite fuel-NO; conversion rate of volatile-N is bigger than fuel-N, which is bigger than char-N; the anthracite char made in800℃has the best NO reduction activity in condition of1200℃and66.5μm of particle size; the bigger value of CO/CO2could indicate worse NO reduction activity of the char; in the same condition, NO reduction activity of bituminite char is better than anthracite char, which is the key reason to that anthracite NO conversion rate is higher than bituminite NO conversion rate under the same condition. Based on the conclusion of the fixed bed experiment, a simplified conversion model of fuel-N and a simplified char-NO reduction model were built. The fuel-N conversion model can forecast the fuel-N conversion rule in different combustion conditions qualitatively, and it's found that in different combustion conditions, different reactions play a leading role in fuel-N conversion; in the char-NO reduction model, the formula RNO=4.18×10-4exp(-17500/T)AcPNO is more appropriate to calculate the quantity of NO reduction.
     The combustion and NOx emission characteristics of anthracite in suspension burning were studied in a subsiding furnace. The best temperature for lowest NOx emission for anthracite is about1400℃, if air-staged combustion technology is adopted, a of the main combustion area should be0.8-0.9, and a of the burn-out area should be about1.1; burn-off rate of anthracite in a subsiding is low, and could be increased by more residence time in the furnace, therefore, a down fired boiler is the best furnace for anthracite combustion.
     On the basis of mechanism study and subsiding furnace combustion test, a fuel-N conversion model of anthracite in one-dimensional combustion was built, which simplified complex reactions in fuel-N conversion, and the calculated results were close to the actual measurement result. By the application of the model, it's found that particle size had little influence to NO emission, and in air-staged technology, a of the main combustion area should be controlled in about0.8-0.9.
     A new technology-HAP low NOx combustion technology was proposed for combustion characteristics of the down fired boiler. The flow field of the boiler was calculated by FLUENT, and thermal calculation is adopted to watch the influence of HAP technology on furnace temperature and NOx emission, and at the same time, a cold state modeling test bed was set up in according with the results of calculation results, and some tests were carried on the test bed selectively. It's found that HAP technology could optimize the flow field of the boiler, improve the slagging, and reduce NOx emission greatly; in the state of higher side wall nozzle of36°down declination angle and lower bottom ash hopper nozzle of90°up declination angle, jet flow depth of the primary air could be longer, the fullness of the down furnace would be higher, and the slagging danger would be decreased as possibly.
     On the largest3.5Me down fired boiler test bed in the country, a thermal modeling test was carried out after transformation, the influence of factors on combustion and NOX emission was investigated, and different air-staged technologies of down fired boiler were compared. The technology with independent OFA is better than the technology with exhaust air nozzle on side wall of the upper furnace; for the technology with independent OFA, the NOx emission would be decreased33.39%by adjustment of combustion. HAP low NOx combustion technology is suitable for a down fired boiler burning anthracite, and could reduce NOx emission with high combustion efficiency.
引文
[1]李琼慧,郭基伟,王乾刊.2030年世界能源与电力发展展望[J].电力技术经.2009,21(4):4-9.
    [2]李威.论国际环境法的科技生态化目标—以应对气候变化为视角(下)[J].世界贸易组织动态与研究.2009,(6):8-14.
    [3]刘志逊,陈河替,黄文辉.我国煤炭资源现状及勘查战略[J].煤炭技术.2005,24(10):1-2.
    [4]任玉明.中国无烟煤资源与性质[J].洁净煤技术.2004,10(3):8-10.
    [5]戴和武,张意颖,谢可玉,王伟黎.无烟煤资源与市场展望[J].中国煤炭.1999,25(1,2):17-21.
    [6]牛克洪.我国煤炭行业发展的十大态势[J].中国煤炭.2009,35(8):8-10,15.
    [7]李宏柳,谭云军.劣质无烟煤在新型干法窑上的应用[J].大众科技.2009,(10):61-62.
    [8]宋景慧,湛志刚,刘庆鑫.某电厂600 MW"W"火焰锅炉燃用劣质无烟煤存在问题分析[J].锅炉技术.2009,40(5):54-58.
    [9]杨震,庄恩如,张建文,曹子栋.大型电站锅炉采用切向燃烧方式燃用无烟煤的研究[J].动力工程.2006,26(6):766-772.
    [10]孙超凡,李乃钊,杨华,徐齐胜,宋景慧,余岳溪,温智勇.W火焰锅炉燃用劣质无烟煤的稳燃技术[J].动力工程.2005,25(2):201-206.
    [11]韩奎华,高寒,翟雷,刘江,王道福.600 MW"W"火焰锅炉结焦原因分析与防止措施[J].锅炉技术.2005,36(5):47-50.
    [12]张静媛,刘明福,李润林,陈广利,麻瑜,孟涛,郝艳红.W火焰炉NOx排放试验研究[J].电站系统工程.2006,22(6):13-15.
    [13]苗长信,王建伟,车刚.600MW"W"火焰锅炉降低NOx的调试分析[J].山东电力技术.2004,(2):6-9.
    [14]黄诗坚.NOx的危害及其排放控制[J].电力环境保护.2004,20(1):24-25.
    [15]熊蔚立,黄伟,张国斌.火电厂氮氧化物(NOx)的危害和防治[J].湖南电力. 2004,22(1):52,61-62.
    [16]M.A. Wojtowicz, J. R. Pels, J.A. Moulijn. N2O emission control in coal combustion[J]. Fuel.1994,73(9):1416-1422.
    [17]乔军师.NOx空气氧化与液相吸收实验研究[D].天津:天津大学硕士论文2005:1-10.
    [18]编委会.2009中国年鉴.北京:新华社,2009:2-50.
    [19]刘孜,易斌,高晓晶,井鹏,岳涛,庄德安.我国火电行业氮氧化物排放现状及减排建议[J].环境保护.2008,402(88):7-10.
    [20]P. Glarborg, A. D. Jensen, J.E. Johnsson. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science.2003,29(2):89-113.
    [21]M.J. Aho, J.P. Hamalainen, J.L. Tummavuori. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800℃[J]. Fuel.1993,72(6): 837-841.
    [22]J.Friebel, R. F. W. Kosel. The fate of nitrogen during pyrolysis of German low rank coals--a parameter study [J]. Fuel.1999,78(8):923-932.
    [23]K.M. Thomas. The release of nitrogen oxides during char combustion[J]. Fuel. 1997,76(6):457-473.
    [24]S.C. Hill, L.D. Smoot. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science.2000,26(4-6): 417-458.
    [25]R.P. van der Lans, P. Glarborg, K. Dam-Johansen. Influence of process parameters on nitrogen oxide formation in pulverized coal burners[J]. Progress in Energy and Combustion Science.1997,23(4):349-377.
    [26]A. Arenillas, R.I. Backreedy, J.M. Jones, J.J. Pis, M. Pourkashanian, F. Rubiera, A. Williams. Modelling of NO formation in the combustion of coal blends[J]. Fuel. 2002,81(5):627-636.
    [27]T.L. Bris, F. Cadavid, S. Cailat, S. Pietrzyk, J. Blondin, B. Baudoin. Coal combustion modelling of large power plant, for NOx abatement[J]. Fuel.2007,86(14): 2213-2220.
    [28]C.P. Fenimore. Reactions of fuel-nitrogen in rich flame gases[J]. Combustion and Flame 1976,26:249-256.
    [29]A. Williams, M. Pourkashanian, J.M. Jones, L. Rowlands. A review of NOx formation and reduction mechanisms in combustion systems, with particular reference to coal[J]. J. Institute of Energy.1997,70(36):102-113.
    [30]钟北京,傅维标.燃烧过程中快速型氧化氮形成机理及其影响因素[J].燃烧科学与技术.1997,3(4):388-393.
    [31]N. Schaffel, M. Mancini, A. Szle, K.R. Weber. Mathematical modeling of MILD combustion of pulverized coal[J]. Combustion and Flame.2009,156(9):1771-1784.
    [32]J.A. Miller, C. T. Bowman. Mechanism and modeling of nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science.1989,15(4):287-338.
    [33]F.J. Pereira, J. M. Beer, B. Gibbs, A.B. Hedley. NOx emissions from fluidized-bed coal combustors[C]. Symposium (International) on Combustion.1975, 15(1):1149-1156.
    [34]A.N. Hayhurst, I.M. Vince. Nitric oxide formation from N2 in flames:The importance of "prompt" NO[J]. Progress in Energy and Combustion Science.1980,6, (1):35-51
    [35]温智勇,宋景慧.锅炉燃烧调整对氮氧化物排放的影响[J].广东电力,2004,17(4):25-28,77.
    [36]M. C. Drake, S. M. Correa, R.W. Pitz, W. Shyy, C.P. Fenimore. Superequilibrium and thermal nitric oxide formation in turbulent diffusion flames[J]. Combustion and Flame.1987,69(3):347-365.
    [37]C. T. Bowman. Kinetics of pollutant formation and destruction in combustion[J]. Progress in Energy and Combustion Science.1975,1(1):33-45.
    [38]Bartok W, Sarofim A F. Fossil fuel combustion[M]. New York:John Wiley and Sons, Inc,1990.
    [39]周永刚,邹平国,赵虹.燃烧特性影响燃料N转化率试验研究[J].中国电机工程学报.2006,26(15):63-67.
    [40]J. P. Spinti, D. W. Pershing. The fate of char-N at pulverized coal conditions [J]. Combustion and Flame.2003,135(3):299-313.
    [41]D. Phong-Anant, L. J. Wibberley, T.F. Wall. Nitrogen oxide formation from australian coals[J]. Combustion and Flame.1985.62(1):21-30.
    [42]高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的试验研究[J].中国电机工程学报.2004,24(8):238-242.
    [43]D. W. Pershing, J. O. L. Wendt. Pulverized coal combustion:The influence of flame temperature and coal composition on thermal and fuel NOx[C]. Symposium (International) on Combustion.1977,16(1):389-399.
    [44]牛志刚.煤-水煤浆燃料氮析出特性和燃料型NOX生成特性研究[D].杭州:浙江大学,2004.
    [45]J. C. Chen, S. Niksa. Suppressed nitrogen evolution from coal-derived soot and low-volatility coal chars[C]. Symposium (International) on Combustion.1992,24(1): 1269-1276.
    [46]S. Kambara, T. Takarada, M. Toyoshima, K. Kato. Relation between functional forms of coal nitrogen and NOx emissions from coal combustion [J]. Fuel.1993,72(5): 695-695.
    [47]景晓霞,常丽萍,谢克昌.煤热解气化过程中NOx及其前驱体的形成研究[J].煤化工.2004,32(5):49-58.
    [48]Z. Wu, Y. Ohtsuka. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks:formation and sourced of N2[J]. Energy Fuels.1997,11(2):477-482.
    [49]L.L Tan, C.Z. Li. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅱ. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal[J]. Fuel.2000,79(15): 1891-1897.
    [50]郭永红,孙保民,康志忠.超细粉再燃技术中HCN对NOx的生成和还原的影响[J].电站系统工程.2005,21(2):15-17
    [51]刘海峰,刘银河,刘艳华,车得福.热解及燃烧过程中燃料氮的N2转化特性[J].西安交通大学学报.2008,42(3):350-353
    [52]J. Duxbury, G.B. Welford. The effect of particle-size on NOx emissions during the firing of pulverized coal in a shell-boiler [J]. Journal of the Institute of energy. 1989,62(452):147-151.
    [53]T. Abbas, P. Consten, F.C. Lockwood, C.A. Romo-Millares. The effect of
    [65]曹欣玉,董洪彬,牛志刚,应凌俏,周俊虎,刘建忠,岑可法.无烟煤挥发分和焦炭独立燃烧过程中NO生成规律[J].燃料化学学报.2005,33(2):140-145.
    [66]董洪彬,曹欣玉,牛志刚,应凌俏,周俊虎,刘建忠,岑可法.烟煤挥发分和焦炭分解燃烧过程中NO释放特性[J].煤炭学报.2005,30(1):95-99.
    [67]J.R. Pels, M.A. Wojtowicz, J.A. Moulijn. Rank dependence of N2O emission in fluidized-bed combustion of coal[J]. Fuel.1993,72(3):373-381.
    [68]S.D. Brown, K. M. Thomas. A comparison of NO release from coals and entrained-flow reactor chars during temperature-programmed combustion[J]. Fuel. 1993,72(3):359-365.
    [69]J.M.Jones, P.M.Patterson, M.Pourkashanianand, A.Williams. Approaches to modeling heterogeneous char NO formation/destruction during pulverized coal combustion[J]. Carbon.1999,37(10):1545-1552.
    [70]梁秀俊,高正阳,阎维平.煤粉再燃过程中HCN与NH3的反应机理分析[J].华北电力技术.2004,(4):19-21.
    [71]D.J.Dimitriou, N.Kandamby, F.C.Lockwood. A mathematical modeling technique for gaseous and solide fuel reburning in pulverized coal combustors[J]. Fuel. 82(15-17):2107-2114.
    [72]J.E.Johnsson. Formation and reduction of nitrogen oxides in fluideized-bed combustion[J]. Fuel.1994,73(9):1398-1415.
    [73]L.J. Muzio, J.K. Arand, D.P. Texixeria. Gas phase decomposition of nitrix oxide in combustion products[C]. Sixteenth Symposium (International) on combustion, The combustion institute, Pittsburgh, Penn.1977:199-208.
    [74]I. Aarna, E.M. Suuberg. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel,1997,76(6):475-491.
    [75]I. Aarna, E.M. Suuberg. The role of carbon monoxide in the NO-char reaction[J]. Energy&Fuels.1999,13(6):1145-1153.
    [76]L.K. Chan, A.F. Sarofim, J.M. Beer. Kinetics of the NO-carbon reaction at fluidized bed combustor conditions[J]. Combustion Flame.1983,52(1):37-45.
    [77]J M Levy, L K Chan, A F Sarofim, J M Beer. NO-char reactions at pulverized coal flame conditions[C]. Symposium (international) on pulverized coal flame conditions. Pittsburgh,1981.
    [78]G.G. De Soete. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion[J]. Symposium(International) on Combustion. 1991,23(1):1257-1264.
    [79]G. Feng, C.H. William. Effects of CaO and burnout on the kinetics of NO reduction by Beulah zap char[J]. Symposium(International) on Combustion.1996, 26(2):2251-2257.
    [80]C.O. Sorensen, J.E. Johnsson, A. Jensen. Reduction of NO over wheat straw char[J]. Energy & Fuel.2001,15(6):1359-1368.
    [81]Y.H.Song, D.W.Blair, V.J.Siminski, W.Bartok. Conversion of fixed nitrogen to N2 in rich combustion[J]. Symposium (international) on Combustion,1981,18(1):53-63.
    [82]J.M. Commandre, B.R. Stanmore, S. Salvador. The high temprerature reaction of carbon with nitric oxide[J]. Combustion and Flame.2002,128(3):211-216.
    [83]阎维平,高正阳,刘忠,王春昌.煤粉细度对再燃还原气氛氧化物影响的试验研究[J].电力科学与工程,2003,2:1-4.
    [84]俞云,姚洪,于敦喜,刘小伟,隋建才,曹倩,徐明厚.燃烧过程中焦炭的孔隙结构演变与颗粒物的形成[J].动力工程.2007,27(4):579-583.
    [85]刘茂省.空气分级和煤粉再燃技术机理及工程应用研究[D].杭州:浙江大学,2009:32-35,57-58.
    [86]W. Fan, Z. Lin, Y. Li, Y. Li. Effect of temperature on NO release during the combustion of coals with different ranks[J]. Energy and Fuels.2010,24:1573-1583.
    [87]J.C. Kramlich, W.P. Linak. Nitrous-oxide behavior in the atmosphere and in combustion and industrial-system[J]. Progress in energy and combustion science. 1994,20(2):149-202.
    [88]J. Rodriguezmirasol, A.C. Ooms, J.R. Pels, F. Kapteijn, J.A. Moulijn. NO and N2O decomposition over coal char at fluidized-bed combustion conditions[J]. Combustion and Flame.1994,99(3-4):499-507.
    [89]S.K. Goel, A. Morihara, C.J. Tullin, A.F. Sarofim. Effect of NO and N2O concentration on N2O formation during coal combustion in a fluidized-bed combustor: Modeling results[C]. Symposium(International) on combustion.1994,25(1): 1051-1059.
    [90]安恩科,于娟,朱基木,汪颖新.350 MW电站燃煤锅炉NOx反应特性研究[J].同济大学学报(自然科学版).2007,35(6):801-805.
    [91]R. Leithner, B. Lendt, H. Miilen. Science and Technology of Industrial and Utility Application [M]. New York:Hemisphere Publishing Corporation,1988:57.
    [92]陈彦广,王志,郭占成.燃煤过程NOx抑制与脱除技术的现状与进展[J].过程工程学报.2007,7(3):632-638.
    [93]陆涛.摆动式水平浓淡风煤粉燃烧器在670t/h锅炉的应用研究[J].节能技术.2007,25(3):266-268.
    [94]N.A. Burdett. The Effect of Air Staging on NOx Emission from a 500MW Down-fire Boiler [J]. J. Inst. Energy.1987,9:43-58.
    [95]成庆刚,李争起,滕玉强,庄前玉,贾自臣,张寅,庄国中,果志明.低NOx排放燃烧技术及燃烧优化的试验研究[J].锅炉技术.2005,36(5):32-36,46.
    [96]L.I.Diez, C. Cortes, J. Pallares. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation[J]. Fuel. 2008,87(7):1259-1269.
    [97]李芳芹,魏敦崧,马京程,蒋诚,任建兴,章德龙.燃煤锅炉空气分级燃烧降低NOx排放的数值模拟[J].燃料化学学报.2004,32(5):537-541.
    [98]洪湖,林正春,代茂林,熊兴才.常规大容量煤粉锅炉炉内通过燃烧控制降低NOx的主要措施探讨[J].科技信息.2006,(6):185-185,216.
    [99]W.Y. Chen, B.B. Gathitu. Design of mixed fuel for heterogeneous reburning[J]. Fuel.2006,85(12-13):1781-1793.
    [100]P.M. Maly, V.M. Zamansky, L. Ho, R. Payne. Alternative fuel reburning[J]. Fuel.1999,78(3):327-334.
    [101]周俊虎,刘广义,刘海峰,王智化,魏林生,张彦威,岑可法.神华煤燃烧再燃中NOx生成与还原试验研究[J].浙江大学学报(工学版).2007,41(3):499-503.
    [102]宋亚强,魏苏文.细粉再燃降低煤粉炉NOx排放的数值研究[J].江苏电机工程.2007,(4):54-57.
    [103]J. Cances, J.M. Commandre, S. Salador, P. Dagaut. NO reduction capacity of four major solid fuels in reburning conditions-Experiments and modeling[J]. Fuel. 2008,87(3):274-289.
    [104]H.P Wan, C.S. Yang, B.R. Adams, S.L. Chen. Controlling LOI from coal reburning in a coal-fired boiler[J]. Fuel.2008,87(3):290-296.
    [105]R. Zarnitz, S.V. Pisupati. Evaluation of the use of coal volatiles as reburning fuel for NOx reduction[J]. Fuel.2007,86(4):544-559.
    [106]王大军,毛科,邢伟,等.燃煤锅炉采用天然气再燃烧技术降低NO排放的研究[J].四川电力技术.2002,(6):14-16.
    [107]文军,齐春松,王月明,等.细煤粉再燃技术在我国燃煤锅炉上的首次工程应用[J].热力发电.2004,(8):29-31.
    [108]M. Ishida, H. Jin. A New Advanced Power-generation System Using Chemical-looping Combustion [J]. Energy.1994,19(4):415-422.
    [109]H. Herzog, E. Drake. Carbon Dioxide Recovery and Disposal fromLarge Energy System[J]. Annual Review of Energy and the Environment.1996, 21(2):145-166.
    [110]M.W. Alan, J.D. Edward, J.J. Bassm. Recovering CO2 from Large andMedium Size Stationary Combustors [J]. J. Air Waste Manage.Assoc.,1991.41(3):449-454.
    [111]周俊虎,宋国良,刘建忠,陈云,岑可法.高浓度煤粉燃烧低NOx排放特性的试验研究[J].中国电机工程学报.2007,27(2):42-47.
    [112]杨冬,路春美,王永征.不同种类煤粉燃烧NOx排放特性试验研究[J].中国电机工程学报.2007,27(5):18-21.
    [113]王海强,吴忠标.烟气氮氧化物脱除技术的特点分析[J].能源工程.2004,(3):27-30.
    [114]E. Sada, H. Kumazawa, I. Kudo, T. Kondo. Absorption of NO in aqueous mixed solution of NaCIO2 and NaOH [J]. Chemical Engineering Science.1978, (33): 315-318.
    [115]J.B. Lee, S.D. Kim. Kinetics of NO reduction by urea solution in a pilot scale reactor[J]. Journal of Chemical Engineering of Japan.1996, (4):620-627.
    [116]J.M. Kasper, C.A. Clausen, C.D. Cooper. Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas·-phase oxidation of nitric oxide[J]. Air & Waste Management Association.1996,46(7):127-133.
    [117]M. Inomata, M.A. Vamoto, Y. Murakami. Mechanism of the Reduction of NO and NH3 on Vanadium Oxide Catalyst in the Presence of Oxygen under the Dilute Gas Condition [J]. J. Catal.,1980,62(1):140-148.
    [118]U.S. Ozkan, Y.P. Cai, M.W. Kumthekar, L.P. Zhang. Role of Ammonia Oxidation in Selective Catalytic Reduction of Nitric Oxide over Vanadia Catalysts [J]. J. Catal.,1993,142(1):182-197.
    [119]L.F. Cordoba, W.M.H. Sachtler, C.M.D. Correa. NO reduction by CH4 over Pd/Co-sulfated zironia catalysts [J]. Applied catalysis:Environmental,2005,56(4): 269-277.
    [120]L. Li, J. Chen, S. Zhang, N. Guan, M. Richter, R. Eckelt, R. Fricke. Study on metal-MFI/cordierite as promising catalysts for selective catalytic reduction of nitric oxide by propane in excess oxygen [J]. Journal of Catalysis,2004,228(1):12-22.
    [121]Y. Wang, Z. Huang, Z. Liu, Q. Liu. A novel activated carbon honeycomb catalyst for simultaneous SO2 and NOx removal at low temperature [J]. Carbon,2004, 42(2):445-448.
    [122]R.K. Lyon. The NH3-NO-O2 Reaction [J]. Int. J. Chem. Kinet.,1976,6(2): 315-318.
    [123]A. M. Dean, A.J. De Gregoria, J.E. Hardy, Hurst, Lyon. Non-catalytic Method for Reducing the Concentration of NO in Combustion Effluents by Injection of Ammonia of Temperatures Greater than about 1300 Degree K [P]. US Pat.:4507269, 1985-03-26.
    [124]J.A. Silver, C.E. Kolb. Kinetics Measurements for the Reaction of NH2+NO over the Temperature Range 294-1215 K [J]. Phys. Chem.,1982,86(17):3240-3246.
    [125]D. Lucas, N.J. Brown. The influence of Thiophene on the Selective Reduction of NO by NH3 [J]. Combust. Flame,1983,49(1,3):283-288.
    [126]R.K. Lyon, J.E. Hardy. Discovery and Development of the Thermal DeNOx Process [J]. Ind. Eng. Chem. Fundam.,1986,25(1):19-24.
    [127]H.R. Paul, H. Matzing. Electron Beam Induced Purification of Dilute Off Gases from Industrial Processes and Automobile Tunnels [J].Radiat. Phys. Chem.,1993, 42(4,6):183-203.
    [128]H. Matzing, H.R. Paul, H. Bunz. Dynamics Of Particulate Formation in the Electron Beam Dry Scrubbing Process [J]. J. Aerosol Sci.,1988,19(5):883-885.
    [129]S. Majumdar, A. Sengupta, J.S. Cha, K.K. Sirkar. Simultaneous SO2/NO Separation from Flue Gas in a Contained Liquid Membrane Permeator [J]. Ind. Eng. Chem. Res.,1994,33(3):667-675.
    [130]V.D.M Peter, V.D.B. Pim, K. Bram,. NOx Removal from Flue Gas by an Integrated Physiochemical Absorption and Biological De-nitrification Process [J]. Biotechnol. Bioeng.,2005,90(4):433-441.
    [131]马双忱,赵毅,马宵颖,郭天祥.活性炭床加微波辐射脱硫脱硝的研究[J].热能动力工程,2006,21(4):338-341.
    [132]董冰岩,张大超.脉冲放电烟气脱硫脱硝技术研究进展[J].环境污染治理技术与设备,2006,7(9):17-20.
    [133]J J Ypark, J S Chang. Simultaneous removal of NOx and SO2 from NO SO2 CO2 N2 O2 gas mixtures by corona radical shower systems [J]. J.Phys. D,1999,32: 1007-1011.
    [134]容銮恩,袁镇福,刘志敏,田子平.电站锅炉原理[M].中国电力出版社:66,162—167
    [135]杨震,庄恩如,张建文,曹子栋.大型电站锅炉采用切向燃烧方式燃用无烟煤的研究[J].动力工程,2006,26(6):765—772.
    [136]袁颖,相大光.我国w火焰双拱锅炉燃烧性能调查研究[J].中国电力,1999,32(11):1—6.
    [137]K. Bratek, W. Bratek, I. Gerus-Piasecka, S. Jasienko, P. Wilk. Properties ans structure of different rank anthracites [J]. Fuel,2002,81(1):97-108.
    [138]J.M. Lee, J.S. Kim, J.J. Kim. Comminution characteristics of Korean anthracite in a CFB reactor[J]. Fuel,2003,82(11):1349-1357.
    [139]J.W. Zondlo, M.R. Velez. Development of surface area and pore structure for activation of anthracite coal[J]. Fuel Processing Technology,2007,88(4):369-374.
    [140]何宏舟,骆仲泱,岑可法.无烟煤流化床燃烧中热破碎现象的研究综述[J].热能动力工程.2006,21(3):221-226.
    [141]何宏舟,骆仲泱,岑可法.不同热分析方法求解无烟煤燃烧反应动力学参数的研究[J].动力工程,2005,25(4):493-499.
    [142]陈晓珊,张卫会.W型火焰锅炉技术特点及应用前景分析[J].东北电力学院学报,1994,14(3):135-142.
    [143]毕玉森.W型火焰锅炉及其NOx排放[J].热力发电,1994,(4):5-11.
    [144]樊泉桂.W型火焰锅炉的性能评价[J].动力工程,1994,14(6):45-49.
    [145]李争起,任枫,刘光奎,陈智超,朱群益,孙锐.W火焰锅炉高效低NOx燃烧技术[J].动力工程学报.2010,30(9):645-662.
    [146]柳宏刚,白少林.现役各类W火焰锅炉NOx排放对比分析研究[J].热力发电.2007,(3):1-4.
    [147]方庆艳,周怀春,汪华剑,罗自学,史铁林.3种型号W火焰锅炉结渣特性的数值模拟[J].动力工程,2008,28(5):682-689.
    [148]韩奎华,高寒,翟雷,刘江,王道福.600MW"W"火焰锅炉结焦原因分析与防止措施[J].锅炉技术,2005,36(5):47-50.
    [149]方立军,高正阳,阎维平,惠世恩.低挥发分煤燃烧NOx排放特性的试验研究[J].中国电机工程学报,2003,23(8):211-214.
    [150]F. Ren, Z. Li, Y. Zhang, S. Sun, X. Zhang, Z. Chen. Influence of the Secondary Air-Box Damper Opening on Airflow and Combustion Characteristics of a Down-Fired 300-MWe Utility Boiler[J]. Energy & Fuels,2007,21(2):668-676
    [151]Z. Li, F. Ren, J. Zhang, X. Zhang, Z. Chen, L. Chen. Influence of vent air valve opening on combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler[J]. Fuel,2007,86(15):2457-2462
    [152]F. Ren, Z. Li, J. Jing, X. Zhang, Z. Chen, J. Zhang. Influence of the adjustable vane position on the flow and combustion characteristics of a down-fired pulverized-coal 300 MWe utility boiler. Fuel Processing Technology [J],2008,89(12): 1297-1305
    [153]F. Ren, Z. Li, Z. Chen, J. Wang, Z. Chen. Influence of the down-draft secondary air on the furnace aerodynamic characteristics of a down-fired boiler[J]. Energy & Fuels,2009,23(5):2437-2443
    [154]Z. Li, F. Ren, Z. Chen, G. Liu, Z. Xu. Experimental investigations into gas/particle flows in a down-fired boiler:influence of down-draft secondary air[J]. Energy & Fuels,2009,23(12):5846-5854
    [155]F. Ren, Z. Li, Z. Chen, Z. Xu, G. Yang. Influence of the over-fire angle on the flow field in a down-fired furnace determined by a cold-flow experiment[J]. Fuel. 2011,90(3):997-1003.
    [156]J. Xiang, M. Li, L. Sun, J. Lu, X. Sun. Comparison of nitrogen oxide emissions from boilers for a wide range of coal qualities [J]. International Journalof Thermal Sciences,2000,39(8):833-841.
    [157]张保生,刘建忠,程军,等.微分差热法确定沉降炉试验中低挥发分混煤的着火点[J].浙江大学学报(工学版),2008,42(5):839-842.
    [158]何宏舟,骆仲泱,岑可法.细微粒无烟煤焦在CFB锅炉燃烧室内的燃尽特性研究[J].中国电机工程学报,2006,26(19):97-102.
    [159]郭永浩,王小保,许小刚.四角切圆燃烧方式对无烟煤的适应性[J].中国电机工程学报,2002,22(9):1 55-160.
    [160]曹欣玉,牛志刚,应凌俏.无烟煤燃料氮的热解析出规律.燃料化学学报.2003,3 1(6):538-542
    [161]H. Dou, Z. Chen, J. Huang. Numerical study of anthracite combustion mechanism in a 2000t/d precalciner[J]. Computers and Applied Chemistry. 2007,24(12):1599-1606
    [162]牛志刚,曹欣玉,刘建忠,周俊虎,岑可法.无烟煤锅炉NOx的排放规律[J].动力工程.2004,24(3):406-410
    [163]何宏舟,申良坤,苏亚欣.燃烧福建无烟煤的CFB锅炉炉内脱硝模型[J].燃烧科学与技术.2008,14(6):501-505
    [164]陈建原,孙学信.煤的挥发分释放特性指数和燃烧特性指数的确定[J].动力工程,1987,(5):13-18.
    [165]姜秀民,刘德昌,郑楚光,秦裕琨.油页岩燃烧性能的热分析研究[J].中国电机工程学报,2001,21(8):55-59.
    [166]魏兆龙,郭朝令,杨义波.煤种燃烧稳定性实验研究[J].锅炉技术,1999,30(10):6-9.
    [167]刘文珍,陈孟丽.动力用煤热分析特征指标的研究[J].热力发电,1991,(6): 1-6.
    [168]高正阳,方立军,周健,阎维平.混煤燃烧特性的热重实验研究[J].动力工程,2002,22(3):1764-1767,1749.
    [169]韩洪樵,王涤非,唐林.用快速加热热天平研究煤的可燃性指标[J].工程热物理学报,1990,11(3):342-345.
    [170]仝晓波,申春梅,吴少华,林伟刚,宋文立.煤拔头半焦燃烧特性[J].过程工程学报,2009,9(5):897-903.
    [171]汪新凡.基于属性数学和联系数学的煤灰结渣特性综合评判模型及应用[J].锅炉技术,2006,37(6):47-50.
    [172]聂其红,孙绍增,李争起,张晓杰,吴少华,秦裕琨.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术[J].2001,7(1):72-76.
    [173]曾汉才,姚斌,邱建荣,喻秋梅.无烟煤与烟煤的混合燃烧特性与结渣特性研究[J].燃烧科学与技术,1996,2(2):181-189.
    [174]徐建国,魏兆龙.用热重分析法研究煤的可燃性[J].河南教育学报学报(自然科学版),1998,7(4):41-43.
    [175]朱跃,郭文靖,刘明仁,陈春元.煤的热天平分析试验结果与工业分析数据的相关性研究[J].黑龙江电力技术,1998,20(5):257-263.
    [176]程乾生.属性识别理论模型及应用[J].北京大学学报(自然科学版),1997,33(1):12-20.
    [177]H, Lawrence. The Amounts of NOx and N2O Formed in a Fluidized Bed Combustor during the Burning of coal Volatiles and also of Char[J]. Combustion and Flame.1996,105:341-357.
    [178]Tullin. Formation of NO and N2O Coal Combustion:The Relative Importance of Volatile and Char Nitrogen[C]. Procedding of 12th Int, Conf. on Fluidized-Bed Combustion, ASME,1993:599-609.
    [179]S.L. Chen, M.P. Heap, D.W. Pershing, G.B. Martin. Fate of coal nitrogen during combustion[J]. Fuel.1982,61(12):1218-1224.
    [180]李钧,阎维平,李春燕,等.基于数值计算的煤粉锅炉NOx释放规律研究[J].中国电机工程学报,2009,29(23):13-19
    [181]J.O.L.Wendt. Fundamental coal combustion mechanisms and pollutant formation in furnaces[J]. Progress in Energy and combustion Science.1980,6(2): 201-222.
    [182]J. Yu, M. Zhang, J. Zhang. Experimental and numerical investigations on the interactions of volatile flame and char combustion of a coal particle[J]. Proceedings of the Combustion Institute.2009,32(2):2037-2042.
    [183]D.W. Pershing, J.O.L. Wendt. Relative contributions of volatile nitrogen and char nitrogen to NOx emissions from pulverized coal flames. Ind Engng Chem Process Des Dev 1979; 18:60-7.
    [184]A.C. Bose, K.M. Dannecker, J.O.L. Wendt. Coal composition effects on mechanisms governing the destruction of NO and other nitrogenous species during fuel-rich combustion[J]. Energy and Fuels.1988,2(3):301-308.
    [185]Y.H. Song, J.M. Beer, A.F. Sarofim. Oxidation and devolatilization of nitrogen in coal char[J]. Combustion Science and Technology.1982,28(5-6):177-183.
    [186]刘煜,李冠化,闫安民.挥发分氮和焦炭氮对N20生成的相对贡献的研究方法-对“原煤/焦炭分别燃烧实验法”的研讨[J].中国电机工程学报.2000,20(3):71-75.
    [187]石金明,向军,赵清森,胡松,孙路石,许凯,卢腾飞.原煤与煤焦热解气化过程氮转化特性研究[J].工程热物理学报.2009,30(12):2129-2132.
    [188]周昊,孙国俊,岑可法,樊建人.煤中氮热解析出转化的颗粒模型研究[J].燃料化学学报.2003,31(3):199-203.
    [189]S. Chaiklangmuang, J.M. Jones, M. Pourkashanian, A. Willianms. Conversion of volatile-nitrogen and char-nitrogen to NO during combustion[J]. Fuel.2002,81(18): 2363-2369.
    [190]P.J. Ashman, B.S. Haynes, A.N. Buckley, P.F. Nelson. The fate of char-nitrogen in low-temperature oxidation[C]. Symposium(International) on Combustion.1998,27(2):3069-3075.
    [191]S.D. Brown, K.M. Thomas. A comparison of NO release from coals and entrained-flow reactor chars during temperature-programmed combustion[J]. Fuel. 1993,72(3):359-365.
    [192]S. Badzioch, P.G. W. Hawksley. Kinetics of thermal decomposition of pulverized coal particles[J]. Chem. Process,1970,9(4):521-530.
    [193]H. Kobayashi, J.B. Howard, A.F. Sarofim. Coal devolatilization at high temperatures[C]. Symposium (International) on Combustion,1977,16(1):411-425.
    [194]W. Fu, Y. Zhang, H. Han, D. Wang. A general model of pulverized cola devolatilization[J]. Fuel,1989,68(4):505-510.
    [195]P.R. Solomon, M.B. Colket. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel,1978,57(12):749-755.
    [196]Y.P. Zhang, J. Mou, W.B. Fu. Method of estimating final volatile yield ofpulverized coal devolatilization[J]. Fuel,1990,69(3):401-403.
    [197]傅维标,余卫舵.在变环境温度条件下煤粉热解通过模型的应用[J].工程热物理学报,1991,12(1):91-95.
    [198]G.G. De Soete. Overall reaction rates of NO and N2 formation from fuel nitrogen[C]. Symposium(International) on Combustion,1975,15(1):1093-1102.
    [199]J. Pallares, I. Arauzo, A. Williams. Integration of CFD codes and advanced combustion models for quantitative burnout determination[J]. Fuel,2007,86(15): 2283-2290.
    [200]R. Hurt, J.K. Sun, M. Lunden. A kinetic model of carbon burnout in pulverized coal combustion[J]. Combustion and Flame,1998,113(1-2):181-197.
    [201]R. He, T. Suda, M. Takafuji, T. Hirata, J. sato. Analysis of low NO emission in high temperature air combustion for pulverized coal[J]. Fuel,2004,83(9):1133-1141.
    [202]R. He, J. Sato, C. Chen. Modeling char combustion with fractal pore effects[J]. Combustion Science and Technology,174(4):19-37.
    [203]A. Williams, R. Backreedy, R. Habib, J.M. Jones, M. Pourkashanian. Modelling coal combustion:the current position[J]. Fuel,2002,81(5):605-618.
    [204]房丽丽.煤燃烧过程中氮析出特性及硫氮交互作用的研究[D].山东:山东大学,2007:21-35.
    [205]N.P. Megalos, N.L. Smith, D.K. Zhang. The potential for low NOX from a precessing jet burner of coal[J]. Combustion and Flame,2001,124(1-2):50-64.
    [206]苟湘,周俊虎,周志军,杨卫娟,刘建忠,岑可法.烟煤煤粉及热解产物对NO的还原特性实验研究[J].中国电机工程学报.2007,27(23):12-17.
    [207]王智化,周俊虎,张彦威,岑可法.煤粉再燃还原NOx动态过程试验研究[J].浙江大学学报(工学版).2007,41(8):1411-1416.
    [208]于庆波,李朋,秦勤,杜文亚.煤焦-CO2高温气化反应特性的实验研究[J].东北大学学报(自然科学版).2009,30(12):1763-1766.
    [209]段伦博,赵长遂,李英杰,屈成锐,周骛,陈晓平.不同热解气氛煤焦结构及燃烧反应性[J].东南大学学报(自然科学版).2009,39(5):988-991.
    [210]胡芝娟,刘志江,王世杰,狄东仁.煤焦燃烧生成NO的特性研究[J].化学工程.2006,34(2):16-19.
    [211]Z.Zhao, W.Li, J. Qiu, B. Li. Effect of Na, Ca and Fe on theevolution of nitrogen species during pyrolysis and combustion of model chars[J]. Fuel,2003,82 1839-1844.
    [212]唐黎华,胡思飞,倪燕慧,朱学栋,朱子彬.制焦温度对煤焦特性的影响[J].华东理工大学学报(自然科学版).2007,33(2):149-152.
    [213]H. B. Vuthaluru, D. French. Ash chemistry and mineralogy of an Indonesian coal during combustion:Part 1 Drop-tube observations [J]. Fuel Processing Technology,2008,89(6):595-607.
    [214]R. Barranco, M. Cloke, E. Lester. Prediction of the burnoutperformance of some South American coals using a drop-tube furnace[small star, filled][J].Fuel, 2003,82(15-17):1893-1899.
    [215]禹立坚,黄镇宇,程军,潘华引,周俊虎,岑可法.配煤燃烧过程中煤灰熔融性研究[J].燃料化学学报.2009,37(2):139-144.
    [216]M. Cloke, E. Lester, A. W. Thompson. Combustion characteristics of coals using a drop-tube furnace [J]. Fuel,2002,81(6):727-735.
    [217]周军,张海,吕俊复,岳光溪.高温下热解温度对煤焦孔隙结构的影响[J].燃料化学学报.2007,35(2):155-159.
    [218]S. Kajitani, S. Hara, H. Matsuda. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel,2002,81(5):539-546.
    [219]翁卫国,周俊虎,杨卫娟,牛志刚,刘建忠,岑可法.220t/h水煤浆锅炉NOx排放特性的研究[J].浙江大学学报(工学版),2006,40(8):1439-1442.
    [220]董若凌,周俊虎,杨卫娟,周志军,卢志发,岑可法.煤粉分级燃烧对炉内燃烧过程影响的试验研究[J].浙江大学学报(工学版),2005,39(12):1907-1910.
    [221]方庆艳,姚斌,江瑞宝,周怀春.W型火焰锅炉炉内燃烧过程检测实验研究[J].热能动力工程.2005,20(4):361-364.
    [222]J.M. Jones, Q. Zhu, K.M. Thomas. Metalloporphyrin-derived carbons:models for investigating NOX release from coal char combustion[J]. Carbon,1999,37(7): 1123-1131.
    [223]周昊,孙国俊,岑可法,樊建人.煤中氮析出转化的颗粒模型研究[J].燃料化学学报,2003,31(3):199-203.
    [224]Y.B. Yang, E. Hampartsoumian, B.M. Gibbs. The effects of temperature, mixing and volatile release on no reduction mechnisms by coal reburning[C]. Symposium (International) on Combustion,1998,27(2):3009-3017.
    [225]岑可法.锅炉燃烧试验研究方法及测量技术[M].杭州:水利电力出版社,1987:25-47.
    [226]刘志成,孙运凯,那永洁,吕清刚,包绍麟,邵国桢,顾家胜,肖锋,王冬福.600MW超临界CFB锅炉旋风分离器布置的数值模拟[J].工程热物理学报.2009(11):1949-1952.
    [227]S.T. Kolaczkowski, R. Chao, S. Awdry, A. Smith. Application of a CFD code(fluent) to formulate models of catalytic gas phase reactions in porous catalyst pellets[J]. Chemical Engineering Research and Design.2007,85(11):1539-1552.
    [228]杨振民,唐夕山,金苏敏.热管废气发生器烟气流场的数值模拟[J].南京工业大学学报:自然科学版.2005,27(3):69-72.
    [229]R. Vuthaluru, H.B. Vuthaluru. Modelling of a wall furnace for different operating conditions using FLUENT[J]. Fuel Processing Technology.2006, 87(7):633-639.
    [230]吴彩金,马正飞,韩虹.直切双进口旋风分离器流场及分离效率的数值模拟[J].石油炼制与化工.2010,41(10):70-75.
    [231]C.R. Choi, C.N. Kim. Numerical investigation on the flow, combustion and NOX emission characteristics in a 500MW tangentially fired pulverized-coal boiler[J]. Fuel.2009,88(9):1720-1731.
    [232]车刚,郝卫东,郭玉泉.W型火焰锅炉及其应用现状.电站系统工程,2004,20(1):38-40.
    [233]雷声辉,孙奉仲,史月涛等.W型火焰燃烧技术特点及其对煤种的适应.江西电力,2004,28(3):3-4,7
    [234]M. Kuang, Z. Li, P. Yang, J. Jia, Q. Zhu. Flow-field deflection characteristics within a cold small-scale model for a down-fired 300MW utility boiler at different secondary-air angles[J]. Fuel Processing Technology.2011 (online).
    [235]周志军.w型火焰炉冷热态试验研究及数值模拟[D].杭州:浙江大学,1999.
    [236]高正阳,孙小柱,宋玮,等.w火焰锅炉结构效应对火焰影响的数值模拟[J].中国电机工程学报,2009,29(29):13-1 8.
    [237]J.R.Fan, X.D.Zha, K.F.Cen. Study on coal combustion characteristics in a W-shaped boiler furnace[J]. Fuel,2001,80(3):373-381.
    [238]Q. Fang, H. Wang, Y. Wei, L. Lei, X. Duan, H. Zhou. Numerical simulations of the salgging characteristics in a down-fired, pulverized-coal boiler furnace[J]. Fuel Processing Technology,2010,91(1):88-96.
    [239]方庆艳,周怀春,汪华剑,史铁林.w火焰锅炉结渣特性数值模拟[J].中国电机工程学报,2008,28(53):1-7
    [240]S. Fan, Z. Li, X. Yang, G. Liu, Z. Chen. Influence of outer secondary-air vane angle on combustion characteristics and NOx emissions of a down-fired pulverized-coal 300MWe utility boiler. Fuel,2010,89(7):1525-1533.
    [241]Z. Li, F. Ren, Z. Chen, J. Wang. Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler. Fuel,2010,89(2): 410-416.
    [242]孔凡卓,周健,张树坡.W型火焰锅炉SNCR过程的数值模拟[J].应用能源 技术,2008,(10):16-18.
    [243]刘霞.400t/h四角切圆煤粉炉分级燃烧技术降低NOx排放的研究与数值模拟[D].南京:东南大学.2004:23-43.
    [244]李芳芹,魏敦崧,马京程,蒋诚,任建兴,章德龙.燃煤锅炉空气分级燃烧降低NOx排放的数值模拟[J].燃料化学学报.2004,32(5):537-541.
    [245]H. Spliethoff, U. Greul, H. Rudiger, K.R.G. Hein. Basic effects on NOx emissions in air staging and reburning at a bench-scale test facility[J]. Fuel,1996,75 (5):560-564.