雷公藤GAP关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷公藤(Tripterygium wilfordii Hook.f.)系卫矛科雷公藤属木质藤本植物,是我国重要的有毒天然药物资源,是一种用途广泛经济价值高的树种。福建省泰宁县是我国雷公藤最大的生产基地。虽然雷公藤生产技术已日益成熟,但是生产中还存在着病害重、栽培方式和施肥技术不规范等问题。因此,进行雷公藤GAP关键技术研究非常迫切。为达到雷公藤药材“真实、优质、稳定、可控”的目的,为促进中药标准化、集约化、现代化和国际化的需要,本文对福建道地中药材雷公藤GAP关键技术进行研究。
     本研究首先对雷公藤GAP基地环境质量进行评价;接着收集国内雷公藤种质资源,对其进行良种选育和优良品种种苗繁育技术研究;同时进行了雷公藤施肥效应分析、栽培关键技术研究、光合特性及抗低温冷害等方面的研究。研究结果如下:
     1、位于泰宁县16个雷公藤主要分布区的土壤养分综合得分排名较前的为:梅口乡大洋村(江坑)、上青乡崇际村下蓝坑、杉城镇长兴村,综合得分依次为1.7174、1.0247、0.7638。而利用土壤肥力综合指数法,排名较前的为:梅口乡大洋村、杉城镇胜一村(支农坑)、龙湖乡官田村、杉城镇长兴村;两种方法得出杉城镇邱洪村玉溪工区的均为最低。土壤养分年动态变化中,2009-2011年,雷公藤的主要种植区长兴村、玉溪工区、支农坑、江坑的土壤pH值、全钾、全氮、速效磷和有机质含量大致呈现逐年上升的情况,其余的呈现逐年下降的趋势。其中江坑的土壤pH值、全钾含量在这3年中均处于最高,分别为5.75,4.22g·kg~-1;支农坑的土壤全磷和有机质含量在这3年中均处于最高,最高值依次为0.55g·kg-1,103.62g·kg~-1;长兴村的土壤水解氮含量在3年中均处于最低,在2011年的最低,仅32.11mg·kg-1。
     2、2011年1月-9月,雷公藤的主要种植区长兴村的pH值偏高,变化范围在5.24-5.69。长兴村、玉溪工区、支农坑、江坑全钾含量在2月-6月间变化范围不大,较为平缓;均在1月最低;其中江坑的土壤全钾含量在4月份达到最高,达60.35g·kg~-1,支农坑的最低,仅0.94g·kg~-1。长兴村、玉溪工区、江坑的土壤全磷含量较支农坑而言变化平缓;其中支农坑的土壤全磷含量处于最高,在6月份高达0.28g·kg~-1。主要种植区的土壤速效钾含量大致呈现先上升后下降的趋势,均在1月最低,以玉溪工区的最低,为5.37mg·kg~-1。长兴村和玉溪工区的土壤全氮和速效磷含量变化趋势一致,其中江坑的土壤全氮含量在2月处于最高,达4.29g·kg~-1。
     3、位于泰宁县长兴村、江坑、支农坑的这3个雷公藤主要种植基地环境现状良好,基地及周边无工矿企业,无任何工业污染源,空气质量良好。土壤肥力中等偏下,江坑、支农坑、长兴村综合污染指数分别为0.33、0.28、0.40,均小于0.5,土壤耕层内无有毒离子和倾倒物富集,无重金属污染。基地灌溉水水质环境各项污染物的单项污染指数均小于1,大气环境各项监测项目的单项污染指数均小于1,总评适宜雷公藤种植。对长兴村的水源进行动态监测发现,由于2011年泰宁县发生特大洪灾后,水中悬浮物、挥发酚、化学需氧量等指标出现短暂性异常外,分别达232.47mg·L~-1、49.7mg·L~-1、276.33mg·L~-1,在灾后恢复6-12个月后,各项指标均恢复正常,符合国家标准。但长兴村水中铜(Cu)的含量总是偏高,有的甚至高达38.997mg·L~-1。
     4、对雷公藤进行安全性评价,结果表明,六六六、DDT、五氯硝基苯、艾氏剂、细菌总数、大肠菌群在雷公藤根和叶中的残留量均低于国家相应标准的浓度限值。除雷公藤叶的铜含量偏高外,达25.00mg·kg~-1,其根中的Pb、Cd、Cu、As、Hg残留量均低于国家相应标准的浓度限值。该检测结果能够保证雷公藤药材的用药安全性。
     5、利用四因素二次回归正交组合设计优化内酯醇提取工艺可得,甲醇浓度78.64%,料液比1:35.96,超声时间39.1min,层析氧化铝用量9g,预测可获得雷公藤内酯醇最大提取率达0.0192%。根据雷公藤32个种源的叶生物量、叶和根内酯醇含量这3个聚类分析,进行雷公藤优良种源的选择,32个种源的平均叶生物量为132.0g,其中福建三明泰宁的叶生物量和根内酯醇含量均最高,分别达200.6g,26.37mg·kg~-1,福建三明大田的叶内酯醇含量最高,达17.25mg·kg~-1。选出三者兼备的优良种源如下:福建三明泰宁、福建三明大田、福建三明清流、福建南平武夷山、浙江丽水景宁,其得分依次为2.7733、2.6880、2.2472、2.0626、2.0041。
     6、对5a、6a、7a、8a、9a的雷公藤不同组织内酯醇含量分析发现,即将脱落的叶片的内酯醇含量(简称“落叶”)较其他组织高,其中7a的含量最高,达74.92mg·kg~-1;各年生落叶的平均内酯醇含量是叶的2.72倍。花的内酯醇含量最低,其中7a的最低,仅9.19mg·kg~-1。同一年生的雷公藤枝内酯醇含量为主枝>侧枝,在7a达到最高,主枝高达22.78mg·kg~-1,侧枝高达17.05mg·kg-1。各年生根系的内酯醇含量为主根>须根>根芯,其中7a的主根内酯醇含量最高,达45.09mg·kg~-1。5a、6a、7a的根皮内酯醇含量高于主根,而8a、9a的反之,其中7a的根皮内酯醇含量高达46.87mg·kg-1。
     7、在11月至1月间,用粗度为0.5-0.7cm的插条,以黄壤土或珍珠岩+黄壤土(1:2)为扦插基质,经100mg·L~-1速效生根粉浸泡1h的扦插方法有利于提高扦插成活率,扦插成活率高达88.0%。扦插成活率与气温的相关性最大,相关系数为-0.98,说明温度越高,雷公藤的扦插成活率越低。
     8、采用L9(43)正交试验设计研究前体物质对雷公藤组培苗的影响,可得光照条件下,处理2的组培苗内酯醇含量最高,达59.44mg·kg~-1,其综合得分最高,达0.8536;遮光条件下,处理4的内酯醇含量高达50.49mg·kg~-1,其综合得分最高,达0.8542。遮光时,经0.5mg·L~-1赖氨酸和1.0g·L~-1酵母提取物处理的雷公藤组培组合效果最好。但无论光照还是不光照,添加1.0g·L~-1酵母提取物均有利于雷公藤组织培养次生代谢物质的产生。经前体物质处理的组培苗在光照和遮光条件下平均内酯醇含量分别为33.22mg·kg~-1、31.40mg·kg~-1,平均全株生物量分别为2.4506g、2.2504g,分别比CK高出了1.36倍、1.24倍。
     9、雷公藤根N、K、Ca、Mg含量在1-3月均较低,根的P含量在各个月份普遍较低;其中根N、K、Ca含量均低于10g·kg~-1,根的P和Mg含量均低于1g·kg~-1。雷公藤叶N、K、Mg含量会明显高于根的,叶中P含量略高于雷公藤根。9a的根和叶中N含量均在4月最高,分别达22.31g·kg~-1、31.69g·kg~-1;1a的根和叶中Ca含量均在9月达到最高,分别为15.01g·kg~-1、26.70g·kg~-1;5a根P含量在2月最高,达1.37g·kg~-1;2a根K含量在6月最高,达24.03g·kg~-1;5a根Mg含量在4月最高,达7.63g·kg~-1。2a叶P含量在9月最高,达1.31g·kg~-1;5a叶K含量在4月最高,达61.27g·kg~-1;9a叶Mg含量在4月最高,达6.90g·kg~-1。
     10、通过二次通用旋转组合设计建立了定植6a后的雷公藤叶生物量以及叶、根内酯醇含量与氮磷钾施肥量的三因子回归方程。结果表明,雷公藤叶生物量的最优施肥方案为:尿素51.4-68.6kg·hm~-2,过磷酸钙70.8-97.9kg·hm~-2,硫酸钾111.0-154.1kg·hm~-2,执行这套方案,雷公藤叶生物量Y=437.3-456.1g,是对照生物量的1.7-1.8倍。影响雷公藤叶内酯醇含量的顺序为N>P>K,N肥对于提高雷公藤叶内酯醇含量的作用较大。应用计算机模拟试验,由此推求最优施肥方案,尿素66.3-86.4kg·hm~-2,过磷酸钙93.9-119.1kg·hm~-2,硫酸钾124.0-164.1kg·hm~-2,可得雷公藤叶内酯醇含量Y=90.462-110.541mg·kg~-1,是对照内酯醇含量的4.2-5.1倍。雷公藤根内酯醇含量的最优施肥方案为:尿素55.2-77.6kg·hm~-2,过磷酸钙60.6-78.5kg·hm-2,硫酸钾69.9-87.8kg·hm~-2,执行这套方案,雷公藤根内酯醇含量Y=47.474-53.661mg·kg~-1,是对照根内酯醇含量的1.73-1.96倍。
     11、喷施药剂的1年生雷公藤幼苗平均株高和最长藤长分别为40.62cm、28.09cm,均高于对照;其中喷施复合微生物菌剂浸出液(P7)的根生物量最高,600倍液国光氨基酸叶面肥(P11)的次之,分别为43.70g、39.83g,是对照(P16)的4.22倍、3.84倍。经过喷施药剂处理的根、枝、叶内酯醇含量的平均值分别为52.167mg·kg~-1、16.677mg·kg~-1、51.281mg·kg~-1,均比对照高。喷施药剂影响内酯醇含量的顺序为雷公藤叶>根>枝;处理11的全株内酯醇含量最高,达164.84mg·kg~-1。喷施0.2%磷酸二氢钾(P2)在根系粗度0.1-0.2cm、0.2-0.4cm、0.4-0.6cm和4.0-6.0cm这4个粗度的分布最多,分别累积达461.583cm、134.345cm、53.907cm、9.479cm,分别是对照的3.96、3.82、3.22、4.55倍。喷施600倍液国光氨基酸叶面肥(P11)处理在根系粗度在0-0.1cm、0.6-0.8cm、0.8-1.0cm、1.0-2.0cm、2.0-4.0cm之间和大于6.0cm的分布最多,分别累积达4.407cm、48.884cm、37.078cm、90.644cm、65.002cm和2.014cm,分别是对照的3.79、2.80、2.66、2.77、3.55和21.84倍;可见,喷施600倍液国光氨基酸叶面肥和0.2%磷酸二氢钾(P2)最有利于根系生长,且根系最为发达。
     12、以种植株行距1.5m×2m的造林密度最佳,其叶内酯醇含量最高,达21.43mg·kg~-1,有利于促进雷公藤产量和质量的提高。在雷公藤造林模式上,建议以雷公藤×厚朴混交模式和纯林模式为主;雷公藤×厚朴的混交模式中雷公藤根和叶平均内酯醇含量均达到最大,分别为38.86mg·kg~-1、35.61mg·kg~-1。混交厚朴和杉木平均胸径分别为5.36cm、16.01cm,比对照高出18.92%、35.79%;厚朴平均树高高出纯林22.35%。
     13、采用L16(45)的正交试验,研究1年生的雷公藤灌溉情况。结果表明,土温大小为:6月>5月>11月>12月;5-8月间各灌溉处理的植株含水率大小大致为5月>6月>7月>8月,平均含水率分别为77.39%、72.07%、67.08%、65.22%。各灌溉处理的植株水势大小大致为10月>9月>8月>6月,平均水势分别为-1.874MPa、-1.875MPa、-2.147MPa、-2.906MPa。经过灌溉处理可以提高雷公藤根和叶内酯醇含量,处理16的雷公藤根内酯醇含量高达28.20mg·kg~-1,处理13的叶内酯醇含量高达14.51mg·kg-1,各灌溉处理的平均根重为9.53g,平均根数大约在7.5根,平均根长为15.5cm。综合得分排名较前的为:处理3(即3-4月灌溉量20mm,5-6月灌溉量20mm,7-10月灌溉量60mm,11-12月灌溉量30mm),得分1.8722。
     14、用生石灰对土壤进行消毒有利于促进雷公藤生长,其根和叶内酯醇含量最高,分别达14.62mg·kg~-1、12.77mg·kg~-1。经过喷施药剂处理的雷公藤叶片病情指数均比对照低,其中喷施400倍液的65%代森锌可湿性粉剂的病情指数最低,仅为14.56%;经过喷施药剂处理的雷公藤根和叶的平均内酯醇含量均比对照高。喷施65%代森锌可湿性粉剂的平均根内酯醇含量最高,达17.18mg·kg~-1。
     15、雷公藤根和叶的内酯醇含量随着年龄的增长呈现先上升后下降的趋势,8年生的根内酯醇含量最高,达35.48mg·kg~-1;6年生的叶高达21.60mg·kg~-1;故确定雷公藤根可在种植7年后采挖;叶在6年后采摘最好。7年生的雷公藤植株,在10月底,根内酯醇含量开始大幅度上升,12月时达到最高,达36.87mg·kg~-1,建议采挖根的最佳时期在秋季末至冬季初,确定叶的采摘在每年7-8月。
     16、随着烘干温度的上升,雷公藤根内酯醇含量呈现先上升后下降的趋势,60℃烘干的根内酯醇含量最高,达30.26mg·kg-1;三种烘干方式对雷公藤药材质量的影响不大,仅对水分含量的差异达到极显著水平,对根内酯醇含量的影响达到差异显著水平。不同干燥方式对雷公藤根内酯醇含量的影响达到差异显著水平,建议采用烘干箱干燥或混合交叉干燥方式进行烘干。
     17、雷公藤光饱和点随季节的变化呈现先上升后下降再上升的趋势。在6月,1-3a雷公藤的光饱和点很大,大小顺序为:1a<3a<2a;其中以2a的最高,达4650.757μmol·m~-2·s~-1。大体上,雷公藤光补偿点随季节的变化呈现先上升后下降的趋势。在6月,1-3a雷公藤的光补偿点很大,大小顺序为:1a>2a>3a;其中以1a的最高,达61.001μmol·m~-2·s~-1。1a、3a雷公藤的光补偿点在10月均达到最低,其中以3a的最低,仅13.608μmol·m-2·s-1。1a、2a雷公藤各个月之间的胞间CO2浓度和气孔限制值大致上大小排序为:10月>8月>6月>4月。1a雷公藤各个月之间的净光合速率大小排序为:8月>6月>4月>10月。1a雷公藤各个月之间的蒸腾速率和2a的水分利用效率大致上大小排序为:8月>6月>10月>4月。
     18、以1a的雷公藤扦插苗为试验材料,对其外施脱落酸(ABA)溶液5、10、15、20、25mg·L-1,以喷施蒸馏水为对照(CK),并进行连续7d的低温胁迫处理。研究表明,喷施15-20mg·L~-1的ABA能提高雷公藤幼苗的抗冷性,有效地降低叶片相对电导率和MDA的积累,使雷公藤幼苗体内游离脯氨酸的含量升高,减弱了低温胁迫对超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)酶活性的影响;当ABA浓度为15mg·L~-1时,其相对电导率和MDA含量最低,分别为45.74%和153.28nmol·g~-1,脯氨酸含量比对照高出72.99μg·g~-1;当ABA浓度为20mg·L~-1时,幼苗冷害程度显著低于其他处理;经ABA处理的SOD酶活性随胁迫时间的延长呈现明显的“双峰”趋势,POD酶活性呈现先上升再下降的“单峰”趋势,当ABA浓度为15、20mg·L~-1时,CAT酶活性呈现“下降-上升-下降”趋势。
     19、喷施20mg·L~-1的ABA能减缓低温下雷公藤叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)的下降幅度,提高幼苗叶片的光合能力。低温处理6d后,随ABA浓度的上升,雷公藤叶片的初始荧光(Fo)下降,最大荧光(Fm)和PSII最大光化学效率(Fv/Fm)上升,PSII实际光化学量子产量(ΦPSⅡ)、光化学猝灭系数(qP)先下降后上升,而非光化学猝灭系数(qN)呈下降-上升-下降趋势。Pn、Gs、qP、Fm和Fv/Fm均在20mg·L-1ABA处理时达到峰值。不同浓度ABA的相对电子传递速率(rETR)随着光化光强度增加呈先上升后下降的趋势,当光化光强度(PAR)达到395μmol·m~-2s~-1时,各处理的rETR达到最高值,其中25mg·L~-1和20mg·L~-1ABA处理分别比对照高17.1%和5.2%。雷公藤叶片ΦPSⅡ的光响应曲线均随光化光强度升高而下降,qN的光响应曲线呈相反趋势。
Tripterygium wilfordii Hook.f. is the Tripterygium plant of Celastraceae, which is an important toxicnatural medicine resource and a versatile high economic value species. Taining County, Fujian Province isthe largest production base of T.wilfordii Hook.f. in China. Although the production technology of T.wilfordii Hook.f. has become more mature, but there is still some problems in the production, such as heavediseases, nonstandard cultivation methods and fertilization techniques. Therefore, the syudy on GAP keytechnologies of T. wilfordii Hook.f. is very urgent. To achieve T. wilfordii Hook.f. medicine “real, highquality, stable, controllable,” and to promote the need of the standardization, intensivism, modernizationand internationalization of traditional Chinese medicine, GAP key technology of Fujian genuine Chinesemedicinal materials T. wilfordii Hook.f. was reseached.
     This study started from to evaluate the environmental quality of GAP base for T. wilfordii Hook.f.GAP base; then collect the domestic T. wilfordii Hook.f. resources, to study selective improved variety andgood seedlings breeding technology for T. wilfordii Hook.f. At the same time, fertilization effect,cultivation key technologies, photosynthetic characteristics, resistance to cold damage and other aspects forT. wilfordii Hook.f. were studied. The results were as follows:
     1. The ranking prior to comprehensive scores of soil nutrients in sixteen T. wilfordii Hook.f. maindistribution areas in Tai Ning county were Dayang Village of Meikou(Jiangkeng), Chongji VillageXialankeng of Shangqing, Changxing Village of Shancheng Town. The comprehensive score was insequence of1.7174,1.0247,0.7638. By comprehensive index method of soil fertility, the prior rankingswere Dayang Village of Meikou, Shengyi Village of Shancheng Town(Zhinongkeng), Guantian Village ofLonghu, Changxing Village of Shancheng Town. The results using the two methods showed that the lowestsoil fertility was Yuxi Work Area in Qiuhong Village of Shancheng Town. In annual dynamic change of soilnutrients, soil pH value, total K, N, available P and organic matter content iapproximately increased year byyear in Changxing Village, Yuxi Work Area, Zhinongkeng and Jiangkeng of T. wilfordii main distributionareas from2009to2011, while others decreased year by year. Soil pH value and total K content ofJiangkeng were the highest in the three years, were5.75,4.22g·kg~-1. The soil total P and organic mattercontent of Zhinongkeng were the highest in the three years, the highest value followed by0.55g·kg-1,103.62g·kg~-1. And hydrolysable N content of Changxing Village was the lowest, the minimum in2011,only32.11mg·kg~-1.
     2. In2011January to September, the soil pH value in Changxing Village seemed slightly higher,whose changes was in the range of5.24-5.69. The range of total K content in the main distribution areas was little in February to June, relatively gently, which was the lowest in January. The highest was inJiangkeng in April, up to60.35g·kg~-1, and the minimum was in Zhinongkeng, only0.94g·kg~-1. The soil totalP content in Changxing Village, Yuxi Work Area and Jiangkeng changed more mildly than that ofZhinongkeng. The total P content of Zhinongkeng was the highest, reaching0.28g·kg~-1in June. Soilavailable K content in the four main distribution areas approximately increased first and then decreased, thelowest was Yuxi Work Area, only5.37mg·kg~-1in January. The trend of total N content and soil available Pcontent in Changxing Village and Yuxi Work Area was consistent. Jiangkeng’s total N content at theirhighest in February, up to4.29g·kg~-1.
     3. The environment present situationis of Changxing Village, Jiangkeng and Zhinongkeng in plantingbase of T. wilfordii of Tai Ning county was good. There were no industrial and mining enterprises, withoutany industrial pollution, with good air quality. Soil fertility was lower-middle. Comprehensive pollutionindex of Jiangkeng, Zhinongkeng and Changxing Village was respectively0.33,0.28,0.40, less than0.5.Cultivated soil had no toxic ions and dumping enrichment, no heavy metals pollution. Both single pollutionindex of every pollutants in irrigation water and in air were less than1, of which was suitable forcultivation of T. wilfordii in the overall assessment. Changxing Village of water sources being dynamicmonitored, it found that due to the catastrophic floods in Taining County in2011, the indexes suchas suspended matter, volatile phenol and chemical oxygen demand appeared transient abnormalityin the water, were232.47mg·L~-1、49.7mg·L~-1、276.33mg·L~-1. They have recovered after6-12months,which were in line with national standards. However, copper content in the water of ChangxingVillage was always a little high, some even as high as38.997mg·L~-1.
     4. For safety evaluation of T. wilfordii Hook.f., the results showed that the residue of BHC, DDT,Pentachloronitrobenzene (PCNB), aldrin, total bacteria, coliform bacteria in the roots and leaves of T.wilfordii Hook.f. were all lower than the concentration limits of corresponding national standards. Inaddition to the slightly high copper content in the leaves of T. wilfordii Hook.f., up to25.00mg·kg~-1. The Pb,Cd, Cu, As, Hg residues in its roots were below the concentration limit of corresponding national standards.The test results could ensure the safety of medication for T. wilfordii Hook.f..
     5. Using quadratic regression orthogonal combination design of four factors, the results showed thatusing the concentration of78.64%methanol, solid-liquid ratio of1:35.96, ultrasonic time of39.1min, theamount of9g chromatography alumina, the maximum extraction of available triptolide was predicted to be0.0192%. According to the three cluster analysis of the leaf biomass, leaf and root triptolide content of T.wilfordii Hook.f. species, elite provenance was selected. The results showed that32kinds of mean leafbiomass was132.0g. Leaf biomass and root lactone alcohol content of Taining of Fujian Sanming were thehighest, respectively200.6g,26.37mg·kg~-1. The highest leaf triptolide content was in Datian of FujianSanming, up to17.25mg·kg~-1. The excellent provenances when these three conditions were met as follows:Taining, Datian, Qingliu of Fujian Sanming, Wuyishan of Fujian Nanping, Jingling of Zhejiang Lishui, the scores was in sequence of2.7733,2.6880,2.2472,2.0626,2.0041.
     6. Analysising triptolide content of5a,6a,7a,8a,9a in different tissues, the triptolide content of theleaves that would fall off (“defoliate”for short) was much higher than other organizations, the highest levelswas up to74.92mg·kg-1in7a, which was2.72times of average leaves triptolide content. The triptolidecontent of flower was the lowest, only9.19mg·kg-1in7a. The triptolide content of T. wilfordii Hook.f. mainbranch was higher than lateral branch in the same year. The highest was in7a, main branch was22.78mg·kg~-1, lateral branch was17.05mg·kg~-1. The order of triptolide content in each year roots was the>fibrous root> root core, the highest was45.09mg·kg-1in main root of7a. The triptolide content in根皮washigher than main root in5a,6a,7a, but was opposite in8a and9a, the root bark7a. was the highest, up to46.87mg·kg~-1.
     7. The cuttage method helped to improve cutting survival rate during November to January, with0.5-0.7cm cutting coarseness, using yellow soil or1:2perlite and yellow soil as substrates, under conditionswith concentration100mg·L-1available rooting powder soaking1h, whose cutting survival rate was up to88.0%. The correlation of cutting survival rate and temperature was max, whose correlation coefficient was-0.98, indicating that the higher the temperature, the survival rate of cutting for T. wilfordii Hook.f. was thelower.
     8. Using L9(43)orthogonal design, the effect of precursor substance on triptolide contents for T.wilfordii Hook.f. tissue culture seedlings was studied. Under lighting conditions, the triptolide content andof treatment2tissue culture seedling was the highest, up to59.44mg·kg~-1, whose comprehensive score wasthe highest, up to0.8536. Under shading conditions, the comprehensive score of treatment4was thehighest, up to0.8542. When it was shade, the best combination effect was the treatment of0.5mg·L~-1lysineand1.0g·L~-1yeast extract. But no matter the light or not light, adding1.0g·L~-1yeast extract was beneficialto secondary metabolism products of tissue culture. In the light and shade conditions, the average triptolidecontent of tissue culture seedlings with precursor substance were respectively33.22mg·kg~-1,31.40mg·kg~-1,and the average whole plant biomass was2.4506g,2.2504g, respectively, higher than that of CK1.36times,1.24times.
     9. N, K, Ca, Mg content in roots was low in January to Months. P content in roots was generally lowin every month, N, K, Ca content in which was less than10g·kg~-1, P and Mg content in which was lessthan1g·kg~-1. N, K, Mg content in leaves was higher than in roots. P content in leaves was slightly higherthan in roots. The N content of9a in roots and leaves were the highest in April, respectively, up to22.31g·kg~-1,31.69g·kg~-1. The root and leaf Ca content of1a in September were the highest, respectively15.01g·kg~-1,26.70g·kg~-1; Root P content of5a in February was the highest, up to1.3g·kg~-1. Root K contentof2a was the highest in June, up to24.03g·kg~-1. Root Mg content of5a was the highest in April, up to7.63g·kg~-1. Leaf P content of2a was the highest in September, up to1.31g·kg~-1. Leaf K content of5a inApril, up to61.27g·kg~-1. Leaf Mg conten of9a was the highest in April, up to6.90g·kg~-1.
     10. Using the quadratic regression current rotation compose design, the quantities of nitrogen,phosphorus and potassium fertilizer with leave biomass and triptolide contents for planting six years’ T.wilfordii Hook.f. leaf and root were obtained. The results showed that the optimal combination for urea wasfound to be51.4-68.6kg·hm~-2, calcium superphosphate70.8-97.9kg·hm~-2and potassium sulfate111.0-154.1kg·hm~-2, biomass for T. wilfordii Hook.f. leaf was437.3-456.1g, which was1.7-1.8times of the biomass ofcontrol group. The fertilizations affected triptolide content in the order, N>P>K. The effect of nitrogenfertilizer on increasing triptolide content of leaf was relatively large. The optimal combination by computersimulation for urea was found to be66.3-86.4kg·hm~-2, calcium superphosphate93.9-119.1kg·hm-2andpotassium sulfate124.0-164.1kg·hm~-2, triptolide content for T. wilfordii Hook.f. leaf was90.462-110.541mg·kg~-1, which was4.2-5.1times of the triptolide of control group. The optimal combination for urea wasfound to be55.2-77.6kg·hm~-2, calcium superphosphate60.6-78.5kg·hm-2and potassium sulfate69.9-87.8kg·hm~-2, triptolide content for T. wilfordii Hook.f. roots was47.474-53.661mg·kg~-1, which was1.73-1.96times of the triptolide content of control group.
     11. The results showed that1a T. wilfordii Hook.f. seedlings after spraying fertilizer, the average plantheight and the longest length of vine were40.62cm,28.09cm, higher than control group. The root biomasswith spraying compound microbial agents leaching solution (P7) was the highest,600times Guoguangamino acid leaf fertilizer (P11) followed by43.70g,39.83g, that of CK (P16)4.22times,3.84times. Theaverage root, branch, leave triptolide content with chemical treatments were higher than CK, respectively52.167mg·kg~-1,16.677mg·kg~-1,51.281mg·kg~-1. The order that spraying pesticides impacting triptolidecontent was leaf>root> branch. The triptolide content of treatment11was the highest, up to164.84mg·kg~-1.Spraying with0.2%potassium dihydrogen phosphate (P2) the four kind of roughness of0.1-0.2cm,0.2-0.4cm,0.4-0.6cm and4.0-6.0cm in the root distribution were the most, respectively accumulated to461.583cm,134.345cm,53.907cm,9.479cm, were that of CK3.96,3.82,3.22,4.55times. Spraying600times Guoguang amino acid leaf fertilizer (P11) processing the roughness of0-0.1cm,0.6-0.8cm,0.8-1.0cm,1.0-2.0cm,2.0-4.0cm and greater than6.0cm in the root distribution were the most, respectivelyaccumulated up to4.407cm,48.884cm,37.078cm,90.644cm65.002cm and2.014cm, were that of CK3.79,2.80,2.66,2.77,3.55and21.84times. It can be seen that spraying600times Guoguang amino acids leaffertilizer and0.2%potassium dihydrogen phosphate (P2) wass the most beneficial to root growth, whoseroot was the most developed.
     12. The planting spacing of1.5m×2m was the best planting density, which leaf triptolide content wasthe highest, up to21.43mg·kg~-1, promoting the improvement of yield and quality of T. wilfordii Hook.f.. Itis recommended that afforestation mode of T. wilfordii Hook.f. mainly used mixed mode of T. wilfordii×Magnolia officinalis and pure forest model. The average triptolide content in the roots and leaves of themixed mode of T. wilfordii×Magnolia officinalis reached the maximum, respectively38.86mg·kg~-1,35.61mg·kg~-1. The average diameter of mixed Magnolia and Chinese Fir were5.36cm,16.01cm, higher than the control18.92%、35.79%. The average tree height of Magnolia is higher than pure forest22.35%.
     13. Using the L16(45) orthogonal experiment, irrigation situation of1-year T. wilfordii Hook.f. wasstudied. The results showed that the size of soil temperature was June>May>November>December. Thesize of plant water content with irrigation treatment was roughly May>June> July>August, respectively77.39%,72.07%,67.08%,65.22%. The size of plant water potential with irrigation treatment was roughlyOctober>September>August>June, the average water potential was respectively-1.874MPa,-1.875MPa,-2.147MPa,-2.906MPa. Irrigation treatment can improve the triptolide content of roots and leaves. Theroots triptolide content of treatment16was up to28.20mg·kg~-1, and leaves of treatment13was the highest,reaching14.51mg·kg~-1. The average root heave, number and longth of each irrigation treatment were9.53g,7.5,15.5cm. Ranking prior was treatment3(irrigation amount of20mm from Month to June, amount of60mm from July to October, amount of30mm from November to December) which score was1.8722.
     14. The soil sterilization with quick lime could promote the growth of T. wilfordii Hook.f., which rootsand leaves triptolide content was respectively14.62mg·kg-1,12.77mg·kg~-1. Leaf disease index sprayingchemical treatment was lower than the control, of which spraying400times of65%amobam WP was thelowest, only14.56%. The average triptolide content of roots and leaves spraying chemical treatment washigher than the control. The highest average root triptolide content with spraying65%Zineb wettablepowder was the highest, up to17.18mg·kg~-1.
     15. The triptolide content in roots and leaves first increased and then decreased with ages for T.wilfordii Hook.f.. The root triptolide content of8years old was the highest, up to35.48mg·kg~-1, and6-year-old leaves triptolide content was the highest, up to21.60mg·kg~-1. Therefore, the root of T. wilfordiiHook.f. was determined to dig after being planted seven years. T. wilfordii Hook.f. leaves can be harvestedafter3-8years, but six years later to pick was the best. The root triptolide content of7years old plantsincreased significantly on the end of October, which was the highest in December, up to36.8mg·kg~-1.Therefore, it is suggested that the best period excavation of the roots of T. wilfordii Hook.f. was in the lateautumn to winter first. T. wilfordii Hook.f. leaf was determined to pick in July to August each year.
     16. As the drying temperature increases, the triptolide content of roots showed an increased first andthen downward trend, the triptolide content of which using60℃drying was the highest, up to30.26mg·kg-1. The effect of three kinds of drying methods on the quality of T. wilfordii Hook.f. medicines waslittle. Difference in moisture content only reached an extremely significant level, and difference oftriptolide content in the roots reached a significant level. It is recommended that drying shoud use dryingbox or mixed cross-drying method.
     17. The light saturation point of T. wilfordii Hook.f. with seasons showed an “increase-decrease-increase” trend. In June, the LSP of1-3a T. wilfordii Hook.f. was large, whose order was1a<3a<2a, the2aof which was the highest, reaching4650.757μmol·m~-2·s~-1. In general, light compensation point of T.wilfordii Hook.f. showed an increased and then decreased trend with seasons. In June, the LCP of1-3a T. wilfordii Hook.f. was large, the size of the order:1a>2a>3a,1a of which was the highest, reaching61.001μmol·m~-2·s~-1. The LCP of1a and3a were the lowest in October,3a of which was the lowest, only13.608μmol·m~-2·s~-1. The size of the order between1a Pnwas generally August>June>April>October. Thesize of order between Ci and Ls of1a and2a T. wilfordii Hook.f. each month was generally October>August>June>April. The size of the order between1a Trand2a WUE was generally August>June>October>April.
     18. One year-old T. wilfordii Hook.f. cutting seedlings leaves were sprayed with0,5,10,15,20,25mg·L~-1exogenous ABA under low temperature stress. The results showed that spraying15-20mg·L~-1ABA improved chilling resistance, effectively reducing relative electrical conductivity and theaccumulation of MDA, which increased free proline content of T. wilfordii Hook.f. cuttings, weakened theeffect of low temperature stress on SOD、POD、CAT enzyme activities. Relative electrical conductivity andMDA content of15mg·L~-1ABA were the lowest, which were45.74%and153.28nmol·g~-1respectively.Proline content raised by72.99μg·g-1compared with the control. When ABA content was20mg·L~-1,chilling injury degree was significantly lower than other treatments. SOD activity with ABA treatmentshowed obvious double peak tendency with the prolongation of stress time. POD activity showed the singlepeak tendency first increasing then decreasing. When ABA content was15and20mg·L~-1, CAT activityshowed “decreasing-increasing-decreasing” pattern.
     19. Spraying20mg·L~-1ABA slowed down the decrease amplitude of Pn, Tr, Gs, Ciin low temperature,increasing photosynthetic capacity of T. wilfordii seedling leaves. After6days exposure to low temperaturestress, Fodecreased, Fmand Fv/Fmshowed an upward trend with the rise of ABA concentration as a whole.ΦPSand qPshowed a downward and then upward trend, qNshowed “decreasing-increasing-decreasing”pattern. At20mg·L~-1ABA, Pn, Gs, qP, Fmand Fv/Fmreached their peak values. RETR showed thetendency firstly increasing and then decreasing as PAR increased. When PAR was395μmol·m~-2s~-1, rETRof every treatment reached the highest value.25mg·L~-1ABA was the highest,20mg·L~-1ABA took thesecond place, which raised by17.1%and5.2%compared with the control respectively. The lightresponse curves of ΦPSⅡdecreased as PAR increased, which of qNperformed reserved.
引文
[1]何欣,欧阳五庆,赵兴华,等.纳米乳对雷公藤多苷增效减毒作用研究[J].农业与生命科学版:浙江大学学报,2008,34(3):261-265.
    [2]罗都强.雷公藤有效成分和杀虫活性及应用研究[D].西北农林科技大学博士学位论文,2002:1-2.
    [3]国家中医药管理局.中华本草上册[M].上海:上海科学技术出版社,1999:1128-1129.
    [4]任江剑,俞旭平,忻柏阳,等.雷公藤扦插繁殖技术研究[J].中药材,2006,29(3):207-208.
    [5]杨芳.雷公藤的研究进展[J].第一军医大学分校学报,2003,26(2):159-160.
    [6]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1999,45(3):179.
    [7]涂育合,许可明,姜建国,等.雷公藤栽培与利用[M].北京:中国农业出版社,2006:8-10.
    [8]国家中医药管理局《中华本草》编委会编.中华本草[M].上海:上海科学技术出版社,1999.
    [9]林刚,严宜昌.雷公藤扦插繁殖[J].中药材,1997,20(4):167-168.
    [10]江锦红.药用植物雷公藤扦插育苗试验[J].林业科技开发,2004,18(6):55-56.
    [11]陈际伸,黄绍琳.光皮树(优良无性系)优树选择技术研究[J].宁波城市职业技术学院学报,2010,5(2):9-11.
    [12]李键,范文洁,陈昕.不同地理种源雷公藤的RAPD分析[J].四川农业大学学报,2011,29(3):327-333.
    [13]陈昕,凃育合,洪伟,等.不同地理种源雷公藤生长适应性评价[J].福建林学院学报,2011,31(1):1-7.
    [14]苏海兰,唐建阳,陈菁瑛,等.短葶山麦冬吸肥规律初步研究[J].福建农业学报,2009,24(2):149-152.
    [15]杨少华,郭承刚,薛润光,等.不同种植密度和氮磷钾施肥量对云当归产量的影响[J].西南农业学报,2011,24(5):1799-1804.
    [16]陈铁柱.平贝母吸肥规律及其专用肥配方研究[D].吉林农业大学硕士学位论文,2006,4.
    [17]谭翠英.不同施肥对西洋参生长发育及产量的影响[J].中国中药杂志,1997,14(2):105-108.
    [18]蒋林,李凤影,张发宝,等.芦荟GAP基地的土壤肥力综合评价[J].中草药,2004,35(11):1302-1304.
    [19]洪伟,李键,吴承祯,等.雷公藤栽培及利用研究综述[J].福建林学院学报,2007,27(1):92-96.
    [20]王玮玮,仲秀娟,赵苏海,等.不同浓度叶面肥处理对凤梨植株高度、蓬径的影响[J].吉林农业,2010,(7):68-69.
    [21]叶恭银.植物保护学[M].浙江:浙江大学出版社,2006.
    [22]周迎新,方乍浦.人工栽培和野生雷公藤有效成分比较[J].中国中药杂志,1995,20(3):145-146.
    [23]张亮,张正行.毛细管气相色谱法测定不同产地雷公藤甲素的含量[J].中国药科大学学报,1992,23(3):158-161.
    [24]戴克敏,王艳.不同地区不同用药部位雷公藤和昆明山海棠的总生物碱含量测定[J].中成药,1994,16(11):41-43.
    [25]朱育晓.药用植物商陆组织培养及其次生代谢产物的研究[D].山西大学硕士学位论文,2003,1.
    [26]刘谦,张永清.利用药用植物组织培养生产次生代谢产物的研究进展[J].齐鲁药事,2006,25(6):350-353.
    [27]徐忠东.植物组织培养生产药物研究进展[J].生物学杂志,2001,18(6):13-14.
    [28]宁黎丽.雷公藤甲素和雷公藤内酯酮的生物转化研究[D].沈阳药科大学博士学位论文,2003:1-2.
    [29]斯金平,阮秀春,郭宝林,等.雷公藤资源现状及可持续利用的研究[J].中药材,2005,28(1):10-11.
    [30]刘希华,毛玲榕,邢建宏.雷公藤愈伤组织诱导与悬浮培养不定芽诱导[J].三明学院学报,2010,27(6):577-580.
    [31]黄剑华,陆瑞菊,孙月芳,等.雷公藤再生植株及其制备工艺[P].中国:02110933.8,2002-09-04.
    [32]李键,李建鹃,吴承祯,等.雷公藤组织培养外植体消毒和选择[J].中南林业科技大学学报:自然科学版,2010,30(8):18-21.
    [33]李琰,崔宏安,冯俊涛,等.雷公藤体细胞胚发生及其植株再生[J].林业科学,2008,44(10):148-152.
    [34]李琰,冯俊涛,王永宏,等.培养基及培养条件对雷公藤愈伤组织生长和次生代谢产物含量的影响[J].林业科学,2010,46(5):64-69.
    [35]李琰,冯俊涛,史晓燕,等.雷公藤组培产物中雷公藤甲素和总生物碱含量的测定[J].农药学学报,2009,11(3):367-372.
    [36] Cui T B, Guo Y, Lin W T. The ways to enhance the production of secondary metabolites by plant cellculture[J]. Plant Physiology Communications,2001,37(5):479-482.
    [37]曲均革,虞星炬,张卫,等.前体饲喂、诱导子和光照联合使用对葡萄细胞培养合成花青素的影响[J].生物工程学报,2006,22(2):299-305.
    [38]李英华,吕春茂,范海延,等.前体物质对烟草细胞辅酶Q10合成的影响[J].烟草科技,2009,(6):51-55.
    [39]王佩香.药用植物绞股蓝的GAP相关技术研究[D].陕西师范大学硕士学位论文,2005.
    [40]张秋霞,丁宁.实施GAP生产“绿色”中药实现中药现代化中草药[J].中草药,2003,34(8):23-24.
    [41]国家药监局.中药材生产质量管理规范(GAP)指导原则[J].中药研究与信息,1999,(10):17-20.
    [42]王书林.中药材GAP概论[M].化学工业出版社,2004:13.
    [43]李楚源,曾令杰,王正平.中药材产业现代化建设的GAP模式探讨[J].现代中药研究与实践,2003,17(2):5-8.
    [44]李伟,郭青,张寿文,等.草珊瑚GAP基地生态环境质量评价[J].现代中药研究与实践,2005,19(4):13-14,17.
    [45]杨小军,丁永辉.甘肃当归GAP栽培的环境质量评价[J].解放军药学学报,2004,20(2):110-112.
    [46]毛春国,李春生,俞巧仙,等.铁皮石斛GAP种植基地的环境质量评价[J].现代中药研究与实践,2006,20(1):6-8.
    [47]吴友根,张莲婷,黄权成,等.短葶山麦冬种植基地和药材中有机氯农药及重金属残留分析[J].中国中药杂志,2009,34(11):1351-1354.
    [48]冯世鑫,胡东南,陈乾平,等.中药黄藤GAP基地环境质量评价[J].现代中药研究与实践,2007,21(1):7-9.
    [49]夏焱,段宏泉,张铁军,等.雷公藤属药用植物的研究进展[J].中草药,2005,36(7):1093-1096.
    [50]徐银海,严杰.雷公藤红素诱导人急性髓系白血病HL-60细胞凋亡及其机制的研究[J].浙江大学学报(理学版),2008,35(3):311-314.
    [51]杜玮炜,姚小洪,黄宏文.环境胁迫对雷公藤中雷公藤红素含量的影响[J].植物生态学报,2009,33(1):180-185.
    [52]李瑞琳,舒达夫.雷公藤的研究与临床应用[M].北京:中国科学技术出版社,1989.
    [53]李晶竣.雷公藤红素对人肝癌细胞Hep3B中HIF-1α表达的影响[J].延边大学学报:自然科学版,2011,37(2):171-175.
    [54]刘浩,刘志红,陈朝红,等.雷公藤内酯醇对T淋巴细胞核因子-κB及其抑制分子的影响[J].南京大学学报自然科学版,2000,36(5):603-609.
    [55]徐央丽.雷公藤的研究进展[J].现代中西医结合杂志,2008,17(12):1941.
    [56]郑家润,冯坤林.雷公藤抗炎免疫及抗生育活性成分的筛选Ⅴ.7个环氧二萜内酯化合物体外对T、B淋巴细胞增殖的影响[J].中国医学科学院学报,1994,16(1):24-28
    [57]高妍,于婉婷,佘东来,等.雷公藤毒性机制的研究进展[J].时珍国医国药,2011,22(9):2265-2266.
    [58]唐鸿青,刘桐华,余彦波.小麦光合作用“午休”的生态因子研究[J].生态学报,1986,6(2):128-132.
    [59]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报,1990,16(1):49-56.
    [60]卢艳,王飞,韩明玉,等. NaCI胁迫对4种砧穗组合苹果的生长及光合特性的影响[J].西北农业学报,2011,20(8):106-110.
    [61]朱向涛,刘庆华,王奎玲,等.耐冬山茶光合特性研究[J].中南林业科技大学学报,2011,31(9):76-79.
    [62]王晨冰,赵秀梅,李宽莹,等.叶面喷施KH2PO4对温室油桃光合特性及果实品质的影响西北农业学报,2011,20(8):111-115.
    [63]王红霞,张志华.河北核桃(Juglans hopeiensis Hu)光合特性的研究[J].园艺学报,2005,32(3):392-396.
    [64]王永军,孙其专,杨今胜,等.不同地力水平下控释尿素对玉米物质生产及光合特性的影响[J].作物学报,2011,37(12):2233-1140.
    [65]林光美,姜建国,江锦红,等.雷公藤的开发利用与引种驯化栽培技术[J].中国野生植物资源,2004,23(1):60-63.
    [66]孙年喜,李隆云,钟国跃.半夏光合特性研究[J].西南农业学报,2009,22(1):71-73.
    [67]薛建平,王兴,张爱民,等.地黄光合特性研究[J].中国中药杂志,2009,34(6):778-780.
    [68]杨学军,韩蕾,孙振元,等.耐荫地被植物山麦冬光合特性研究[J].草地学报,2008,16(4):370-373.
    [69]尤扬,周建贾,文庆,等.鹅掌柴叶片秋季光合特性[J].东北林业大学学报,2009,37(9):25-26,35.
    [70]沈宗根,戴雅娟,毛灵芝,等.绞股蓝与乌蔹莓的光合作用和叶绿素荧光特性比较[J].浙江农业学报,2009,21(2):130-134.
    [71]杨细明,洪伟,吴承祯,等.雷公藤无性系苗木光合生理特性研究[J].福建林学院学报,2008,28(1):14-18.
    [72]吴承祯,洪伟,杨细明,等.雷公藤无性系光合特性与内源植物激素关系的研究[J].江西农业大学学报,2010,32(5):968-973.
    [73]江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195.
    [74]吴广霞.植物低温胁迫生理研究进展[J].作物杂志,2008,(3):16-19.
    [75]泰宁县地方志编纂委员会编.泰宁县志[M].北京:群众出版社出版,1993.
    [76]王明明.不同处理诱导黄瓜、番茄幼苗抗冷性的研究[D].东北农业大学硕士学位论文,2006,1.
    [77]洪伟,唐佳栋,吴承祯,等.泰宁雷公藤根系分布规律[J].福建林学院学报,2007,27(2):97-100.
    [78] LYT1239-1999,森林土壤pH值的测定-中华人民共和国林业行业标准[S].
    [79] LYT1237-1999,森林土壤有机质的测定及碳氮比的计算-中华人民共和国林业行业标准[S].
    [80] LYT1228-1999,森林土壤全氮的测定-中华人民共和国林业行业标准[S].
    [81] LYT1232-1999,森林土壤全磷的测定-中华人民共和国林业行业标准[S].
    [82] LYT1234-1999,森林土壤全钾的测定-中华人民共和国林业行业标准[S].
    [83] LYT1229-1999,森林土壤水解性氮的测定-中华人民共和国林业行业标准[S].
    [84] LYT1233-1999,森林土壤有效磷的测定-中华人民共和国林业行业标准[S].
    [85]张会民,刘红霞.土壤与植物营养实验实习教程[M].陕西:西北农林科技大学出版社,2004:13-28,74-84.
    [86]国家药典委员会编.中国人民共和国药典附录.一部[S].2005:81.
    [87]国家药典委员会编.中国人民共和国药典附录.二部[S].2010:53,58,107.
    [88]洪素珍.如何有效利用主成分分析中的主成分[D].华中师范大学硕士学位论文,2008,8.
    [89] NYT1749-2009南方地区耕地土壤肥力诊断与评价,中华人民共和国农业行业标准[S].
    [90]杨润萍,李晓霞,丁磊,等.污染水中铜离子浓度的快速测定[J].中国卫生检验杂志,2007,17(12):2217-2218,2345.
    [91]任德权,周荣汉.中药材生产质量管理规范(GAP)实施指南[M].北京:中国农业出版社,2003:12.
    [92]李正明,吕宁,俞超.无公害安全食品生产技术[M].北京:中国轻工业出版社,1999.
    [93]朱艳,熊清泉,孙玉琴,等.彝良小草坝天麻GAP种植基地环境质量评价[J].西南农业学报,2006,19(2):287-289.
    [94]马虹英,李新中,徐平声.西洋参、人参等药材中有机氯农药残留量的测定[J].中国医院药学杂志,2006,26(5):533-536.
    [95]陈冲,肖娅萍,宋玉琼,等.我国中药材中有机氯农药残留量的调查分析[J].自然科学版:陕西师范大学学报,2006,34(z1):264-271.
    [96]郭舜民,夏志林.雷公藤甲素的半合成研究[J].中国药科大学学报,1999,30(1):13-15.
    [97]朱烈,程敬丽,朱国念.雷公藤甲素提取方法研究[J].浙江农业科学,2005,(6):485-487.
    [98]赵宁,冯锁民,马远涛,等.反相高效液相梯度洗脱法测定药材中雷公藤甲素的含量[J].安徽农业科学,2011,39(21):12851-12852.
    [99]程敬丽,朱烈,朱国念,等.雷公藤甲素的提取工艺[J].农药,2005,44(7):316-318.
    [100]孙海燕.华山松高结实无性系选择研究[D].西南林学院硕士学位论文,2007,6.
    [101]叶荣华,斯金平,阮秀春,等.雷公藤主要经济性状生长情况及相互关系[J].浙江林学院学报,2009,26(2):215-219.
    [102]杨细明,洪伟,吴承祯,等.雷公藤优良单株选择技术(Ⅰ)-雷公藤种内变异、生物量模型和选择性状的研究[J].北华大学学报(自然科学版),2008,9(3):256-260.
    [103]许元科,斯金平,季赛娟,等.不同种源雷公藤苗木质量的研究[J].中药材,2006,29(9):884-886.
    [104]杨细明.雷公藤高内酯醇含量无性系的早期选择[J].福建林学院学报,2010,30(2):115-118.
    [105]斯金平,黄文华,郭宝林,等.雷公藤药材中雷公藤甲素变异规律[J].中国中药杂志,2006,31(24):2026-2030.
    [106]胡迪科.雷公藤遗传多样性的ISSR和SRAP分析[D].福建农林大学硕士毕业论文,2011.
    [107]孔玲.厚朴良种选择及其RAPD种源鉴别研究[D].福建农林大学硕士学位论文,2010.
    [108]荣俊冬.高双酯碱三尖杉优树选择及苗期子代测定研究[D].福建农林大学硕士学位论文,2006.
    [109]方水强,钟子龙,钟建军,等.雷公藤人工扦插繁殖栽培技术[J].安徽农学通报,2009,15(22):138-139.
    [110]许元科,刘饶,何盛林,等.扦插时间与雷公藤苗木质量关系初步研究[J].安徽农业科学,2007,35(18):5472,5476.
    [111]许元科,夏守荣,吴耀成,等.插条下端切口位置对雷公藤苗木扦插成活率及质量的影响[J].浙江林业科技,2008,28(5):48-49.
    [112]李琰.雷公藤组织培养生产次生代谢产物及其代谢调控研究[D].西北农林科技大学博士毕业论文,2009:50.
    [113]赵丹.雷公藤诱导子的筛选及其机理研究[D].福建农林大学硕士毕业论文,2009:23.
    [114]元英进.植物细胞培养工程[M].北京:化工工业出版社,2004.
    [115]王梦亮,任撂兴,刘滇生.前体和诱导子饲喂黄芩愈伤组织强化黄芩苷生产研究[J].中草药,2007,38(1):128-130.
    [116]林光美,侯长红.雷公藤的GAP栽培技术[J].中国农村科技,2005:25-26.
    [117]程建平,赵锋,游爱兵,等.赤霉素喷施量及时期对水稻穗层整齐度和产量的影响[J].华中农业大学学报,2011,30(6):657-662.
    [118]国家林业局.中华人民共和国林业行业标准[S].1999:274-289.
    [119]张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社,2007:26-28.
    [120] Righetti T. L. Diagnostic biases in DRIS evaluations on sweet cherry and hazelnut[J]. Commune.SoilSci. Plant Anal,1988,19:1429-1447.
    [121] Needham T D. Relation ship between diagnosis and recommendation integrated system(DRIS)optima and foliar nutrient critical levels[J]. Soil Sci. Soc. Am. J,1990,54:883-886.
    [122] Goh K M. Preliminary nitrogen, phosphorus, potassium, calcium and magnesium DRIS norms andindices for apple orchards in Canterbury[J]. New Zealand Common. Soil Sci. Plant Anal,1992,23(13):1371-1385.
    [123] Davee D E. An evaluation of the DRIS approach for identifying mineral limitations on yield inNapoleon sweet cheery[J]. Amer.Soc.Hort.Sci,1986,111(6):988-993.
    [124] Fallahi E, Righetti T L. Use of diagnosis and recommendation integrated system(DRIS)in Apple[J].Hort. science,1984,19(3):116.
    [125]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080-1087.
    [126]李小平,王景燕,王东,等.施肥水平对巨桉幼树叶片气体交换日变化的影响[J].应用生态学报,2010,21(11):2734-3741.
    [127]栗岩峰,李久生,饶敏杰.滴灌系统运行方式施肥频率对番茄产量与根系分布的影响[J].中国农业科学,2006,39(7):1419-1427.
    [128]王殿武,张建平,周大迈,等.太行山低山丘陵区旱作甘薯吸肥规律研究[J].中国农学通报,2000,16(2):17-19.
    [129]赵劲松,贾文恺.湖北麦冬氮磷钾优化配方施肥研究[J].襄樊职业技术学院学报,2004,3(4):21-22.
    [130]何景峰,陈竹君,唐德瑞,等.杜仲专用肥的研制及其综合效益分析[J].西北林学院学报,2001,16(4):37-40.
    [131]张小斌.商洛半夏有机肥与无机肥配比试验[J].江西农业学报,2007,19(5):74-75.
    [132]韩建萍,梁宗锁,孙群,等.丹参根系氮、磷营养吸收及丹参酮累积规律研究[J].中国中药杂志,2004,29(3):207-211.
    [133]王渭玲,梁宗锁,孙群,等.丹参氮磷钾肥效反应模式研究[J].西北农业学报,2002,11(4):59-62.
    [134]周东雄,姜建国,江锦红,等.雷公藤规范化种植关键技术研究[C].第五届全国雷公藤学术会议论文集,2008,103-111.
    [135]韩猛,韩新生,王靖,等.花生间作大豆条件下氮磷钾肥配施效应的研究[J].大豆科学,2010,29(4):666-668.
    [136]王玉涛,李吉跃.固体水、叶面肥在防沙治沙抗旱造林中对苗木成活及生长的影响[J].北京林业大学学报,2006,28(3):76-80.
    [137]童文,孙佩,杨晓,等.施用腐植酸肥对白芷产量和质量的影响[J].西南农业学报,2011,24(3):1236-1238.
    [138]何文静,徐建铭.氨基酸叶面肥对西洋参产量的影响简报[J].蔬菜,2011,34-35.
    [139]彭威,张友民.叶面喷施硼·钼及稀土微肥对五味子成花及产量的影响[J].2010,安徽农业科学,2010,38(17):8955-8956,8977.
    [140] Beaufils E R. Diagnosis and recommendation integrated system(DRIS)[J]. Soil Science Bulletin(University of Natal, Pieter maritzburg, SouthAfrica),1973,(1):132.
    [141]张旭东,董林水,周金星,等.珍稀乡土树种福建柏苗期DRIS营养诊断[J].生态学报,2005,25(5):1165-1169.
    [142]高华,周广柱,吴婧舒,等.基于DRIS法进行红皮云杉营养诊断最佳采叶时期的研究[J].北方园艺,2010,(10):86-89.
    [143]福建省林业勘察设计院、福建省森林资源管理总站编.森林调查常用表[M].北京:中国林业出版社,1995,26,46.
    [144]杨艳蓉.田问持水量测定技术[J].农田水利.2007,(8):37.
    [145]郭世民,张永录.小区灌水法测定田间持水量[J].河南气象,2002,(3):33.
    [145]黄侠敏,耿凤鹏,陈昕,等.苯醚甲环唑10%微乳剂对莳药炭疽病的田间药效试验[J].农业科学与管理,2009,30(3):28-29.
    [147]张顺恒,蒋家淡,蔡明安,等.桉树短周期工业原料林适宜造林密度的研究[J].福建林业科技,2000,27(2):26-29.
    [148]杨红梅,曾庆钱,钱磊.林下套种草珊瑚的栽培技术[J].湖南林业科技,2010,37(3):51-52.
    [149]朱培林,王玉,易文红,等.油茶林套种中药材品种及其种植技术[J].江西林业科技,2007,(4):62-64.
    [150]黄亮.草珊瑚林间套种栽培研究[J].闽西职业技术学院学报,2010,12(3):100-102.
    [151]姜建国.杉木雷公藤混交林空间分布格局的初步研究林业科技开发[J].2005,19(6):66-68.
    [152]李永武.黄花梨园套种雷公藤栽培模式研究[J].福建果树,2007,(142):1-3.
    [153]周欢,原保忠,柯传勇,等.灌溉水量对水稻生长和产量的影响[J].灌溉排水学报,2010,29(2):99-101.
    [154]谭军.成熟期灌溉水量对白肋烟质量的影响[J].农技服务,2011,28(2):235-236.
    [155]孙丽萍,温永刚,王树忠,等.灌水量对日光温室黄瓜灌溉水分配的影响[J].西北农业学报,2010,19(4):173-178.
    [156]朱建华,黄金水,任少鹏,等.雷公藤丽长角巢蛾生物学特性研究[J].中国森林病虫,2010,29(3):18-20.
    [157]陈红梅.雷公藤角斑病病原鉴定及生物学特性[J].福建林学院学报,2008,28(3):240-246.
    [158]陈红梅.雷公藤丽长角巢蛾幼虫种群空间分布格局研究[J].福建林业科技,2008,35(4):93-97.
    [159]陈俊元,夏志林,徐榕青.闽产雷公藤不同采收期有效成份含量的比较[J].福建药学杂志,1990,6(1):32-33.
    [160]杨春欣,周庭川,秦万章.雷公藤内酯醇不同季节的含量变化[J].中国医院药学杂志,2001,21(1):25.
    [161]刘燕玲.雷公藤药效落叶优于根茎数倍[J].中国社区医师(综合版),2007,9(9):120.
    [162]张水金,黄庭旭,章杏,等.植物抗寒性研究进展[J].福建农业学报,2005,20(增刊):154-159.
    [163]汤日圣,张大栋,童红玉.高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节[J].江苏农业学报,2005,21(3):145-149.
    [164]龙海涛,李玲,万小荣. ABA诱导基因及其与逆境胁迫的关系(综述)[J].亚热带植物科学,2004,33(4):74-77.
    [165] Germann C, Seeland K. Are urban green spaces optimally distributed to act as social integrationResults of a geographical information system(GIS)approach for urban forestry research[J]. ForestPolicy and Economics,2004,6(1):3-13.
    [166]雷朝云.低温霜害对香蕉生产的危害及生长建议[J].热带作物科技,1992,(6):67-70.
    [167]赵世杰,刘华山,董新纯.植物生理学试验指导[M].北京:中国农业科技出版社,1998.
    [168]郝建军,刘延吉.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994:9-11,144-145.
    [169]白宝璋.植物生理学(Ⅱ)——测试技术[M].北京:中国科学技术出版社,1993:127-128,146-147.
    [170]汤章城.现代植物生理学实验指导[M].北京:科技出版社,1999:314-315.
    [171]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [172]郝建军,康宗利,于洋,等.植物生理学实验技术[M].北京:化学工业出版社,2006.
    [173]宋莉英,孙兰兰,舒展,等.干旱和复水对入侵植物三裂叶蟛蜞菊叶片叶绿素荧光特性的影响[J].生态学报,2009,29(7):3713-3721.
    [174] Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages ofmarine phytoplankton[J]. Journal of Marine Research,1980,38:687-701.
    [175]朱佳,梁永超,丁燕芳,等.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响[J].中国农业科学,2006,39(9):1780-1788.
    [176]李建明,王平,李江.灌溉量对亚低温下温室番茄生理生化与品质的影响[J].农业工程学报,2010,26(2):129-134.
    [177]闫永庆,石溪婵,胡小多,等.低温对红王子锦带生理生化指标的影晌[J].北方园艺,2008,(5):172-175.
    [178] Halliwell B. Chloroplast metablism:the structure and fuction of chloroplasts in green leaf cells[M].Oxford:Clarendon Press,1981:180-202.
    [179]马英姿,王平,梁文斌.在低温下ABA对九里香生理生化的影响[J].中南林学院学报,2006,26(5):102-105.
    [180]刘思宇.外源物质对低温胁迫下番茄幼苗生理指标的影响[J].北方园艺,2010,(17):44-46.
    [181]周宜君,冯金朝,马文文,等.植物抗逆分子机制研究进展[J].中央民族大学学报:自然科学版,2006,15(2):169-176.
    [182]李培英,孙宗玖,景艳杰,等.冷害胁迫下4份狗牙根的生理响应[J].新疆农业大学学报,2010,33(5):373-379.
    [183]李小安,周青平.低温胁迫对扁蓿豆的脯氨酸含量和POD、SOD酶活性的影响[J].青海大学学报:自然科学版,2009,27(1):60-63.
    [184] Hong S S, Xu D Q. Light-induced increase in initial fluorescence parameters to strong light betweenwheat and soybean leaves[J]. Chinese Science Bulletin,1997,42:684-688.
    [185]贾彩凤,李艾莲.药用植物金荞麦的光合特性研究[J].中国中药杂志,2008,33(2):129-132.
    [186]刘慧丽,李玲.脱落酸ABA诱导基因表达的调控元件[J].植物学通报,2001,18(3):276-282.
    [187]康琅,汪良驹. ALA对西瓜叶片叶绿素荧光光响应曲线的影响[J].南京农业大学学报,2008,31(1):3l-36.
    [188]张彩虹,刘慧英,于秀针.硒对低温胁迫下番茄幼苗叶片光合特性与叶绿素荧光参数的影响[J].中国农学通报,2010,26(5):152-157.
    [189]任旭琴,刘美琴,陈葛亮,等.外源ABA对辣椒抗冷性生理指标的影响[J].长江蔬菜,2009,(8):30-32.
    [190]汤日圣,黄益洪,唐现洪,等.微生物源脱落酸(ABA)对辣椒苗耐冷性的影响[J].江苏农业学报,2008,24(4):467-470.
    [191]孙芳,夏新莉,尹伟伦.逆境胁迫下ABA与钙信号转导途径之间的相互调控机制[J].基因组学与应用生物学,2009,28(2):391-397.
    [192]蒲高斌,张凯,张陆阳,等.外源ABA对西瓜幼苗抗冷性和某些生理指标的影响[J].西北农业学报,2011,20(1):133-136.
    [193]王宇,王晶英.脱落酸对低温胁迫下水曲柳幼苗叶片抗寒生理指标的影响[J].森林工程,2010,26(4):32-36.
    [194]杨华庚,林位夫.低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响[J].中国农学通报,2009,25(24):506-509.
    [195]孟焕文,程智慧,吴洋,等.温度胁迫对番茄转化酶表达和光合特性的影响[J].自然科学版:西北农林科技大学学报,2006,34(12):41-46,52.
    [196] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of PlantPhysiology,1982,33:317-345.
    [197]金清,江洪,余树全,等.酸雨胁迫对苦槠幼苗气体交换与叶绿素荧光的影响[J].植物生态学报,2010,34(9):1117-1124.
    [198]李晓锋,侯瑞贤,朱玉英,等.高温胁迫对大白菜叶绿素荧光特性的影响[J].农业工程学报,2009,25(增刊):49-54.
    [199] Kruse GH, Neis E. CholrophyⅡ fluorescence and photosynthesis[J]. Plan. Moecularl Biology,1991,42:313-349.
    [200] Razinger J, Dermastia M, Drinovec L, et al. Antioxidative responses of duckweed(Lemna minor L.)to shortterm copper exposure[J]. Environmental Science and Pollution Research,2007,14:194-201.
    [201] Xing W, Huang W M, Liu G H. Effect of excess iron and copper on physiology of aquatic plantSpirodela polyrrhiza(L.)Schleid[J]. Environmental Toxicology,2010,25:103-112.
    [202]鲁艳,李新荣,何明珠,等.不同浓度Ni和Cu处理对骆驼蓬光合作用和叶绿素荧光特性的影响[J].应用生态学报,2011,22(4):936-942.
    [203]黄红英,窦新永,邓斌,等.不同次生种源麻疯树对高温胁迫的响应[J].林业科学,2009,45(7):150-155.
    [204]王文杰,李文馨,祖元刚,等.紫茎泽兰茎和叶片色素及叶绿素荧光相关参数对不同温度处理的响应差异[J].生态学报,2009,29(10):5424-5433.
    [205] Piotr S, Giles N. J. Contrasting responses of photosynthesis to salt stress in the glycophyteArabidopsis and halophyte Thellungiella:role of the plastid terminal oxidase as an alternativeelectron sink[J]. Plant Physiology,2009,149:1154-1165.
    [206]曹玲,王庆成,崔东海.土壤镉污染对四种阔叶树苗木叶绿素荧光特性和生长的影响[J].应用生态学报,2006,17(5):769-772.
    [207]周蕴薇,刘艳萍,戴思兰.用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J].植物生理学通讯,2006,42(5):945-950.
    [208] Ralph P J, Gademann R. Rapid light curves:A powerful tool to assess photosynthetic activity[J].Aquatic Botany,2005,82(3):222-237.