蓝舌病病毒群特异性构象抗原表位的初步鉴定及竞争ELISA检测方法的建立与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝舌病病毒(Bluetongue virus,BTV),属呼肠孤病毒科、环状病毒属、蓝舌病病毒亚群(Bluetongue virus subgroup),该病是由库蠓传播的非接触性反刍动物病毒性传染病,纯种细毛羊对该病最为敏感,死亡率高达35%,世界动物卫生组织(OIE)将其列为A类疫病,并且要求实时通报疫病,我国已将其规定为一类动物传染病。迄今为止尚未发现BTV对人类有传染性。
     BTV最早发现于1876年,呈世界性分布。目前已从非洲、欧洲、亚洲、北美、南美和大洋洲的多个热带、亚热带和温带地区国家分离到BTV,并且其分布范围不断扩大,危害也日趋严重。我国于1979年发现本病存在,现已从全国29个省检出BTV血清阳性家畜。到目前为止,全世界共分离到26个血清型BTV,我国已鉴定出BTV-1、2、4、9、15、16、23等7个血清型,其中BTV-1和BTV-16是主要的致病血清型。
     BTV基因组大小约19Kb,由10个分节段的双股RNA组成,编码7种结构蛋白(VP1~VP7)和5种非结构蛋白(NS1,NS2,NS3,NS3a,NS4)。VP7蛋白由S7基因编码,大小为349个氨基酸,位于病毒核衣壳的表面,约占病毒核心蛋白总量的36%。研究表明,各血清型BTVVP7蛋白94%以上的氨基酸保守,是BTV群特异性抗原蛋白。目前,国际上已经开展了一些针对于蓝舌病病毒VP7蛋白抗原表位鉴定的研究工作,但主要还是针对抗原线性表位的鉴定,对于VP7蛋白构象表位的鉴定工作还没有报道。Grimes等人构建的晶体结构表明,VP7蛋白呈三聚体结构,其中第134~253位氨基酸所构成的晶体结构位于VP7蛋白三聚体结构的外表,是决定VP7蛋白抗原性的主要部位,也是与宿主细胞识别并吸附的主要部位。
     由于BTV血清型众多,各血清型之间无交叉保护作用。在这种情况下,加强蓝舌病病原学监测工作,使用准确的检测手段对病原进行检测,及时隔离和处理已感动物,是减少经济损失的关键。以具有群特异性阻断效果的单克隆抗体(McAb)为基础的竞争ELISA(C-ELISA)检测待检样品中的BTV抗体,具有特异、敏感、稳定和安全的特点,是OIE指定的血清学检测方法之一,但由于进口免疫学检测试剂盒价格昂贵,无法在畜牧业养殖业中推广应用,所以筛选制备具有BTV群特异性阻断效果的McAb,自主研发C-ELISA检测试剂盒,为我国BT的流行病学调查和监测提供快速、安全及低成本的技术手段工作势在必行。
     本研究利用BHK-21细胞对血清型12型BTV病毒进行扩繁,提取病毒RNA,通过RT-PCR方法扩增VP7基因,将扩增后的VP7基因经双酶切后连接到原核表达载体pMAL-c4X上,构建出重组质粒pMAL-c4X-VP7。将重组质粒转化到大肠杆菌TB1感受态细胞中,经IPTG诱导表达MBP-VP7融合蛋白后,利用树脂对该蛋白进行纯化,Western blot和间接ELISA结果表明MBP-VP7蛋白具有良好的BTV群特异性免疫原性,并可诱发机体产生针对于蛋白构象表位的多克隆抗体。
     利用纯化后的MBP-VP7蛋白为免疫抗原,免疫BALB/c小鼠,通过杂交瘤技术将免疫后的小鼠脾细胞与骨髓瘤SP2/0细胞进行融合,以血清型12型BTV粒子作为筛选抗原,建立间接ELISA检测方法,筛选分泌VP7蛋白单克隆抗体的杂交瘤细胞,本研究最终获得了5株能稳定分泌针对VP7蛋白的McAb的杂交瘤细胞株,并将其分别命名为:BTV-1F3、 BTV-2D10、BTV-2H10、BTV-4F11和BTV-4H7,这些抗体的获得为BTV检测方法的建立及抗原表位鉴定提供了物质基础。
     利用抗体亚类鉴定试剂盒对本研究筛选到的McAb进行鉴定,结果表明,5株McAbs重链均为IgG1,轻链均为K链。间接免疫荧光(IFA)试验表明,单克隆抗体BTV-2D10和BTV-4H7可以与BTV24个血清型发生特异性反应,而与茨城病病毒(IBAV)、中山病病毒(CV)、赤羽病病毒(AKAV)、牛病毒性腹泻病毒(BVDV)、牛传染性鼻气管炎病毒(IBRV)、牛轮状病毒(BRV)、牛肠道病毒(BEV)、牛呼肠孤病毒(RV)及口蹄疫病毒(FMDV)不反应,说明这两株McAbs均为BTV群特异性单克隆抗体。竞争ELISA试验证明,BTV-4H7具有良好的BTV群特异性阻断效果,所以本研究以MBP-VP7蛋白作为包被抗原、BTV-4H7作为竞争抗体,建立了C-ELISA方法。利用该方法与IDEXX公司生产的BTV诊断试剂盒进行比较,同时检测15种不同血清型的BTV阳性血清及322份采自广西省不同地区的山羊血清样品,两者的符合率分别为100%和98%,说明该方法可以用于BT的流行病学调查和监测工作,该方法的建立为我国BTV抗体的监测提供了安全、廉价、快速、准确的技术手段。
     M13噬菌体展示结果表明,BTV-2D10及BTV-4H7所识别的B细胞表位均为构象表位,其中BTV-2D10所识别的抗原表位至少由四个区域组成,它们分别是VP7蛋白的第185~186位、第205~207位、第236~240位和第278~279位氨基酸所在区域。具有BTV群特异性阻断效果的BTV-4H7所识别的抗原表位同样至少由四个区域组成,它们分别是VP7蛋白的第34~35位、第175-177位、第185~186位和第278~279位氨基酸所在区域;利用生物信息学软件Discovery Studio将M13噬菌体展示的这些氨基酸区域在Grimes等构建的晶体结构模型上进行展示,同时利用DNAStar软件对编码不同血清型BTV VP7蛋白的氨基酸序列进行比对分析,结果表明,利用M13噬菌体展示的这些氨基酸区域在不同血清型BTV VP7蛋白的氨基酸序列上是非常保守的,结果同时表明BTV-2D10有两个识别区域、BTV-4H7有三个识别区域位于VP7蛋白三聚体的LOOP结构上,有研究表明LOOP结构有较强的抗原性,易于刺激机体产生抗体,本研究所得到的结果也证明了这一点。通过软件分析还发现BTV-2D10与BTV-4H7有两个相同的氨基酸识别区域,证明不同的BTV群特异性McAb所识别的抗原表位在结构上有差异,但在氨基酸序列上存在重叠的情况。依据M13噬菌体展示出的构象表位序列,本研究对具有蓝舌病病毒群特异性阻断效果的单克隆抗体BTV-4H7所识别的抗原表位所对应的4个区域的16个氨基酸进行了突变,突变时按照疏水性氨基酸向亲水性氨基酸突变、亲水型不带电荷氨基酸与亲水型带正负电荷的氨基酸相互突变的原则,分别将第33~36位的LGIA突变成NSKT、第174~177位的IFQG突变成KKDS.第183~186位的MIYL突变成QKKN和第278-281位的WHGL突变成KRSN,并将突变后的VP7蛋白进行原核表达,以表达后的蛋白为抗原、以本研究筛选到的McAb为抗体进行间接ELISA试验,鉴定突变后表达的VP7蛋白的抗原性及与BTV-4H7的反应活性。SDS-PAGE结果表明,经过氨基酸突变的VP7基因可以在原核表达系统中进行表达,表达大小与未突变的MBP-VP7蛋白大小相同;利用本研究筛选到的5株McAbs及IDEXX检测试剂盒中的McAb对突变后的VP7蛋白进行间接ELISA验证,结果表明,突变后表达的VP7蛋白可以与本研究筛选到的4株McAbs发生特异性反应,具有较好的抗原性,但却不能与BTV-4H7及IDEXX检测试剂盒中的McAb发生特异性反应,证明M13噬菌体展示的单克隆抗体BTV-4H7所识别的4个区域的9个氨基酸序列是其所识别构象抗原表位的关键氨基酸序列,同时突变后表达的VP7蛋白不能与IDEXX检测试剂盒中的McAb发生特异性反应,这证明在VP7蛋白的氨基酸序列上,具有蓝舌病病毒群特异性阻断功能的核心氨基酸残基有可能是唯一的,这一结果为研究编码VP7蛋白氨基酸的特异性阻断机制奠定了理论基础。
BTV belongs to Reoviridae, Orbivirus, Bluetongue virus subgroup, it was spread by Culicoides, purebred landmark alcala gate was the most sensitive animal for this disease, the mortality was as high as35%. The OIE has listed it as A-Class disease and required report it at anytime, Our country provided it as the first class of animal infectious disease, until now, it has no infectivity to human report.
     BTV was firstly discovered in1876. The outbreak of BTV concentrated in tropical, subtropical and temperate countries; it has brought great losses to the Animal husbandry. In China, it was firstly discovered in1979, until now, it has been separated in29provinces. Until now, the whole world has separated26serotypes of BTV. BTV-1,2,4,9,15,16,23were the mostly serotypes in China, among them BTV-1,and16were the mostly pathogenic serotypes.
     The genome size of BTV was about19Kb, composed by10parts dsRNA.The genome encoded seven stuctural proteins (VP1to VP7) and four nonstructural proteins (NS1. NS2, NS3, NS3a). VP7protein was encoded by S7gene, composed by349amino acids, it was located on the surface of the virus, VP7protein accounted for36%of the total virus core protein. Relevant research indicated that about94%amino acids of each serotypes BTV VP7protein were highly conserved. The VP7protein was the group-specific antigen of BTV. Grimes etc crystal structure showed that the structure of VP7protein was tripolymer and the function of the top domain (134to253) was antigenic index and combined with the host cell.
     Since BTV contains so many serotypes and each country has different serotypes, until now there were no effective vaccines to prevent BTV. So, early diagnosis and prevention were the most effective methods to avoid the disease outbreak. The competitive ELISA was the mostly used method in recent years, it is sensitive, specific, stable and safe features, but the imported kit was so expensive, it cannot be applied in animal husbandry. So it seemed imperative that prepared monoclonal antibodies and established Competitive ELISA method by ourselves.
     In this study, the serotype of BTV-12virus was cultivated by BHK-21cell, and the total RNA were extracted, the VP7gene was amplified by RT-PCR method and cloned into prokaryotic expression vector pMAL-c4X. The recombinant plasmid was transformed into E.coli TB1cells and fusion protein (MBP-VP7) produced after induced with IPTG and purified by resin. Western blot and indirect analysis demonstrated that the fusion protein (MBP-VP7) has favorable antigenicity.
     In this study, BALB/c mice were immunized by purified MBP-VP7protein, the spleen cells were fused with the SP2/0cells by hybridoma technique, and screened by indirect ELISA coated with purified serotype of BTV-12virus, after3times of sub-clone prepared five strains monoclonal antibody:BTV-1F3,2D10,2H10,4F11and4H7. Subgroup identification results showed that all of the monoclonal antibodies of the heavy chain were IgG1and the light chain were κ. Indirect immunofluorescence test showed that the monoclonal antibodies BTV-2D10and BTV-4H7could occurred specific reaction with24serotypes of BTV but have no reaction with IBAV,CV,AKAV, BVDV, IBRV, BRV, BEV and FMDV. The results indicated that the two monoclonal antibodies were group specific antibodies of BTV.
     The competitive ELISA test certificated that the BTV-4H7monoclonal antibody has the BTV group specific blocking effect; therefore, the competitive ELISA method was established by MBP-VP7as the coated antigen and BTV-4H7as the competitive antibody. Clinical tests showed the method has100%agreement with IDEXX kit to detect of15positive serum samples and98%agreement with IDEXX kit to detect of322serum samples from Guangxi. Therefore, the competitive ELISA assay established in this study provided a low-cost, effective, quick and accurate method for the detection of antibodies against BTV.
     The results of M13phage display indicated that the epitopes of BTV-2D10and BTV-4H7were conformational,the epitope of BTV-2D10was decided by four regions at least (185to186,205to207,236to240and278to279), the same that the epitope of BTV-4H7was also decided by four regions at least(34to35,175to177,185to186and278to279). The software discovery Studio combined with the crystal structure which constructed by Grimes etc indicated that the epitopes of BTV-2D10has two resions and BTV-4H7has three resions located on the loop structure of the tripolymer,so they were easily produced antibodies. Compared with all serotypes of BTV VP7genes by the software of DNAStar indicated that the epitopes regions were very conservative in different serotypes of BTV VP7genes and the epitopes of two monoclonal antibodies have two same positions indicated that different BTV Group-Specific monoclonal antibodies have overlapped epitope regions.
     In order to prove the anthenticity of the M13results, the amino acids of the BTV-4H7epitope were mutanted. In line with nonpolar amino acids to mutate into polar amino acids and exchange of close water type without charge amino acids and close water type with positive and negative charges principles, the amino acids LGIA which were located in the position of33to36were changed to NSKT, the amino acids IFQG which were located in the position of174to177were changed to KKDS, the amino acids MIYL which were located in the position of183to186 were changed to QK.KN, the amino acids WHGL which were located in the position of278to281were changed to KRSN, after that the mutant VP7gene was cloned into prokaryotic expression vector pMAL-c4X, the SDS-PAGE analysis demonstrated that the mutant VP7gene was expressed as same as the natural VP7gene. Indirect ELISA analysis demonstrated that the mutant fusion protein could react with four monoclonal antibodies which producted in this research but could not react with BTV-4H7and the IDEXX's monoclonal antibody, the results indicated that the epitope of BTV-4H7which displayed by M13was believable and the amino acids which have the effect of block were relative only. These results established the theory basis for the specific blocking mechanism of amino acids which coded the VP7protein.
引文
[1]张念祖,李志华.中国蓝舌病发现历史、病毒分离及血清学研究.第一届东南亚太平洋地区蓝舌病毒学术研讨会论文汇编[C].云南昆明,1995.
    [2]殷震,刘景华.动物病毒学[M].第二版.北京:科学出版社,1997.
    [3]董长垣.现代分子病毒学[M].武汉:武汉大学出版,1996.
    [4]Bhanuprakash V, Indrani B K, Hosamani M, et al. Bluetongue vaccines:the past, present and future[J]. Expert Rev Vaccines,2009,8(2):191-204.
    [5]Van Houten D. Bluetongue, current situation[J]. Tijdschr Diergeneeskd,2009,134(9):409-410.
    [6]Davies F G. Bluetongue virus infection in Australia[J].Aust Vet J,1978,54(10):505.
    [7]李志华,张开礼,皱福中.绵羊蓝舌病(湖北毒株)的分离鉴定报告[J].云南畜牧兽医1989,4:49-51.
    [8]许建民,雷怀明.绵羊蓝舌病的诊断[J].中国兽医杂志,1993,19(1):13-14.
    [9]秦其英,罗止芥,褚桂芳.新疆绵羊蓝舌病病毒株回归羊体试验[J].中国畜禽传染病,1994,1:19-23.
    [10]黄绣,普淑英.甘肃省动物蓝舌病流行病学调查与病原分离、鉴定.第一届东南亚太平洋地区蓝舌病学术讨论会论文汇编[C].云南昆明,1995.
    [11]冯静兰.中国蓝舌病预防措施研究的进展.第一届东南亚太平洋地区蓝舌病学术讨论会论文汇编[C].云南昆明,1995.
    [12]卢炳魁,王桂生,李志成.绵羊蓝舌病传播途径和防制措施[J].内蒙古畜牧科学,1995,4:46-47.
    [13]王清波.中国动物蓝舌病的防治.第一届东南亚太平洋地区蓝舌病学术讨论会论文汇编[C].云南昆明,1995.
    [14]St George T D, Peng Kegao. A short history of the discovery of bluetongue in the world. Bluetongue Disease in Southeast Asia and the Pacific:Proceedings of the First Southeast Asia and Pacific Regional Bluetongue Symposium[C]. Kunming China,1995.
    [15]李朝君,刘际彬,茹亚光.我国北方五省(区)绵羊四种主要传染病的血清学调查[J].中国畜禽传染病,1998,20(1):39-40.
    [16]Wilson A J, Mellor P S. Bluetongue in Europe:past, present and future[J]. Philos Trans R SocLond B Biol Sci,2009,364(1530):2669-2681.
    [17]Carpi G, Holmes E C, Kitchen A. The evolutionary dynamics of bluetongue virus[J]. J Mol Evol,2010,70(6):583-592.
    [18]Maclachlan N J. Global implications of the recent emergence of bluetongue virus in Europe[J]. Vet Clin North Am Food Anim Pract,2010,26(1):163-171.
    [19]Maclachlan N J. Bluetongue:History, global epidemiology, and pathogenesis[J]. Prev Vet Med,2011,102(2):107-111.
    [20]Roy P. Bluetongue virus genetics and genome structure[J]. Virus Res,1989,13(3):179-206.
    [21]Roy P, Marshall J J, French T J. Structure of the bluetongue virus genome and its encoded proteins[J]. Curr Top Microbiol Immunol,1990,162:43-87.
    [22]Lecatsas G. Electron microscopic study of the formation of bluetongue virus[J]. Onderstepoort J Vet Res,1968,35(1):139-149.
    [23]Huismans H. Protein synthesis in bluetongue virus-infected cells[J]. Virology,1979,90(2): 385-386.
    [24]Huismans H, Els H J. Characterization of the tubules associated with the replication of three different orbiviruses[J]. Virology,1979,92(2):397-406.
    [25]Huismans H, Van der Walt N T, Cloete M, et al. The biochemical and immunological characterization of bluetongue virus outer capsid polypeptides. Edited by Compans R W, Bishop D H L. In Double-Stranded RNA Viruses[C]. New York:Elsevier,1983.
    [26]Roy P, Adachi A, Urakawa T, et al. Dentification of bluetongue virus VP6 protein as a nucleic acid-binding protein and the localization of VP6 in virus-infected vertebrate cells[J]. J Virol,1990,64(1):1-8.
    [27]Huismans H, Bremer C W. A comparison of an australian bluetongue virus isolate (CSIRO 19) with other bluetongue virus serotypes by cross-hybridization and cross-immune precipitation[J]. Onderstepoort J Vet Res,1981,48(2):59-67.
    [28]Gumm I D, Newman J F. The preparation of purified bluetongue virus group antigen for use as a diagnostic reagent[J]. Arch Virol,1982,72(1-2):83-93.
    [29]Huismans H, Cloete M. A comparison of different cloned bluetongue virus genome segments as probes for the detection of virus-specified RNA[J]. Virology,1987,158(2):373-380.
    [30]Huismans H, Cloete M, le Roux A. The genetic relatedness of a number of individual cognate genes of viruses in the bluetongue and closely related serogroups[J]. Virology,1987,161(2): 421-429.
    [31]Huismans H, van der Walt N T, Cloete M, et al. Isolation of a capsid protein of bluetongue virus that induces a protective immune response in sheep[J]. Virology,1987,157(1): 172-181.
    [32]Huismans H, van Dijk A A, Bauskin A R. In vitro phosphorylation and purification of a nonstructural protein of bluetongue virus with affinity for single-stranded RNA[J]. J Virol, 1987,61(11):3589-3595.
    [33]Huismans H, van Dijk A A, Els H J. Uncoating of parental bluetongue virus to core and subcore particles in infected L cells[J]. Virology,1987,157(1):180-188.
    [34]Anthony S, Jones H, Darpel K E, et al. A duplex RT-PCR assay for detection of genome segment 7 (VP7 gene) from 24 BTV serotypes[J]. J Virol Methods,2007,141(2):188-197.
    [35]Mellor P S. The replication of bluetongue virus in Culicoides vectors[J]. Curr Top Microbiol Immunol,1990,162:143-161.
    [36]Mertens P P, Burroughs J N, Walton A, et al. Enhanced infectivity of modified bluetongue virus particles for two insect cell lines and for two Culicoides vector species[J]. Virology, 1996,217(2):582-593.
    [37]Nomikou K, Dovas C I, Maan S, et al. Evolution and phylogenetic analysis of full-length VP3 genes of Eastern Mediterranean bluetongue virus isolates[J]. PLoS One,2009,4(7): 6437.
    [38]Le Blois H, Roy P. A single point mutation in the VP7 major core protein of bluetongue virus prevents the formation of core-like particles[J]. J Virol,1993,67(1):353-359.
    [39]Bernard K A, Israel B A, Wilson W C, et al. Sequence and cognitive analyses of two virulence-associated markers of bluetongue virus serotype 17[J]. Intervirology,1997,40(4): 226-231.
    [40]Loudon P T, Hirasawa T, Oldfield S, et al. Expression of the outer capsid protein VP5 of two bluetongue viruses, and synthesis of chimeric double-shelled virus-like particles using combinations of recombinant baculoviruses[J]. Virology,1991,182(2):793-801.
    [41]Loudon P T, Roy P. Assembly of five bluetongue virus proteins expressed by recombinant baculoviruses:inclusion of the largest protein VP1 in the core and virus-like proteins[J]. Virology,1991,180(2):798-802.
    [42]Grimes J, Basak A K, Roy P, et al. The crystal structure of bluetongue virus VP7[J]. Nature, 1995,373(6510):167-170.
    [43]Eaton B T, Gould A R, Hyatt A D, et al. A bluetongue serogroup-reactive epitope in the amino terminal half of the major core protein VP7 is accessible on the surface of bluetongue virus particles[J]. Virology,1991,180(2):687-696.
    [44]Yu Y, Fukusho A, Ritter D G, et al. Complete nucleotide sequence of the group-reactive antigen VP7 gene of bluetongue virus[J]. Nucleic Acids Res,1988,16(4):1620.
    [45]Hosamani M, Shimizu S, Hirota J, et al. Expression and characterization of bluetongue virus serotype 21 VP7 antigen:C-terminal truncated protein has significantly reduced antigenicity[J]. J Vet Med Sci,2011,73(5):609-613.
    [46]Squire K R, Chuang R Y, Chuang L F, et al. Detecting bluetongue virus RNA in cell culture by dot hybridization with a cloned genetic probe[J]. J Virol Methods,1985,10(1):59-68.
    [47]Squire K R, Chuang R Y, Chuang L F, et al. Molecular cloning and hybridization studies on bluetongue virus serotype 17[J]. Prog Clin Biol Res,1985,178:355-361.
    [48]Ritter D G, Roy P. Genetic relationships of bluetongue virus serotypes isolated from different parts of the world[J]. Virus Res,1988,11(1):33-47.
    [49]Grubman M J, Appleton J A, Letchworth G J. Identification of bluetongue virus type 17 genome segments coding for polypeptides associated with virus neutralization and intergroup reactivity[J]. Virology,1983,131(2):355-366.
    [50]Mertens P P, Burroughs J N, Anderson J. Purification and properties of virus particles, infectious subviral particles and cores of bluetongue virus serotypes 1 and 4[J]. Virology, 1987,157(2):375-386.
    [51]Lewis S A, Grubman M J. Bluetongue virus:surface exposure of VP7[J]. Virus Res,1990, 16(1):17-26.
    [52]Luo L, Sabara M I. Production, characterization and assay application of a purified, baculovirus-expressed, serogroup specific bluetongue virus antigen[J]. Transbound Emerg Dis,2008,55(3-4):175-182.
    [53]Verwoerd D W, Els H J, De Villiers E M, et al. Structure of the bluetongue virus capsid[J]. J Virol,1972,10(4):783-794.
    [54]Verwoerd D W, Huismans H. Studies on the in vitro and the in vivo transcription of the bluetongue virus genome[J]. Onderstepoort J Vet Res,1972,39(4):185-191.
    [55]Mertens P P, Brown F, Sangar D V. Assignment of the genome segments of bluetongue virus type 1 to the proteins which they encode[J]. Virology,1984,135(1):207-217.
    [56]Zhang X, Boyce M, Bhattacharya B, et al. Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins[J]. Proc Natl Acad Sci U S A,2010,107(14):6292-6297.
    [57]Huismans H, Erasmus B J. Identification of the serotypespecific and group specific antigens of bluetongue virus[J]. Onderstepoort J Vet Res,1983,48:51-58.
    [58]Huismans H, Van Dijk A A. Bluetongue virus structural components[J]. Curr Top Microbiol Immunol,1990,162:21-41.
    [59]Kahlon J, Sugiyama K, Roy P. Molecular basis of bluetongue virus neutralization[J]. J Viro, 1983,48:627-632.
    [60]Cowley J A, Gorman B M. Genetic reassortants for identification of the genome segment coding for the bluetongue virus hemaggIutinin[J]. J Virol,1987,61(7):2304-2306.
    [61]Cowley J A, Gorman B M. Cross-neutralization of genetic reassortants of bluetongue virus serotypes 20 and 21 [J]. Vet Microbiol,1989,19(1):37-51.
    [62]Mertens P P, Pedley S, Cowley J, et al. Analysis of the roles of bluetongue virus outer capsid proteins VP2 and VP5 in determination of virus serotype[J]. Virology,1989,170(2): 561-565.
    [63]Maan S, Maan N S, Samuel A R, et al. Analysis and phylogenetic comparisons of full-length VP2 genes of the 24 bluetongue virus serotypes[J]. J Gen Virol,2007,88(2):621-630.
    [64]Schwartz-Cornil I, Mertens P P, Contreras V, et al. Bluetongue virus:virology, pathogenesis and immunity[J]. Vet Res,2008,39(5):46.
    [65]White J R, Eaton B T. Conformation of the VP2 protein of bluetongue virus (BTV) determines the involvement in virus neutralization of highly conserved epitopes within the BTV serogroup[J]. J Gen Virol,1990,71(6):1325-1332.
    [66]Tembhurne P A, Mondal B, Pathak K B, et al. Segment-2 sequence analysis and cross-neutralization studies on some Indian bluetongue viruses suggest isolates are VP2-variants o fserotype 23[J].Arch Virol,2010,155(1):89-95.
    [67]Appleton J A, Letchworth G J. Monoclonal antibody analysis of serotype-restricted and unrestricted bluetongue viral antigenic determinants[J]. Virology,1983,124(2):286-299.
    [68]Klontz G W, Svehag S E, Gorham J R. A study by the agar diffusion technique of precipitating antibody directed against blue tongue virus and its relation to homotypic neutralizing antibody[J]. Arch Gesamte Virusforsch,1962,12:259-268.
    [69]Hwang G Y, Li J K. Identification and localization of a serotypic neutralization determinant on the VP2 protein of bluetongue virus 13[J]. Virology,1993,195(2):859-862.
    [70]Ristow S, Leendersten L, Gorham J, et al. Identification of a neutralizing epitope shared by bluetongue virus serotypes 2 and 13[J]. J Virol,1988,62(7):2502-2504.
    [71]Hubschle O J. Bluetongue virus hemagglutination and its inhibition by specific sera[J]. Arch Virol,1980,64(2):133-140.
    [72]Hassan S S, Roy P. Expression and functional characterization of bluetongue virus VP2 protein:role in cell entry [J]. J Virol,1999,73(12):9832-9842.
    [73]DeMaula C D, Bonneau K R, MacLachlan N J. Changes in the outer capsid proteins of bluetongue virus serotype ten that abrogate neutralization by monoclonal antibodies[J]. Virus Res,2000,67(1):59-66.
    [74]Singh K P, Maan S, Samuel A R, et al. Phylogenetic analysis of bluetongue virus genome segment 6 (encoding VP5) from different serotypes[J]. Vet Ital,2004,40(4):479-483.
    [75]Nason E L, Rothagel R, Mukherjee S K, et al. Interactions between the inner and outer capsids of bluetongue virus[J]. J Virol,2004,78(15):8059-8067.
    [76]Hassan S. H, Wirblich C, Forzan M, et al. Expression and functional characterization of bluetongue virus VP5 protein:role in cellular permeabilization[J]. J Virol,2001,75(18): 8356-8367.
    [77]Bhattacharya B, Roy P. Bluetongue virus outer capsid protein VP5 interacts with membrane lipid rafts via a SNARE domain[J]. J Virol,2008,82(21):10600-10612.
    [78]Forzan M, Wirblich C, Roy P. A Capsid protein of nonenveloped bluetongue virus exhibits membrane fusion activity[J]. Proc Natl Acad Sci USA,2004,101(7):2100-2105.
    [79]Stuart D I, Gouet P, Grimes J, et al. Structural studies of orbivirus particles[J]. Arch Virol Suppl,1998,14:235-250.
    [80]Boyce M, Wehrfritz J, Noad R, et al. Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity[J]. J Virol,2004,78(8):3994-4002.
    [81]Sutton G, Grimes J M, Stuart D I, et al. Bluetongue virus VP4 is an RNA-capping assembly line[J]. Nat Struct Mol Biol,2007,14(5):449-451.
    [82]Stauber N, Martinez-Costas J, Sutton G, et al. Bluetongue virus VP6 protein binds ATP and exhibits an RNA-dependent ATPase function and a helicase activity that catalyze the unwinding of double-stranded RNA substrates[J]. J Virol,1997,71(10):7220-7226.
    [83]Matsuo E, Roy P. Bluetongue virus VP6 acts early in the replication cycle and can form the basis of chimeric virus formation[J]. J Virol,2009,83(17):8842-8848.
    [84]Kar A K, Roy P. Defining the structure-function relationships of bluetongue virus helicase protein VP6[J]. J Virol,2003,77(21):11347-11356.
    [85]Kar A K, Bhattacharya B, Roy P. Bluetongue virus RNA binding protein NS2 is a modulator of viral replication and assembly[J]. BMC Mol Biol,2007,8:4.
    [86]Wirblich C, Bhattacharya B, Roy P. Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101[J]. J Virol,2006,80(1):460-473.
    [87]MacLachlan N J, Zientara S, Stallknecht D E, et al. Phylogenetic comparison of the S10 genes of recent isolates of bluetongue virus from the United States and French Martinique Island[J]. Virus Res,2007,129(2):236-240.
    [88]Balasuriya U B, Nadler S A, Wilson W C, et al. The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection[J]. Vet Microbiol,2008,126(1-3):91-100.
    [89]Desai G S, Hosamane M, Kataria R S, et al. Sequence analysis of the S10 gene of six Bluetongue Virus isolates from India[J]. Transbound Emerg Dis,2009,56(8):329-336.
    [90]Cromack A S, Blue J L, Gratzek J B. A quantitative ultrastructural study of the development of bluetongue virus in Madin-Darby bovine kidney cells[J]. J Gen Virol,1971,13(2): 229-244.
    [91]Mumtsidu E, Makhov A M, Roessle M, et al. Structural features of the Bluetongue virus NS2 protein[J]. J Struct Biol,2007,160(2):157-167.
    [92]Eaton B T, Hyatt A D, Brookes S M. The replication of bluetongue virus[J]. Curr Top Microbiol Immunol,1990,162:89-118.
    [93]Eaton B T, Hyatt A D, White J R. Localization of the nonstructural protein NS1 in bluetongue virus-infected cells and its presence in virus particles[J]. Virology,1988,163(2):527-537.
    [94]Mertens P P, Diprose J. The bluetongue virus core:a nano-scale transcription machine[J]. Virus Res,2004,101(1):29-43.
    [95]Mertens P P, Maan S, Samuel A, et al. Orbivirus, Reoviridae. Fauquet C M, Mayo M A, Maniloff J, Desselberger U, Ball LA, editors. In Virus taxonomy, Ⅷth Report of the ICTV[C]. Elsevier Academic Press, London, United Kingdom,2004.
    [96]Brownlie J. Coordinating the approach to bluetongue[J]. Vet Rec,2008,162(9):287.
    [97]Xu G, Wilson W, Mecham J, et al. VP7:an attachment protein of bluetongue virus for cellular receptors in Culicoides variipennis[J]. J Gen Virol,1997,78(7):1617-1623.
    [98]Mertens P P, Sangar D V. Analysis of the terminal sequences of the genome segments of four orbiviruses[J]. Virology,1985,140(1):55-67.
    [99]Guirakhoo F, Catalan J A, Monath T P. Adaptation of bluetongue virus in mosquito cells results in over expression of NS3 proteins and release of virus particles[J]. Archives of Virology,1995,140(5):967-974.
    [100]Bansal O B, Stokes A, Bansal A, et al. Membrane organization of bluetongue virus nonstructural glycoprotein NS3[J]. Journal of Virology,1998,72(4):3362-3369.
    [101]Walton T E. The history of bluetongue and a current global overview[J]. Vet Ital,2004,40(3): 31-38.
    [102]Song Z, Dong C, Wang L, et al. A novel method for purifying bluetongue virus with high purity by co-immunoprecipitation with agarose protein A[J]. Virol J,2010,7:126.
    [103]Jameson P, Schoenherr C K, Grossberg S E. Bluetongue virus, an exceptionally potent interferon inducer in mice[J], Infect Immun,1978,20(1):321-323.
    [104]Franchi P, Mercante M T, Ronchi G F, et al. Laboratory tests for evaluating the level of attenuation of bluetongue virus[J]. J Virol Methods,2008,153(2):263-265.
    [105]Bwangamoi O. Pathology of ovine foetus infection with bluetongue virus[J]. Bull Anim Health Prod Afr,1978,26(1):78-97.
    [106]Pini A. Study on the pathogenesis of bluetongue:replication of the virus in the organs of infected sheep[J]. Onderstepoort J Vet Res,1976,43(4):159-164.
    [107]Luedke A J, Jochim M M. Clinical and serologic responses in vaccinated sheep given challenge inoculation with isolates of bluetongue virus[J]. Am J Vet Res,1968,29(4): 841-851.
    [108]Luedke A J, Jones R H, Jochim M M. Serial cyclic transmission of bluetongue virus in sheep and Culicoides variipennis[J]. Cornell Vet,1976,66(4):536-550.
    [109]Luedke A J, Jochim M M, Jones R H. Bluetongue in cattle:effects of Culicoides variipennis-transmitted bluetongue virus on pregnant heifers and their calves[J].Am J Vet Res,1977,38(11):1687-1695.
    [110]Dijkstra E, van der Ven I J, Meiswinkel R, et al. Culicoides chiopterus as a potential vector of bluetongue virus in Europe[J]. Vet Rec,2008,162(13):422.
    [111]Pili E. Carcangiu L, Oppo M, et al. Genetic structure and population dynamics of the biting midges Culicoides obsoletus and Culicoides scoticus:implications for the transmission and maintenance of bluetongue [J]. Med Vet Entomol,2010,24(4):441-448.
    [112]Vilar M J, Guis H, Krzywinski J, et al. Culicoides vectors of bluetongue virus in Chester Zoo[J]. Vet Rec,2011,168(9):242.
    [113]Jennings M, Boorman J. The susceptibility of the sandfly Lutzomyia longipalpis (Lutz & Neiva), diptera, phlebotomidae, to laboratory infection with bluetongue virus[J]. Arch Virol, 1980,64(2):127-131.
    [114]Linden A, Gregoire F, Nahayo A, et al. Bluetongue virus in wild deer, Belgium, 2005-2008[J]. Emerg Infect Dis,2010,16(5):833-836.
    [115]Haneveld J K. What BTV-8 can do, any other serotype can do, too[J]. Tijdschr Diergeneeskd, 2008,133(20):856-858.
    [116]Barber T L. Temporal appearance, geographic distribution, and species of origin of bluetongue virus serotypes in the United States [J]. Am J Vet Res,1979,40(11):1654-1656.
    [117]Gibbs E P, Greiner E C, Alexander F C, et al. Serological survey of ruminant livestock in some countries of the Caribbean region and South America for antibody to bluetongue virus[J]. Vet Rec,1983,113(19):446-448.
    [118]Gibbs E P, Greiner E C, Taylor W P, et al. Isolation of bluetongue virus serotype 2 from cattle in Florida:serotype of bluetongue virus hitherto unrecognized in the Western Hemisphere[J]. Am J Vet Res,1983,44(12):2226-2228.
    [119]Gibbs E P, Greiner E C. Serological observations on the epidemiology of bluetongue virus infections in the Caribbean and Florida[J]. Prog Clin Biol Res,1985,178:563-570.
    [120]Schmidtmann E T, Herrero M V, Green A L, et al. Distribution of Culicoides sonorensis (Diptera:Ceratopogonidae) in Nebraska, South Dakota, and North Dakota:clarifying the epidemiology of bluetongue disease in the Northern great Plains region of the United States[J]. J Med Entomol,2011,48(3):634-643.
    [121]Parsonson I M. Bluetongue virus in Australia--current situation[J].Proc Annu Meet U S Anim Health Assoc,1978,82:37-38.
    [122]Gerdes G H. A South African overview of the virus, vectors, surveillance and unique features of bluetongue[J]. Vet Ital,2004,40(3):39-42.
    [123]Purse B V, Mellor P S, Rogers D J, et al. Climate change and the recent emergence of bluetongue in Europe[J].Nat Rev Microbiol,2005,3(2):171-181.
    [124]Landeg F. Bluetongue outbreak in the UK[J]. Vet Rec,2007,161(15):534-535.
    [125]De Koeijer A A, Boender G J, Nodelijk G, et al. Quantitative analysis of transmission parameters for bluetongue virus serotype 8 in Western Europe in 2006[J]. Vet Res,2011, 42(1):53.
    [126]Lorca-Oro C, Pujols J, Arenas A, et al. Epidemiological surveillance of bluetongue virus serotypes 1,4 and 8 in Spanish ibex (Capra pyrenaica hispanica) in southern Spain[J]. Vet Microbiol,2011,149(1-2):230-235.
    [127]张念祖,李志华,张开礼.绵羊蓝舌病的调查研究报告[J].云南畜牧兽医,1989,4:3-12.
    [128]Alexander R A, Haig D A, Adelaar T F. The attenuation of bluetongue virus by serial passage through fertile eggs[J]. Onderstepoort J Vet Sci Anim Ind,1947,21(2):231-241.
    [129]Howell P G, Verwoerd D W. Bluetongue virus[J]. Virol Monogr,1971,9:35-74.
    [130]Erasmus B J. Bluetongue in sheep and goats[J]. Aust Vet J,1975,51(4):165-170.
    [131]Uren M F, Squire K R. The clinico-pathological effect of bluetongue virus serotype 20 in sheep [J]. Aust Vet J,1982,58(1):11-15.
    [132]Uren M F, St George T D. The clinical susceptibility of sheep to four Australian serotypes of bluetongue virus[J]. Aust Vet J,1985,62(5):175-176.
    [133]MacLachlan N J, Jagels G, Rossitto P V, et al. The pathogenesis of experimental bluetongue virus infection of calves[J]. Vet Pathol,1990,27(4):223-229.
    [134]Maclachlan N J, Drew C P, Darpel K E, et al. The pathology and pathogenesis of bluetongue[J]. J Comp Pathol,2009,141(1):1-16.
    [135]Worwa G, Hilbe M, Chaignat V, et al. Virological and pathological findings in Bluetongue virus serotype 8 infected sheep[J]. Vet Microbiol,2010,144(3-4):264-273.
    [136]Umeshappa C S, Singh K P, Pandey A B, et al. Cell-mediated immune response and cross-protective efficacy of binary ethylenimine-inactivated bluetongue virus serotype-1 vaccine in sheep[J]. Vaccine,2010,28(13):2522-2531.
    [137]Savini G, MacLachlan N J, Sanchez-Vizcaino J M, et al. Vaccines against bluetongue in Europe[J]. Comp Immunol Microbiol Infect Dis,2008,31(2-3):101-120.
    [138]Noad R, Roy P. Bluetongue vaccines[J]. Vaccine,2009,27(4):86-89.
    [139]Savini G, Hamers C, Conte A, et al. Assessment of efficacy of a bivalent BTV-2 and BTV-4 inactivated vaccine by vaccination and challenge in cattle[J]. Vet Microbiol,2009,133(1-2): 1-8.
    [140]Savini G, Cannas A, Casaccia C, et al. Risk factors associated with the occurrence of undesired effects in sheep and goats after field vaccination with modified-live vaccine against bluetongue virus serotypes 2,4 and 16[J]. Vet Microbiol,2010,146(1-2):44-50.
    [141]Bartram D J, Heasman L, Batten C A, et al. Neutralising antibody responses in cattle and sheep following booster vaccination with two commercial inactivated bluetongue virus serotype 8 vaccines[J]. Vet J,2011,188(2):193-196.
    [142]Niedbalski W. Bluetongue vaccines in Europe[J]. Pol J Vet Sci,2011,14(2):299-304.
    [143]Sawyer M M, Osburn B L. Isolation of bluetongue vaccine virus from infected sheep by direct inoculation onto tissue culture[J]. Cornell Vet,1977,67(1):65-71.
    [144]Hamers C, Rehbein S, Hudelet P, et al. Protective duration of immunity of an inactivated bluetongue (BTV) serotype 2 vaccine against a virulent BTV serotype 2 challenge in sheep[J]. Vaccine,2009,27(21):2789-2793.
    [145]Bruckner L, Fricker R, Hug M, et al. Vaccination against bluetongue:safety and immune response in the field[J]. Schweiz Arch Tierheilkd,2009,151(3):101-108.
    [146]Wackerlin R, Eschbaumer M, Konig P, et al. Evaluation of humoral response and protective efficacy of three inactivated vaccines against bluetongue virus serotype 8 one year after vaccination of sheep and cattle[J]. Vaccine,2010,28(27):4348-4355.
    [147]Breard E, Belbis G, Hamers C, et al. Evaluation of humoral response and protective efficacy of two inactivated vaccines against bluetongue virus after vaccination of goats[J]. Vaccine, 2011,29(13):2495-2502.
    [148]Vitour D, Guillotin J, Sailleau C, et al. Colostral antibody induced interference of inactivated bluetongue serotype-8 vaccines in calves[J]. Vet Res,2011,42(1):18.
    [149]Parker J, Herniman K A, Gibbs E P, et al. An experimental inactivated vaccine against bluetongue[J]. Vet Rec,1975,96(13):284-287.
    [150]Shipham S O, de la Rey M. The isolation and preliminary genetic classification of temperature-sensitive mutants of bluetongue virus[J]. Onderstepoort J Vet Res,1976,43(4): 189-192.
    [151]Johnson S J, Roy P, St George T D, et al. Bluetongue recombinant vaccines. Bluetongue Disease in Southeast Asia and the Pacific:Proceedings of the First Southeast Asia and Pacific Regional Bluetongue Symposium[C]. Kunming China,1995.
    [152]Perrin A, Albina E, Breard E. Recombinant capripoxviruses expressing proteins of bluetongue virus:evaluation of immune responses and protention in small ruminants[J]. Vaccine,2007,25(37-38):6774-6783.
    [153]Boone J D, Balasuriya U B, Karaca K, et al. Recombinant canarypox virus vaccine co-expressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep[J]. Vaccine,2007,25(4):672-678.
    [154]Lobato Z I, Coupar B E, Gray C P, et al. Antibody responses and protective immunity to recombinant vaccinia virus-expressed bluetongue virus antigens[J]. Vet Immunol Immunopathol,1997,59(3-4):293-309.
    [155]Wade-Evans A M, Romero C H, Mellor P. Expression of the major core structural protein(VP7) of bluetongue virus, by a recombinant capripox virus, provides partial protection of sheep against a virulent heterotypic bluetongue virus challeng[J]. Virology, 1996,220(1):227-231.
    [156]Bowne J G. Bluetongue disease[J]. Adv Vet Sci Comp Med,1971,15:1-46.
    [157]Parsonson I M. Pathology and pathogenesis of bluetongue infentions[J]. Curr Top Microbiol Immunol,1990,162:119-141.
    [158]MacLachlan N J, Rossitto P V, Heidner H W, et al. Variation amongst the neutralizing epitopes of bluetongue viruses isolated in the United States in 1979-1981 [J]. Vet Microbiol, 1992,31(4):303-316.
    [159]Osburn B I, McGowan B, Heron B, et al. Epizootiologic study of bluetongue:virologic and serologic results[J]. Am J Vet Res,1981,42(5):884-887.
    [160]Afshar A. Bluetongue:laboratory diagnosis[J]. Comp Immunol Microbiol Infect Dis,1994, 17(3-4):221-242.
    [161]Sanchez-Cordon P J, Rodriguez-Sanchez B, Risalde M A, et al. Immunohistochemical detection of bluetongue virus in fixed tissue[J]. J Comp Pathol,2010,143(1):20-28.
    [162]Pearson J E, Black J W. Improvement of the equine infectious anemia agar gel immunodiffusion test[J]. Proc Annu Meet U S Anim Health Assoc,1979,83:283-288.
    [163]Wechsler S J, Austin K J, Wilson W C. Limits of detection of bluetongue virus with different assay systems[J]. J Vet Diagn Invest,1990,2(2):103-106.
    [164]Anderson G A, Phillips D L, Waldvogel A S, et al. Detection of bluetongue virus in bovine fetuses using the avidin-biotin complex immunoperoxidase method[J]. J Vet Diagn Invest, 1989,1(1):45-49.
    [165]Ellis J A, Coen M L, MacLachlan N J, et al. Prevalence of bluetongue virus expression in leukocytes from experimentally infected ruminants[J]. Am J Vet Res,1993,54(9): 1452-1456.
    [166]Pearson J E, Carbrey E A, Gustafson G A. Bluetongue and related orbivirus diagnosis in the United States[J]. Prog Clin Biol Res,1985,178:469-475.
    [167]Ismail I M. Bluetongue neutralization test with different Virus under variable conditions[J]. Agr Res Rev,1987,65:867-872.
    [168]Manning J S. Bluetongue virus:detection of antiviral immunoglobulin G by means of enzyme-linked immunosorbent assay[J]. Curr Microbiol,1980,4:381-385.
    [169]Anderson J. Use of monoclonal antibody in a blocking ELISA to detect group specific antibodies to bluetongue virus[J]. J Immunol Methods,1984,74(1):139-149.
    [170]Afshar A, Thomas F C, Wright P F, et al. Comparison of competitive and indirect enzyme-linked immunosorbent assays for detection of bluetongue virus antibodies in serum and whole blood[J]. J Clin Microbiol,1987,25(9):1705-1710.
    [171]Afshar A, Trotter H C, Dulac G C, et al. Evaluation of a commercial competitive ELISA test kit for the detection of group-specific antibodies to bluetongue virus[J]. J Vet Diagn Invest, 1993,5(3):336-340.
    [172]花群义,徐自忠,周晓黎,等.竞争酶联免疫吸附试验检测蓝舌病抗体的研究[J].动物医学进展,2002,23(1):66-69.
    [173]Chand K, Biswas S K, De A, et al. A polyclonal antibody-based sandwich ELISA for the detection of bluetongue virus in cell culture and blood of sheep infected experimentally[J]. J Virol Methods,2009,160(1-2):189-192.
    [174]Chand K, Biswas S K, Sing B, et al. A sandwich ELISA for the detection of bluetongue virus in cell culture using antiserum against the recombinant VP7 protein[J]. Vet Ital,2009, 45(3):443-448.
    [175]Eschbaumer M, Schulz C, Wackerlin R, et al. Limitations of sandwich ELISAs for bluetongue virus antibody detection[J]. Vet Rec,2011,168(24):643.
    [176]Mullis K B, Faloona F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction[J]. Methods Enzymol,1987,155:335-350.
    [177]Batten C A, Bachanek-Bankowska K, Bin-Tarif A, et al. Bluetongue virus:European Community inter-laboratory comparison tests to evaluate ELISA and RT-PCR detection methods[J]. Vet Microbiol,2008,129(1-2):80-88.
    [178]Batten C A, van Rijn P A, Oura C A. Detection of the European 'field' strain of bluetongue virus serotype 6 by real-time RT-PCR[J]. Vet Microbiol,2010,141(1-2):186-188.
    [179]Elia G, Savini G, Decaro N, et al. Use of real-time RT-PCR as a rapid molecular approach for differentiation of field and vaccine strains of bluetongue virus serotypes 2 and 9[J]. Mol Cell Probes,2008,22(1):38-46.
    [180]Hoffmann B, Eschbaumer M, Beer M. Real-time quantitative reverse transcription-PCR assays specifically detecting bluetongue virus serotypes 1,6, and 8[J]. J Clin Microbiol, 2009,47(9):2992-2994.
    [181]Vandenbussche F, Vanbinst T, Vandemeulebroucke E, et al. Effect of pooling and multiplexingon the detection of bluetongue virus RNA by real-time RT-PCR[J]. J Virol Methods,2008,152(1-2):13-17.
    [182]Vandenbussche F, De Leeuw I, Vandemeulebroucke E, et al. Emergence of bluetongue serotypes in Europe, part 1:description and validation of four real-time RT-PCR assays for the serotyping of bluetongue viruses BTV-1, BTV-6, BTV-8 and BTV-11[J]. Transbound Emerg Dis,2009,56(9-10):346-354.
    [183]Vandenbussche F, Vandemeulebroucke E, De Clercq K. Simultaneous detection of bluetongue virus RNA, internal control GAPDH mRNA, and external control synthetic RNA by multiplex real-time PCR[J]. Methods Mol Biol,2010,630:97-108.
    [184]Wade-Evans A M, Mertens P P, Bostock C J. Development of the polymerase chain reaction for the detection of bluetongue virus in tissue samples[J]. J Virol Methods,1990,30(1): 15-24.
    [185]Charles I G, Li J L, Roberts M, et al. Identification and characterization of a protective immunodominant B cell epitope of pertactin (P.69) from Bordetella pertussis[J]. Eur J Immunol,1991,21(5):1147-1153.
    [186]Leblanc N, Rasmussen T B, Fernandez J, et al. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus[J]. J Virol Methods,2010,167(2):165-171.
    [187]Yin H Q, Zhang H, Shi L J, et al. Detection and quantitation of bluetongue virus serotypes by a TaqMan probe-based real-time RT-PCR and differentiation from epizootic hemorrhagic disease virus[J]. J Virol Methods,2010,168(1-2):237-241.
    [188]Dangler C A, Dunn S J, Squire K R, et al. Rapid identification of bluetongue virus by nucleic acid hybridization in solution[J]. J Virol Methods,1988,20(4):353-365.
    [189]Wang L F, Doi R H, Chuang L F, et al. Bluetongue virus-17 fusion protein nsl expressed in Escherichia coli by pUC vectors[J]. Biochem Biophys Res Commun,1989,162(2): 892-899.
    [190]De Mattos C A, de Mattos C C, Osburn B I. Recombinant cDNA probe from bluetongue virus genome segment 10 for identification of bluetongue virus[J]. J Vet Diagn Invest,1989, 1(3):237-241.
    [191]De Mattos C C, de Mattos C A, Osburn B I, et al. Recombinant DNA probe for serotype-specific identification of bluetongue virus 17[J]. Am J Vet Res,1989,50(4): 536-541.
    [192]Brown C C, Meyer R F, Grubman M J. Use of a digoxigenin-labeled RNA probe to detect all 24 serotypes of bluetongue virus in cell culture[J]. J Vet Diagn Invest,1993,5(2): 159-162.
    [193]Tan B H, Nason E, Staeuber N, et al. RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells[J]. J Virol,2001,75(8):3937-3947.
    [194]Belhouchet M, Mohd Jaafar F, Firth A E, et al. Detection of a fourth orbivirus non-structural protein [J]. PLoS One,2011,6(10):25697.
    [195]Maan S, Maan N S, Nomikou K, et al. Complete genome characterisation of a novel 26th bluetongue virus serotype from Kuwait[J]. PLoS One,2011,6(10):26147.
    [196]Ratinier M, Caporale M, Golder M, et al. Identification and characterization of a novel non-structural protein of bluetongue virus[J]. PLoS Pathog,2011,7(12):1002477.
    [197]Wang L F, Scanlon D B, Kattenblet J A, et al. Fine mapping of a surface-accessible, immunodominant site on the bluetongue virus major core protein VP7 [J]. Virology,1994, 204(2):811-814.
    [198]Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256(5517):495-497.
    [199]Smith G P, Scott J K. Libraries of peptides and proteins displayde on filamentous phage[J]. Methods Enzymol,1993,217:228-257.
    [200]Li J K, Yang Y Y. Mapping of two immunodominant antigenic epitopes conserved among the major inner capsid protein, VP7 of five bluetongue viruses[J]. Virology,1990, 178(2):552-559.
    [201]Lunt R A, White J R, Blacksell S D. Evaluation of a monoclonal antibody blocking ELISA for the detection of group-specific antibodies to bluetongue virus in experimental and field sera[J]. J Gen Virol,1988,69(11):2729-2740.
    [202]Anderson J, Mertens P P, Herniman K A. A competitive ELISA for the detection of anti-tubule antibodies using a monoclonal antibody against bluetongue virus non-structural protein NS1 [J]. J Virol Methods,1993,43(2):167-175.
    [203]Afshar A, Thomas F C, Wright P F, et al. Comparison of competitive ELISA, indirect ELISA and standard AGID tests for detecting blue-tongue virus antibodies in cattle and sheep [J]. Vet Rec,1989,124(6):136-141.
    [204]Afshar A, Heckert R A, Dulac G C, et al. Application of a competitive ELISA for the detection of bluetongue virus antibodies in llamas and wild ruminants [J]. J Wildl Dis,1995, 31(3):327-330.
    [205]Martyn J C, Gould A R, Eaton B T. High level expression of the major core protein VP7 and the non-structural protein NS3 of bluetongue virus in yeast:use of expressed VP7 as a diagnostic, group-reactive antigen in a blocking ELISA [J]. Virus Res,1991, 18(2-3):165-178.
    [206]Reddington J J, Reddington G M, MacLachlan N J. A competitive ELISA for detection of antibodies to the group antigen of bluetongue virus [J]. J Vet Diagn Invest,1991, 3(2):144-147.
    [207]Knowles D P, Gorham J R. Advances in the diagnosis of some parasitic diseases by monoclonal antibody-based enzyme-linked immunosorbent assays [J]. Rev Sci Tech,1993, 12(2):425-433.