用户名: 密码: 验证码:
面元像素CdZnTe高能辐射探测器原理、系统及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年来,国际空间站计划的开始实施及国家大科学装置“神光III原型”、“大天区面积多目标光纤光谱望远镜”(LAMOST)的建成标志着国家在航空航天、高能物理及天文学等科研领域都取得了具有里程碑意义的重大成果。而作为这一系列重大科研计划的重要技术支撑,对10keV~1000keV能区辐射诊断技术的研究也具有极其重要的科研意义。而基于面元像素电极碲锌镉(CdZnTe)晶体材料的核辐射探测器由于对高能射线具备优异的能量分辨率性能及探测效率,正逐渐成为目前半导体核辐射探测技术的研究热点。
     到目前为止,国内外CdZnTe探测器件的研究存在较大差距。国内相关研究尚处于起步阶段,主要研究方向是CdZnTe晶体生长及表面处理工艺;国外相关研究主要针对探测器收集电极结构的改变、探测器权重势分布理论及相关脉冲信号电子学处理技术的改进。近年来,科研人员在提高CdZnTe探测器能量分辨率的研究工作方面取得了大量卓有成效的进展,但在面元像素CdZnTe探测技术的相关研究领域内,目前的研究还存在若干明显问题。其中包括大面积面元像素CdZnTe成像探测系统的制备问题以及如何结合目前的成像传递函数理论评价探测器成像质量等问题。更进一步而言,在高能辐射成像探测领域,如何更深入地从载流子迁移及感应信号收集理论方面对探测器最终成像信号变化进行讨论分析?在极端探测条件下,CdZnTe探测器的探测性能是否会受到影响?
     针对以上问题,同时为了完善面元像素CdZnTe探测器在10keV~1000keV能区核辐射能谱探测及成像探测领域的研究结构体系,在国家自然科学基金项目(No.10876044)及中央高校基本科研业务费资助项目(No. CDJXS11122219)资助下,开展了面元像素CdZnTe高能核辐射探测技术的基础研究工作。围绕所提出的科学问题,论文主要进行了如下研究工作
     1.研究讨论了CdZnTe晶体与射线光子的相互作用,分析了不同能量不同性质粒子在CdZnTe晶体内部的传输与衰减。根据CdZnTe探测器基本原理讨论了晶体内部载流子电荷的收集特性,分析了多种不同电极结构CdZnTe晶体的权重势分布,为进行面元像素阵列CdZnTe探测系统的深入研究奠定了必要的理论基础,提供了研究思路。
     2.基于CdZnTe晶体表面漏电流理论,测试研究了2×2及4×4像素CdZnTe晶体的表面漏电流分布,针对面元像素CdZnTe晶体漏电流特性及输出信号特点制备了基于前置放大芯片的读出电路系统。进一步采用极零相消电路及Sallen-Key滤波器设计实现了信号脉冲整形电路并制备了多级整形放大电路系统。根据实验测试所得CdZnTe探测器数字脉冲信号,研究了相应的能谱获取及修正方法。通过编写寻峰程序实现了数字脉冲信号的寻峰处理及能谱统计。以降低面元像素CdZnTe探测器像素单元边缘效应对能量分辨率的影响为目的,提出了基于数字脉冲信号的幅度修正算法,较明显地提高了探测器边缘像素单元的能量分辨率。
     3.探讨了面元像素CdZnTe探测器的成像机理,测试分析了所搭建CdZnTe成像探测系统的关键性能参数。基于针孔成像基本原理的分析,建立了高能射线针孔成像系统。数值计算并实验测试分析了成像系统的调制传递函数特性,结合数字图像处理理论提出基于Lucy-Richardson算法的探测退化图像复原方法并测试验证了该方法的优越性。
     4.在CdZnTe晶体俘获载流子感应电荷理论的基础上,讨论并研究了俘获载流子在CdZnTe晶体电极表面所产生的感应电荷分布。通过建立阳极表面感应信号分布模型实现了CdZnTe晶体物理参数与探测器成像调制传递函数的关联;从载流子迁移理论出发,研究讨论了载流子迁移率等晶体物理特性对探测器成像性能的影响。
     5.测试分析了面元像素CdZnTe探测系统在高强度辐照条件下的成像特性,讨论了探测器成像极化效应与系统物理参数间的关系。进一步研究并建立了晶体内部电势分布模型,基于解析计算及有限元仿真两种方法计算分析了CdZnTe晶体内部电势分布与初始空间电荷密度、辐射光子通量、外加偏压等物理参数的关系。采用有限元电势模型对实验过程中所发现的光生载流子屏蔽效应的波动变化过程进行了讨论研究,为极端实验条件下对CdZnTe探测器性能更深入的研究提供了必要的研究基础及思路。
In recent years, the implement of national space station program and theestablishment of the national science facilities, which include the prototype of“ShenGuang III” and the Large Sky Area Multi-Object Fiber Spectroscopy Telescope(LAMOST), are milestone of aerospace technology, high energy physics and astronomytechnology. And hence, the corresponding diagnostic technique for high energyradiation source also has important significance as the unique technology support ofthese major research plans. The pixellated Cadium Zinc Telluride (CdZnTe) irradiationdetector, which has excellent energy resolution and high detection efficiency, hasexperienced a rather rapid development due to the development of the semiconductorgrown technology in decades. And the pixellated CdZnTe detector are now investigatedin a large variety of fields, including nuclear physics, X-ray and Gamma ray astronomyand nuclear medicine.
     As for now, the researches of grown technique to produce CdZnTe crystals with therequired good performance and the crystal surface process are the majority part of thedomestic investigation. The overseas researchers dedicate to the design of novelstructure electrode, the improvement of weighting potential theory of CdZnTe detectorand the implement of electrical signal process technique for the detector pulse. Thepurpose of all these works is the spectrum resolution improvement, which is carried outaccording to the improvement of the collection efficiency of the photon generatedcarriers in the CdZnTe crystal. Nevertheless, there are several realistic problems. Forexample, how to rise the detector resolution, improve the edge effect based on thedigital pulse processing method instead of the material grown method? How toevaluation the imaging quality of the large area pixellated CdZnTe with the modulationfunction theory? And during the high energy radiation imaging detection, how tocombine the induced signal theory, the experimental and theoretical results of the carrierdrift characteristic with the imaging signals? Thus, the evaluation of detector imagingperformance according to the carrier drift characteristic hasn’t been discussed.Moreover, the stability of CdZnTe detector under extreme condition hasn’t beeninvestigated. In this thesis, the corresponding researches for the problems mentionabove are investigated based on the support of National Natural Science Foundation ofChina (No.10876044) and the fundamental research funds for the central universities (CDJXS11122219). The main work of this thesis is provided as follows:
     1. The basic principles of interaction theory between radiation particles andmaterials and the transmit attenuation theory of radiation particles are introduced. Theinteraction and transfers of different energy particles in CdZnTe material are discussed.The collection efficiency of carrier charge and weighting potential distribution fordifferent electrode CdZnTe detectors are analyzed based on the principle of CdZnTedetector. These pre-works establish the essential theoretical foundation for thepenetrated investigation of pixellated CdZnTe system, and also provide some researchideas.
     2. The surface leakage current of2×2,4×4pixel array electrodes are tested andanalyzed based on the leakage theory of pixellated CdZnTe detector. The containmentmethod of noise signal resulted from the crystal leakage has been discussed. After theargumentation of signal processing principle for the preamplifier readout system and theshaping amplifier system, we fabricated the corresponding pulse shaping circuit whichintroduced the pole-zero cancellation circuit and Sallen-Key filter. In order to reduce theinfluence of noise signal which resulted from leakage current, the acquirement systemand corrected method for the digitization of probed CdZnTe detector pulse areinvestigated in detail. At first, according to the application of peak finding and spectrumstatic programs for digital pulse signal, the spectrum of Gamma source137Cs is obtainedin our experiment. Moreover, the implement of pulse amplitude corrected algorithmbased on the digital signal is presented for the purpose of spectroscopy responseimproving. The average energy resolution of corner pixels has been improved1.6%,and the best energy resolution of pixels achieved2.5%. The experimental resultsindicate that the energy resolution of4×4pixellated CdZnTe detector system isexcellent. The influence of edge pixel effect is substantially reduced, the resolution ofedge pixels get improved efficiently.
     3. Based on the discussion of pinhole imaging theory, a pinhole imaging systemwith pixellated CdZnTe detector are constructed for the Gamma source. The energyresolution and peak efficiency of CdZnTe pixellated detector are tested and analyzed.During our preliminary experiments, modulation transfer function (MTF) and additionalnoise characteristic of pinhole imaging system were investigated and discussed. Wepresented and evaluated test image of5mm diameter137Cs gamma source. Themeasured pinhole images have been restored with the Lucy-Richardson algorithmsimultaneously. As shown through the experiment results, there was lateral spread information during source images and degraded image can be restored appropriatelywith the application of Lucy-Richardson algorithm. Inner area spatial resolution getsimproved through the restoration method and estimated source diameter has error0.5mm. Experiments indicated that pinhole imaging CdZnTe detector system could beapplied to the acquisition of gamma source intensity distribution while the dimensioninformation of small gamma source can be measured effectively.
     4. With the discussion of induced charge signal distribution that caused by thetrapped carriers near the anode electrode for the CdZnTe detector, a novel analyticmodel which mainly considers the trapped carrier effect in the pixellated CdZnTedetector is obtained. The constructed numerical model carries out the combinationbetween the modulation transfer function of detector and the physical parameters of theCdZnTe material. Based on the simulated results and carrier drift theory, the pixellatedCdZnTe detector imaging performance, which influenced by the carrier drift and crystalcharacteristics, has been estimated for different carrier mobility-lifetime values andphoton energies. Moreover, a40×40mm2CdZnTe imaging system has beenestablished. The comparison of the presampling MTF shows that the simulation result iswell consistent with the experimental data.
     5. Based on the established CdZnTe imaging system, the radiation imagingexperiment is accomplished with the Rh target X-ray source and the137Cs Gammasource. For the first time, the imaging polarization effect has been observed.Furthermore, the detector imaging characteristic that under extreme experimentalconditions are investigated according to the change of the physical parameters like tubevoltage, tube current, et.al. For the penetrated study of the polarization phenomenon, weestablish two kinds of models with analytic method and finite element method based onthe Poisson equation. Thus, the inner electric potential, the electric field distribution andthe space charge density of pixellated CdZnTe detector are simulated. The simulationresults reveal that the accumulation of the hole carriers, which resulted from theextremely low drift ability of the hole carrier, leads to a relatively highspace-charge-density area in the CdZnTe bulk when the increase of irradiated photonflux. And hence, the induced signal screen effect of the anode pixels in the centerirradiated area is mainly attributed to the distorted electric field which makes electroncarriers drifting toward the high potential area in the CdZnTe crystal instead of the pixelanodes. Particularly, the finite model predicts the fluctuant change of the polarizationeffect, which has been approved during our experiments. The detailed discussion has been presented with the increase of the incident photon energy in the finite elementmodel.
引文
[1]江少恩,丁永坤,缪文勇等.我国激光惯性约束聚变实验研究进展[J].中国科学G,2009,39(11):1571-1583.
    [2]段斌,吴泽清,王建国.惯性约束聚变等离子体的光谱诊断(I)[J].中国科学G,2009,39(1):43-51.
    [3]林尊琪.激光核聚变的发展[J].中国激光,2010,37(9):2202-2207.
    [4] Xiangqun Cui, Dingqiang Su, Ya-nan Wang, et al. The optical performance ofLAMOST telescope [C]. Proc. SPIE,2010,7733:773309.
    [5] Jianlan Song. Large astronomical telescope development in China: Achievements andprospects [J]. Bulletin of the Chinese academy of sciences,2011,25(3):155-160.
    [6] Yongtian Zhu, Zhongwen Hu, Lei Wang, et al. Construction and commissioning ofLAMOST low resolution spectrographs [J]. Sci. China ser. G,2011,41(11):1337-1341.
    [7] Pat Sangsingkeow, K. D. Berry, E. J. Dumas, et al. Advances in germanium detectortechnology [J]. Nucl. Instr. and Meth. A,2003,505(1-2):183-186.
    [8] P. J. Van Heerden. The crystal counter, a new instrument in nuclear physics [D]. Utrecht:Rijksuniversiteit Utrecht,1945.
    [9] W. J. Price. Nuclear Radiation Detection2nd Ed.[M]. New York: McGraw-Hill,1964.
    [10] G. F. Knoll. Radiation Detection and Measurement.3rd Ed.[M]. New York: John Wiley&Sons Inc.,2000.
    [11]丁洪林.核辐射探测器[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [12] W. R. Willig. Mercury iodide as a gamma spectrometer.[J] Nucl. Instr. and Meth. A,1971,96(4):615-616.
    [13] W. R. Willig. Large bandgap mercury and lead compounds for nuclear particle detection[J].Nucl. Instr. and Meth.,1972,101(1):23-24.
    [14] S. P. Swierkowski, G. A. Armantrout, and R. Wichner. High resolution HgI2X rayspectrometers [J]. Appl. Phys. Lett.,1973,23:281-282.
    [15] K. Hull, A. Beyerle, B. Lopez, et al. Recent developments in thick mercuric iodidespectrometers [J]. IEEE Trans. Nucl. Sci.,1983,30(1):402-404.
    [16] T. Mohammed-Brahim, A. Friant, and J. Mellet. Structure MIS effects on polarization of HgI2crystals used for gamma-ray detection [J]. IEEE Trans. on Nucl. Sci.,1985,32(1):581-584.
    [17] W. Akutagawa, K. Zanio, J. W. Mayer, et al. CdTe as a gamma detector [J]. Nucl. Instr. andMeth.,1967,55:383-385.
    [18] M. Cuzin. Some new developments in the field of high atomic number materials [J]. Nucl.Instr. and Meth. A,1987,253(3):407-417.
    [19] A. Cornet, P. Siffert, A. Coche, et al. Cadium telluride surface barrier detectors [J]. Appl. Phys.Lett.,1970,17(10):432-436.
    [20] P. Siffert, J. Berger, C. Scharager, et al. Polarization in cadmium telluride nuclear radiationdetectors [J]. IEEE Trans. Nucl. Sci.,1976,23(1):159-170.
    [21] R. O. Bell, G. Entine, and H. B. Serreze. Time-dependent polarization of CdTe gamma raydetectors [J]. Nucl. Instr. and Meth.,1974,117(1):267-271.
    [22] J. F. Butler, C. L. Lingren, and F. P. Doty. Cd1-xZnxTe gamma-ray detectors [J]. IEEE Trans.Nucl. Sci.,1992,39(4):605-609.
    [23] J. E. Toney, B. A. Brunett, T. E. Schlesinger, et al. Uniformity of Cd1-xZnxTe grown byhigh-pressure Bridgman [J]. Nucl. Instr. and Meth. A,1996,380(1-2):132-135.
    [24] Y. Eisen. Current state-of-the art industrial and research application using room-temperatureCdTe and CdZnTe solid state detectors [J]. Nucl. Instr. and Meth. A,1996,380(1-2):431-439.
    [25] L. Chibani, M. Hage-Ali, and P. Siffert. Electrically active defects in detector-grade CdTe:Cland CdZnTe materials grown by THM and HPBM [J]. J. Crys. Grow.,1996,161(1-4):153-158.
    [26] P. Olmos, G. Garcia-Belmonte, and J. M. Perez. Large volume HgI2counters: a noveltechnique for pulse discrimination [J]. Nucl. Instr. and Meth. A,1992,322(3):557-561.
    [27] V. M. Gerrish, D. J. Williams, and A.G. Beyerle. Pulse filtering for thick mercuric iodidedetectors [J]. IEEE Trans. Nucl. Sci.,1987,34(1):85-90.
    [28] A. Beyerle, V. Gerrish, and K. Hull. Parallel pulse processing for mercuric iodide gamma-raydetectors [J]. Nucl. Instr. and Meth. A,1986,242(3):443-449.
    [29] L. T. Jones, and P. B. Woollam. Resolution improvement in CdTe gamma detectors usingpulse-shape discrimination [J]. Nucl. Instr. and Meth.,1975.124(2):591-595.
    [30] P. N. Luke. Unipolar charge sensing with coplanar electrodes application to semiconductordetectors [J]. IEEE Trans. Nucl. Sci.,1995,42(4):207-213.
    [31] P. N. Luke. Single polarity charge sensing in ionization detectors using coplanar electrodes [J].Appl. Phys. Lett.,1994,65(22):2884-2886.
    [32] D. G. Marks, H. B. Barber, H. H. Barrett, et al. A48×48CdZnTe array with multiplexerreadout [J]. IEEE Trans. Nucl. Sci.,1996,43(3):1253-1259.
    [33] H. B. Barber, D. G. Marks, B. A. Apotovsky, et al. Progress in developing focal planemultiplexer readout for large CdZnTe arrays for nuclear medicine applications [J]. Nucl. Instr.and Meth. A,1996,380(1-2):262-265.
    [34] M. Hage-Ali, J. M. Koebel, R. Régal, et al. Cadmium telluride small probes for gamma-rayspectrometry [J]. Nucl. Instr. and Meth. A,1996,380(1-2):427-430.
    [35] J. F. Butler. Novel electrode design for single-carrier charge collection in semiconductornuclear radiation detectors [J]. Nucl. Instr. and Meth. A,1997,396(3):427-430.
    [36] D. S. McGregor, Z. He, H. A. Seifert, et al. CdZnTe semiconductor parallel strip Frisch gridradiation detectors [J]. IEEE Trans. Nucl. Sci.,1998,45(3):443-449.
    [37] E. Y. Lee. Device simulation of a unipolar gamma-ray detector [C]. Proc. MRS,1998,487(537).
    [38] D. S. McGregor, R. A. Rojeski, Z. He, et al. Geometrically weighted semiconductor Frischgrid radiation spectrometers [J]. Nucl. Instr. and Meth. A,1999,422(1-3):164-168.
    [39] G. Montemont, M. Arques, L. Verger, et al. A capacitive Frisch grid structure for CdZnTedetectors [J]. IEEE Trans. Nucl. Sci.,2001,48(3):278-281.
    [40] A. G. Kozorezov, J. K. Wigmore, A. Owens, et al. Analytic model for the spatial and spectralresolution of pixellated semiconducting detectors of high energy photons [J]. J. Appl. Phys.,2005,97(7):074502.
    [41] H. H. Barrett, J. D. Eskin, H. B. Barber. Charge transport in arrays of semiconductorgamma-ray detectors[J]. Phys. Rev. Lett.,1995,75(1):156-159.
    [42] J. Liptac, R. Parker, V. Tang, et al. Hard x-ray diagnostic for lower hybrid experiments onAlcator C-Mod [J]. Rev. Sci. Instr.,2006,77:103504.
    [43] J. Hong, B. Allen, J. Grindlay, et al. Building large area CZT imaging detectors for a wide fieldhard X ray telescope—ProtoEXIST1[J]. Nucl. Instr. and Meth. A,2009,605(3):364-373.
    [44] L. J. Meng, J. W. Tan, K. Spartiotis, et al. Preliminary evaluation of a novel energy resolvedphoton counting gamma ray detector [J]. Nucl. Instr. and Meth. A,2009,604(3):548-554.
    [45] G. S. Camarda, K. W. Andreini, A. E. Bolotnikov, et al. Effect of extended defects in planarand pixelated CdZnTe detectors [J]. Nucl. Instr. and Meth. A,2011,652(1):170-173.
    [46] F. Zhang, Z. He, G. F. Knoll, et al.3D position sensitive CdZnTe spectrometer performanceusing third generation VAS/TAT readout electronics [J]. IEEE Trans. Nucl. Sci.,2005,52(5):4355-4359.
    [47] L. J. Meng, Z. He. Exploring the limiting timing resolution for large volume CZT detectorswith waveform analysis [J]. Nucl. Instr. and Meth. A,2005,550(1-2):435-445.
    [48] D. Xu, Z. He. Gamma ray energy imaging integrated spectral deconvolution [J]. Nucl. Instr.and Meth. A,2007,574(1):98-109.
    [49] Q. Li, M. Beilicke, K. Lee. Study of thick CZT detectors for X-ray and Gamma-ray astronomy[J]. Astron. Phys.,2011,34(10):769-777.
    [50] P. J. Sellin, G. Prekas, J. Franc, et al. Electric field distributions in CdZnTe due to reducedtemperature and X ray irradiation [J]. Appl. Phys. Lett.,2010,96(13):133509.
    [51] L. Abbene, S. D. Sordo, F. Fauci, et al. Spectroscopic response of a CdZnTe multiple electrodedetector [J]. Nucl. Instr. and Meth. A,2007,583(2-3):324-331.
    [52] L. Abbene, G. Gerardi, S. D. Sordo, et al. Performance of a digital CdTe X ray spectrometer inlow and high counting rate environment [J]. Nucl. Instr. and Meth. A,2010,621(1-3):447-452.
    [53] L. Verger, M. Boitel, M. C. Gentet, et al. Characterization of CdTe and CdZnTe detectors forgamma-ray imaging applications [J]. Nucl. Instr. and Meth. A,2001,458(1-2):297-309.
    [54] L. Verger, M. C. Gentet, L. Gerfault, et al. Performance and perspectives of a CdZnTe basedGamma camera for medical imaging [J]. IEEE Trans. Nucl. Sci.,2004,51(6):3111-3117.
    [55] L. Verger, E. G. D’Aillon, O. Monnet, et al. New trends in γ-ray imaging with CdZnTe/CdTe atCEA-Leti [J]. Nucl. Instr. and Meth. A,2007,571(1-2):33-43.
    [56] Yadong Xu, Wanqi Jie, P. J. Sellin, et al. Study on temperature dependent resistivity ofindium-doped cadmium zinc telluride [J]. J. Phys. D: Appl. Phys.,2009,42:03505.
    [57] Yadong Xu, Wanqi Jie, P. J. Sellin, et al. Characterization of CZT crystals grown using aseeded modified vertical Bridgman method [J]. IEEE Trans. Nucl. Sci.,2009,56(5):2808-2813.
    [58]徐亚东,介万奇,查刚强等. CZT平面探测器对低能X/γ射线的光谱响应[J].光学学报,2009,29(11):3072-3077.
    [59]陈新文,杨坤涛.基于CZT探测器的双能X线骨密度测量技术[J].光电工程,2006,33(11):65-68.
    [60]张岚,李元景,毛绍基等.像素CdZnTe探测器的研制[J].核电子学与探测技术,2006,26(3):307-309.
    [61]何会林,董永伟,吴伯冰等.空间硬X射线编码孔成像望远镜样机的研制及初步实验结果[J].高能物理与核物理,2007,31(5):437-441.
    [62]李霞,褚君浩,李陇遐等.室温核辐射CdZnTe像素阵列探测器的研制[J].光电子激光,2008,19(6):751-753.
    [63] M. Li, S. L. Xiao, L. Q. Zhang, et al. Investigation of the imaging polarization effect based ona pixellated CdZnTe detector [J]. Chin. Phys. Lett.,2010,27(7)070702.
    [64]黎淼,肖沙里,张流强等.基于CdZnTe像素阵列探测技术的伽玛源成像[J].强激光与粒子束,2010,22(9):2165-2170.
    [65]王玺,肖沙里,张流强等.基于CdZnTe晶体的2×2像素阵列探测器研究[J].光电子激光,2010,21(5):639-643.
    [66]吴治华.原子核物理实验方法[M].北京:原子能出版社,1997.
    [67]段绍节.实验核物理测量中的粒子分辨[M].北京:国防工业出版社,1996.
    [68] B. Redus. Efficiency of Amptek XR-100T-CdTe and CZT detectors Application NoteANCZT-1Rev2.[R]. Amtec Inc. application notes,2002.
    [69]朱润生.固体径迹探测器的原理和应用[M].北京:科学出版社,1987.
    [70] M. A. J. Van Pamelen, C. Budtz-J rgensen. CdZnTe drift detector with correction for holetrapping [J]. Nucl. Instr. and Meth. A,1998,411(1):197-200.
    [71] M. Jung, J. Morel, P. Fougères, et al. A new method for evaluation of transport properties inCdTe and CZT detectors [J]. Nucl. Instr. and Meth. A,1999,428(1):45-57.
    [72] J. Fink, H. Krüger, P. Lodomez, et al. Characterization of charge collection in CdTe and CZTusing the transient current technique [J]. Nucl. Instr. and Meth. A,2006,560(2):435-443.
    [73] K. O. Kim, J. K. Kim, J. H. Ha, et al. Analysis of charge collection efficiency for a planarCdZnTe detector [J]. Nucl. Eng. Tech.,2009,41(5):723-728.
    [74] W. Shockley. Currents to conductors induced by a moving point charge [J]. J. Appl. Phys.,1938,9:635-636.
    [75] S. Ramo. Currents induced by electron motion [J]. Proceedings of the I.R.E.,1939,27:584-585.
    [76] Z. He. Review of the Shockley-Ramo theorem and its application in semiconductor gamma raydetectors [J]. Nucl. Instr. and Meth. A,2001,463(1-2):250-267.
    [77] C. K. Jen. On the induced current and energy balance in electronics [J]. Proceedings of theI.R.E.,1941,29(6):345-349.
    [78] G. Cavalleri, E. Gatti, G. Fabri, et al. Extension of Ramo’s theorem as applied to inducedcharge in semiconductor detectors [J]. Nucl. Instr. and Meth. A,1971,92(1):137-140.
    [79] K. Parham, J. B. Glick, Cs. Szeles, et al. Performance improvement of CdZnTe detectors usingmodified two terminal electrode geometry [J]. J. Crys. Grow.,2000,214.
    [80] O. Frisch. Isotope analysis of Uranium samples by means of their Alpha ray groups [R].British Atomic Energy Project, Report BR-49,1944.
    [81] A. Kargar, M. J. Harrison, A. C. Brooks, et al. Characterization of charge carrier collection in aCdZnTe Frisch collar detector with a highly collimated137Cs source [J]. Nucl. Instr. and Meth.A,2010,620(2-3):270-278.
    [82] J. K. Polack, M. Hirt, J. Sturgess, et al. Variation of electric shielding on virtual Frisch griddetectors [J]. Nucl. Instr. and Meth. A,2010,621(1-3):424-430.
    [83] A. E. Bolotnikov, G. S. Camarda, Y. Cui, et al. Rejecting incomplete charge collection eventsin CdZnTe and other semiconductor detectors [J]. Nucl. Instr. and Meth. A,2012,664(1):317-323.
    [84] Z. He, G. F. Knoll, D. K. Wehe, et al. Coplanar grid patterns and their effect on energyresolution of CdZnTe detectors [J]. Nucl. Instr. and Meth. A,1998,411(1):107-113.
    [85] T. H. Prettyman, M. A. Hoffbauer, J. A. Rennie, et al. Performance of CdZnTe detectorspassivated with energetic oxygen atoms [J]. Nucl. Instr. and Meth. A,1998,411(1):107-113.
    [86] P. N. Luke, M. Amman, J. S. Lee, et al. A CdZnTe coplanar grid detector array forenvironmental remediation [J]. Nucl. Instr. and Meth. A,2001,458(1-2):319-324.
    [87] A. Owens, T. Buslaps, V. Gostilo, et al. Hard X-and γ-ray measurements with a large volumecoplanar grid CdZnTe detector [J]. Nucl. Instr. and Meth. A,2006,563(1):242-248.
    [88] Z. He, G. F. Knoll, D. K. Wehe, et al.1-D position sensitive single carrier semiconductordetectors [J]. Nucl. Instr. and Meth. A,1996,380(1-2):228-231.
    [89] A. Shor, Y. Eisen, I. Mardor, et al. Spectroscopy with pixellated CdZnTe gamma detectors–experiment versus theory [J]. Nucl. Instr. and Meth. A,2001,458(1-2):47-54.
    [90]刘恩科,朱秉生,罗晋升.半导体物理学[M].西安:西安交通大学出版社,2002.
    [91] S. M. Sze, K. Ng. Kwok. Physics of Semiconductor Devices[M]. New York: John Wiley&Sons Press,2007.
    [92]黄昆,谢希德.半导体物理学[M].北京:科学技术出版社.1958.
    [93] S. Mergui, M. Hage-Ali, J. M. Koebel, et al. Thermal annealing of gold deposited contacts onhigh resistivity p-type CdTe nuclear detectors [J]. Nucl. Instr. and Meth. A,1992,322(1):375-380.
    [94] Wenbin Sang, Wei Jin, Qi Zhang, et al. Primary study on the contact degradation mechanismof CdZnTe detectors [J]. Nucl. Instr. and Meth. A,2004,527(3):487-492.
    [95]孙玉宝,傅莉,任洁等. CdZnTe像素探测器表面的氧离子刻蚀工艺[J].功能材料与器件学报,2010,16(5):515-518.
    [96] H. B. Barber, D. G. Marks, B. A. Apotovsky, et al. Progress in developing focal planemultiplexer readout for large CdZnTe arrays for nuclear medicine applications [J]. Nucl. Instr.and Meth. A,1996,380(1-2):262-265.
    [97] M. Lozano, E. Cabruja, A. Collado, et al. Bump bonding of pixel systems [J]. Nucl. Instr. andMeth. A,2001,473(1-2):95-101.
    [98] S. Goro, K. Tetsuichi, I. Hirokazu, et al. Development of low noise front end ASIC for hybridCdTe pixel detectors [J]. IEEE Trans. Nucl. Sci.,2011,58(3):1370-1375.
    [99]向昊,曾黎明,胡传群.各向异性导电胶的研究与应用现状[J].粘接,2008,29(10):42-44.
    [100]张军.各向异性导电胶膜粘接可靠性的研究[D].天津大学博士学位论文,2005.
    [101] K. T. Chen, D. T. Shi, H. Chen, et al. Study of oxidized cadium zinc telluride surfaces [J]. J.Vac. Sci. Technol. A,1997,15(3):850-853.
    [102] P. N. Luke, M. Amman, J. S. Lee, et al. Noise in CdZnTe detectors [J]. IEEE Trans. Nucl. Sci.,2001,48(3):282-286.
    [103] C. Budtz-Jorgensen, I. Kuvvetli, Y. Skogseide, et al. Characterization of CZT detectors for theASIM mission [C]. IEEE Trans. Nucl. Sci.,2009,56(40:1842-1847.
    [104] A. Shor, Y. Eisen, I. Mardor, et al. Edge effects in pixelated CdZnTe gamma detectors [J].IEEE Trans. Nucl. Sci.,2004,51(5):2412-2418.
    [105] A. E. Bolotnikov, G. S. Camarda, Y. Cui, et al. Internal electric field lines distribution inCdZnTe detectors measured using X ray mapping [J]. IEEE Trans. Nucl. Sci.,2009,56(3):791-793.
    [106] Gangqiang Zha, Hao Zhou, Junning Gao, et al. The growth and the interfacial layer of CdZnTenano-crystalline films by vacuum evaporation [J]. Vacuum,2011,86(3):242-245.
    [107] Pengfei Yu, Wanqi Jie, Tao Wang, et al. Effect of Te atmosphere annealing on the properties ofCdZnTe single crystals [J]. Nucl. Instr. and Meth. A,2011,643(1):53-56.
    [108] Pengfei Yu, Yihui He, Tao Wang, et al. Characterization of detector grade CdZnTe:Al crystalsobtained bu annealing [J]. J. Crys. Grow.,2011,324(1):22-25.
    [109] N. Bingefors, S. Bouvier, S. Giodmski, et al. A novel technique for fast pulse-shaping using aslow amplifier at LHC [J]. Nucl, Instr. and Meth. A,1993,326(1-2):112-119.
    [110] R. Hess, P. Deantonis, E. J. Morton, et al. Analysis of the pulse shape obtained from singlecrystal Cd0.9Zn0.1Te radiation detectors [J]. Nucl, Instr. and Meth. A,1994,353(1-3):76-79.
    [111] H. Sakai, A. Uritani, C. Mori, et al. Pulse shape recognition for CdZnTe semiconductordetector by using multi-shaping amplifiers method with neural network algorithm [J]. IEEETrans. Nucl. Sci.,1999,46(4):806-809.
    [112]李小刚,苏弘,张殿胜等.线性脉冲放大器[J].核电子学与探测技术,1999,119(13):224-226.
    [113] L. P. Huelsman, P. E. Allen. Electronic Circuit Analysis and Design [M]. New-York: McGraw-Hill Book Company,2000.
    [114] A. New. Sallen-Key filters find more limits [J]. Elec. Design,2000,48(5):60-60.
    [115] R.P. Sallen, E. L. Key. A practical method of designing RC active filters [J]. IRE Trans. Circ.Theo.,1955,2(1):74-85.
    [116] V. N. Alexei, L. D. Ruslan, P. A. Thoms. Analog multivariate counting analyze [J]. Nucl. Instr.and Meth. A,2003,496(2-3):465-480.
    [117]邵建辉,李坚.谱仪放大器中滤波成形电路的一种改进设计[J].核电子学与探测技术,2006,26(5):646-648.
    [118]肖无云,魏义祥,艾宪芸等.数字化多道脉冲幅度分析技术研究[J].核技术,2005,28(10):787-790.
    [119]黎淼,肖沙里,王玺等. CZT面元像素探测器的研制及其幅度修正技术的实现[J].光电子·激光,2011,22(9):1277-1282.
    [120]李霞,褚君浩,李陇遐等.室温核辐射CZT像素阵列探测器的研制[J].光电子·激光,2008,19(6):751-753.
    [121]徐亚东,介万奇,何亦辉等. CdZnTe探测器γ射线响应及稳定性研究[J].光电子·激光,2010,21(3):331-334.
    [122]陈法新,杨建伦,温树槐. ICF中子针孔成像数值模拟研究[J].强激光与粒子束,2005,17(6):883-887.
    [123]吴刚,李泉凤,程诚等.厚针孔成像动态监测高能加速器束斑系统[J].高能物理与核物理,2005,29(1):86-90.
    [124]邱睿,李君利,毛用泽. X射线源针孔成像方法可行性研究[J].原子能科学技术.2007,41(3):351-355.
    [125]骆志平, Suzuki. C, Kosako. T等.成像板对x射线的能量响应[J].原子能科学与技术,2009,43(7):644-647.
    [126]叶雁,祁双喜,李泽仁等.硬X光光电成像系统面密度分辨能力[J].强激光与粒子束,2009,21(10):1467-1470.
    [127] T. Narita, P. Bloser, J. E. Grindlay, et al. Development of gold contacted flip chip detectorswith IMARAD CZT [C]. Proc. of SPIE,2000,89:4141.
    [128]吕敏,王奎禄.核试验脉冲射线测量技术[M].北京:国防工业出版社,2006.
    [129]秦克诚,刘培森等.傅里叶光学导论[M].北京:电子工业出版社,2006.
    [130]吴海平.点源法MTF测试技术研究[D].南京:南京理工大学硕士学位论文,2007.
    [131] J. C. Dainty, R. Shaw. Image science [M]. New York: Academic Press,1974.
    [132] R. Accorsi, S. D. Metzler. Analytic determination of the resolution equivalent effectivediameter of a pinhole collimator [J]. IEEE Trans. Med. Imag.,2004,23(6):750-763.
    [133] B. Girish, D. A. Paul. Analytical derivation of the point spread function for pinhole collimators[J]. Phys. Med. Biol.,2006,51(19):4923-4950.
    [134]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2001.
    [135]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社,2005.
    [136] T. Costello, W. B. Mikhael. One dimensional comparison of wiener filtering and RichardsonLucy methods for sectioned restoration of space variant digital image [J]. IEEE Trans.Circuits-I,2002,49(4):518-522.
    [137] D. L. Snyder, M. I. Miller, L. J. Thomas, et al. Noise and edge artifacts in maximum likelihoodreconstructions for emission tomography [J]. IEEE Trans. Med. Imag.,1987,6(3):228-238.
    [138] D. L. Snyder, M. I. Miller. The use of sieves to stabilize images produced with the EMalgorithm for emission tomography [J]. IEEE Trans. Nucl. Sci.,1985,32(5):3864-3872.
    [139] S. Prasad. Statistical information based performance criteria for Richardson-Lucy imagedeblurring [J] J. Opt. Soc. Ame. A,2002,19(7):1286-1296.
    [140] R. L. White. Image restoration using the damped Richardson-Lucy method [J]. Proc. SPIE,1994,2198:1342-1348.
    [141] E. Kalemci, J. L. Matteson. Investigation of charge sharing among electrode strips for aCdZnTe detector [J]. Nucl. Instr. and Meth. A,2002,478(3):527-537.
    [142] L. A. Hamel, M. Benoit, B. Donmez, J. R. Macri, et al. Optimization of single sided chargesharing strip detectors [J]. IEEE Nucl. Sci. Symp. Conf. Rec.,2006,6:3759-3761.
    [143] K. Iniewski, H. Chen, G. Bindley, et al. Modelng charge sharing effects in pixellated CZTdetectors [J]. IEEE Nucl. Sci. Symp. Conf. Rec.,2007,6:4608-4611.
    [144] A. E. Bolotnikov, W. R. Cook, F. A. Harrison, et al. Charge loss between contacts of CdZnTepixel detectors [J]. Nucl. Instr. and Meth. A,1999,432(2-3):326-331.
    [145] C. H. Chen, S. E. Boggs, A. E. Bolotnikov, et al. Numerical modeling of charge sharing inCdZnTe pixel detectors [J]. IEEE Nucl. Sci.,2002,49(1):270-276.
    [146] M. Benoit, L. A. Hamel. Simulation of charge collection processes in semiconductor CdZnTe γray detectors [J]. Nucl. Instr. and Meth. A,2009,606(3):508-516.
    [147] E. G. d’Aillon, J. Tabary, A. Glière, L. Verger, et al. Charge sharing on monolithic CdZnTegamma ray detectors: A simulation study [J]. Nucl. Instr. and Meth. A,2006,563(1):124-127.
    [148] J. C. Kim, S. E. Anderson, W. Kaye, et al. Charge sharing in common grid pixelated CdZnTedetectors [J]. Nucl. Instr. and Meth. A,2011,654(1):233-243.
    [149] W. Akutagawa, K. Zanio. Gamma response of semi-insulating material in the presence oftrapping and detrapping [J]. J. Appl. Phys.,1969,40:3838.
    [150]梁昆淼,刘法,缪国庆.数学物理方法第三版[M].北京:高等教育出版社,1998.
    [151] J. D. Jackson. Classical electrodynamics3rd Ed.[M]. New York: John Wiley and sons,1998.
    [152] J. D. Eskin, H. H. Barrett, H. B. Barber. Signals induced in semiconductor gamma ray imagingdetectors [J]. J. Appl. Phys.,1999,85(2):647-659.
    [153] M. Li, S. L. Xiao, X. Wang, et al. Image charge method based analytic model for imagingevaluation of pixellated CdZnTe detector [J]. Opto. Adv. Mat. Rap. Comm.,2011,5(6):621-626.
    [154] Y. Cui, M. Groza, D. Hillman, et al. Study of surface recombination velocity of Cd1-xZnxTeradiation detectors by direct current photoconductivity [J]. J. Appl. Phys.,2002,92(5):2556-2560.
    [155] I. S. Gradshteyn, I. M. Ryzhik. Table of integrals, series, and products [M]. New York:Academic Press,1980.
    [156] A. A. Alsager, N. M. Spyrou. Evaluation of image performance of CZT detector for digitalmammography: Monte Carlo simulation [J]. Nucl. Instr. and Meth. A,2007,580(1):462-465.
    [157] K. A. Jones, A. Datta, K. G. Lynn, et al. Variations in μτ measurements in cadmium zinctelluride [J]. J. Appl. Phys.,2010,107(12):123714.
    [158]皇甫俊,贾欣志,李集田.一种利用CCD测量像增强器MTF的方法研究[J].光学与精密工程,1995,3(4):102-107.
    [159]朱宏权,王奎禄,向世明等.微通道板像增强器的调制传递函数的测量与研究[J].光子学报,2007,36(11):1983-1987.
    [160] S. M. Xiang, H. Q. Zhu, K. L. Wang, Temporal spatial MTF performance analysis of aproximity focused image intensifier as a camera electronic shutter [J]. Proc. SPIE.,2007,6279:62790X.
    [161] M. E. Roger, J. S. Timonthy, W. T. Stan. Measurement of modulation transfer function for fourtypes of imaging elements used in fast cameras [J]. Proc. SPIE.,1991,1539:145-151.
    [162]朱宏权.射线针孔照相系统的图像复原研究[D].北京:清华大学博士学位论文,2008.
    [163] D. S. Bale. A semi-analytic approximation of charge induction in monolithic pixelated CdZnTeradiation detectors [J]. Nucl. Instr. and Meth. A,2010,614(3):453-460.
    [164] D. Xu, Z. He. Gamma ray energy imaging integrated spectral deconvolution [J]. Nucl. Instr.and Meth. A,2007,574(1):98-109.
    [165] J. Hong, B. Allen, J. Grindlay, et al. Flight performance of an advanced CZT imaging detectorin a balloon borne wide field hard X ray telescope ProtoEXIST1[J]. Nucl. Instr. and Meth. A,2011,654(1):361-372.
    [166] P. J. Sellin, G. Prekas, J. Franc, et al. Electric field distributions in CdZnTe due to reducedtemperature and X ray irradiation [J]. Appl. Phys. Lett.,2010,96(13):133509.
    [167] C. I. Szabo, P. Indelicato, A. Gumberidze, et al. X-ray measurements at high power lasers [J].Eur. Phys. J. Spec. Top.,2009,169:243-248.
    [168] J. V. Dawson, C. Goessling, B. Janutta, et al. Experimental study of double-β decay modesusing a CdZnTe detector array [J]. Phys. Rev. C,2009,80(2):025502.
    [169] E. I. Moses. Advances in inertial confinement fusion at the National Ignition Facility (NIF)[J].Fusi. Eng. Des.,85(7-9):983-986.
    [170] D. J. Clayton, A. F. Almagri, D. R. Burke, et al. An upgraded X ray spectroscopy diagnostic onMST [J]. Rev. Sci. Instr.,2010,81(10):10E308.
    [171]潘洪波,欧阳晓平,张显鹏等.碲锌镉探测器对14MeV脉冲中子束的直照响应[J].原子能科学与技术,2009,43(4):381-384.
    [172]余波,应阳君,许海波.惯性约束聚变的中子半影成像诊断系统的优化研究[J].物理学报,2010,59(6):4100-4109.
    [173] B. W. Sturm, Z. He, T. H. Zurbuchen, et al. Investigation of the asymmetric characteristics andtemperature effects of CdZnTe detectors [J]. IEEE Trans. Nucl. Sci.,52(5):2068-2075.
    [174] J. Franc, J. Kubát, R. Grill, Influence of space charge and potential fluctuations onphotoconductivity spectra of semiinsulating CdTe [J]. IEEE Trans. Nucl. Sci.,2007,54(4):1416-1420.
    [175] G. S. Camarda, A. E. Bolotnikov, Y. G. Cui, et al. Polarization studies of CdZnTe detectorsusing synchron X ray radiation [C]. IEEE Nucl. Sci. Symp. Conf. Rec.,2007,3:1798-1804.
    [176] G. Prekas, P. J. Sellin, P. Veeramani, et al. Investigation of the internal electric field distributionunder in situ X ray irradiation and under low temperature conditions by the means of thePockels effect [J]. J. Phys. D: Appl. Phys.,43(8):085102.
    [177] B. Cederstr m, R. N. Cahn, M. Danielsson, et al. Focusing hard X rays with old LPs [J].Nature,2000,404:951-952.
    [178]黎淼,肖沙里,王玺等.基于高能γ源的CdZnTe成像探测器极化效应研究[J].原子能科学与技术,2011,45(8):1005-1010.
    [179] X. Wang, S. L. Xiao, M. Li, et al. Intensifying process of polarization effect within pixellatedCdZnTe detectors for X ray imaging [J]. Chin. Opt. Lett.,2011,9(7):070401.
    [180]王玺,肖沙里,张流强等.高能伽玛源下碲锌镉探测器的针孔成像[J].强激光与粒子束,2010,22(10):2448-2452.
    [181] D. S. Bale, C. Szeles. Nature of polarization in wide bandgap semiconductor detectors underhigh flux irradiation: Application to semi-insulating Cd1-xZnxTe [J]. Phys. Rev. B,2008,77(3):035205.
    [182] H. C. Edward, F. P. Stephen, C. D. Ronald, et al. Direct numerical solution of Poisson’sequation in cylindrical (r, z) coordinates [R]. New Jersey: Princeton Plasma PhysicsLaboratory,1997:3252.
    [183] P. De Antonis, E. J. Morton, T. Menezes. Measuring the bulk resistivity of CdZnTe singlecrystal detectors using a contactless alternating electric field method [J] Nucl. Instr. and Meth.A,1996,380(1-2):157-159.
    [184]肖沙里,黎淼,王玺,等.碲锌镉面元辐射探测器堆积载流子屏蔽效应[J].强激光与粒子束,2011,23(6):1433-1436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700