用户名: 密码: 验证码:
大亚湾反应堆中微子实验离线软件和中子本底研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中微子味混合和振荡是目前唯一得到诸多实验结果支持的超出粒子物理标准模型的现象,被认为是发现新物理的突破口。经过半个多世纪的进展,中微子实验已经从发现振荡现象进入到精确测量振荡参数的时代。中微子振荡参数θ13是参数化振荡矩阵的六个基本参数之一,其值对未来的中微子实验,如测量混合相位角δ或者中微子质量等级具有重要意义。大亚湾反应堆中微子实验的物理目标是精确测量中微子混合角参数sin22θ13到0.01或更好。按照这一物理目标的要求,大亚湾反应堆中微子实验的远近三个实验点共有8个全同的探测器模块,每个模块系统误差小于0.38%,靶质量大于20吨,能量分辨好于15%/(?)。
     作为国内第一个反应堆中微子物理实验,为了配合实验物理数据的特点,大亚湾的在线实时数据获取和离线数据分析软件系统采用了新的技术设计和实现,如面向对象的软件设计模式、粒子物理实验先进软件框架Gaudi的使用,动态弱语言python作为脚本配置语言的应用,在软件重用、模块化的设计和开发以及数据质量监测,软件系统维护等多方面带来了新的用户体验。
     访问原始数据作为离线数据处理的第一环节,是整个离线物理数据处理的基础。我们开发了基于Gaudi的原始数据转换服务,它为用户隐藏了原始数据格式相关的复杂细节,而提供了一致的数据访问接口。它主要用于完成对来自DAQ系统的二进制原始数据的解码,将电子学压缩信息还原为灵敏探测器击中信息的时间和电荷信号,并存储为离线系统中标准的数据对象,供后续用户分析使用。利用原始数据转换服务模块,我们完成了对探测器性能调试数据的分析工作,完成了对探测器电子学通道台阶和阈值的刻度。
     反应堆中微子实验数据中含有大量带有时间关联的符合与反符合信号,时间关联分析是反应堆中微子物理分析中的重要部分,这一点尤其不同于对撞物理的实验数据。为产生可用于物理分析的蒙特卡洛模拟样本,需要按照物理事例的时间分布和探测器对物理事例的响应时间分布特点,重新构建各模拟样本中的时间关联信息。为此,我们扩展了高能物理通用软件框架Gaudi中的标准数据I/O方式,添加了多格式,多数据流并行输入的接口,重新设计了带有事例回溯的数据循环机制,开发了事例抽样混合的高性能"Interleaving"算法,改进了电子学模拟的整个架构:包括灵敏探测器击中信息的划分和电子学信号在不同模拟模块中的传输方式,提升了蒙卡模拟的效率和可靠性。在上述基础上,完成了在探测器击中级别(SimHit)和电子学读出级别(Readout)上对不同模拟样本的混合,产生了几十TB可用做物理分析的蒙特卡洛数据,并以此完成了初步的信号事例挑选和本底分析。
     大亚湾反应堆中微子实验作为低本底、低能量、高精度的实验,需要对各种可能本底进行仔细研究,其中,宇宙线μ子产生的一系列关联本底尤其重要。本论文基于线性外推法对大亚湾三个月数据中,由宇宙线μ子产生的快中子本底进行了估算,并根据挑选得到的快中子样本,证明了线性外推法的可行性。我们还通过对来自宇宙线μ子的散裂中子的研究,计算得出大亚湾三个实验大厅测得的“μ子致散裂中子”的产额与μ子能量的关系,并与之前的其他地下实验和唯象模型进行了对比。
Neutrino flavor mixing and oscillation is the only evidence of physics beyond the standard model in particle physics supported by various experimental results and con-sidered as the key to search for new physics. After the development in more than half a century, neutrino experiments has come to a era of precise measurements of the oscilla-tion parameters from the discovery of neutrino oscillation phenomena. Among the six parameters of the neutrino mixing matrix, the value of θ13is important to the future neu-trino experiments such as the measurement the mixing phase angle δ or neutrino mass hierarchy. The physics goal of Day a Bay reactor neutrino experiment is to measure sin22θ13to a precision of0.01or better. To reach this physics goal, there are totally8identical detector modules with systematic error less than0.38%and target mass lager than20tons at three experiment sites in Daya Bay reactor neutrino experiment. The energy resolution of each module is better than15%/(?).
     As the first reactor neutrino experiments in China, in order to adapt to the proper-ties of the physics data, the Daya Bay online data acquisition and offline data analysis software system are implemented by new technology, such as design patterns in object-oriented software, advanced Gaudi framework for particle physics experiments, and the python language in configuration scripts, which brought new client experiences in cal-1of software modules, modular design and development, data quality monitoring and maintenance of software system.
     As the first step of the off-line data processing, the raw data access is the basis of the entire offline physics data analysis. We have developed raw data conversion service in Gaudi, which hid the trivial details about the raw data format to clients and provided uniform interfaces for data accessing. This service was mainly used to decode the binary raw data from the DAQ system, restored the compressed information into time and charge for the hits in sensors. And these information are stored as the standard data object in offline system for subsequent analysis. Using the raw data conversion service module, we analyzed the data from the anti-neutrino detector commissioning, calibrated the pedestal and threshold of each channel in FEEs for the AD modules.
     Lots of events are time correlated in the data of reactor neutrino experiment. Anal-ysis of time correlation between different events is an important task in physics data analysis, which is different from data analysis in collision physics experiments. To get the MC samples suitable for physics analysis, time correlations from different MC sam- pies should be reconstructed according to the time distributions of the physics events. With regards to this, we have upgraded the standard data I/O module in Gaudi frame-work by adding interfaces for the input of multi-format, multi-stream data in parallel and redesigned new data cycling mechanism based on event backtracking. We finally developed the "Interleaving" algorithm with high performance for MC events mixing. To enhance the efficiency and reliability of the MC simulation, we improved the archi-tecture of the digitization simulation by reorganizing the hits from sensors and changing the transmission way for events between different modules. Based on the above works, we mixed different MC samples at both SimHit level and Readout level, and generat-ed-102TB MC data for physics analysis. Based on the data, the preliminary events selection and background estimation were finished.
     All possible backgrounds should be investigated carefully in Daya Bay reactor neutrino experiment for such a low background, low energy, high precision experimen-t. Among all the backgrounds, series related backgrounds caused by cosmic ray are particularly important. In this thesis, we have used linear extrapolation method to esti-mate the fast neutron background from cosmic μ based on three month data. We have checked the energy spectrum of fast neutron events to confirm the linear extrapolation method. We also have calculated the spallation neutron yielded from cosmic ray μ, as the function of μ energy at the three different experimental site, and compared the results with that of other underground experiments and the expectation of phenomenological models.
引文
[1]Q. R. Ahmad et al. Measurement of the rate of ve+d→-p+p+e- interactions produced by b solar neutrinos at the sudbury neutrino observatory. Phys. Rev. Lett.,87:071301,2001.
    [2]Y. Fukuda et al. Measurement of a small atmospheric vμ/ve ratio. Phys. Lett. B,433:9,1998.
    [3]K. Eguchi et al. First results from kamland:Evidence for reactor antineutrino disappearance. Phys. Rev. Lett., 90:021802,2003.
    [4]D.G. Michael et al. Observation of muon neutrino disappearance with the minos detectors in the numi neutrino beam. Phys. Rev. Lett.,97:191801,2006.
    [5]R. N. Mohapatra and G. Senjanovic. Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett., 44:912,1980.
    [6]D. H. Perkins. Introduction to High Energy Phyics(4th ed). Printed in the United Kingdom at the University Press, 世界图书出版公司, ISBN:0-521-62196-8, Cambrigde:Cambridge,1999.
    [7]C. Amsler et al. Review of particle physics. J. Phys. G:Nucl. Part. Phys.,33:1,2006.
    [8]Joe Incandela. Status of the cms sm higgs search. page July 4,2012.
    [9]Fabiola Gianotti. Status of the standard model higgs searches in atlas. page July 4,2012.
    [10]许咨宗.核与粒子物理导论.中国科学技术大学出版社,书号:978-7-312-02310-1,安徽,2009.
    [11]F. Reines and C. L. Cowan. Free antineutrino absorption cross section. ⅰ. measurement of the free antineutrino absorption cross section by protons. Phys. Rev.,113:273,1959.
    [12]G. Danby, J. M. Gaillard, K. Goulianos, L.M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger. Obser-vation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett.,9:36, 1962.
    [13]K. Kodama et al. Observation of tau neutrino interactions. Phys. Lett. B,504:218,2001.
    [14]E. Komatsu et al. Seven-year wilkinson microwave anisotropy probe (wmap) observations:Cosmological interpretation. Astrophy. J. Suppl.,192:18,2011.
    [15]Z. Maki, M. Nakagagwa, and S. Sakata. Remarks on the unified model of elementary particles. Prog. Theor. Phys.,28:870,1962.
    [16]M. Fukugita and T. Yanagida. Barygenesis without grand unification. Phys. Lett. B,45:174,1986.
    [17]J. N. Bahcall, N. A. Bahcall, and G. Shaviv. Present status of the theoretical predictions for the 37cl solar-neutrino experiment. Phys. Rev. Lett.,20:1209,1968.
    [18]Raymond. Jr. Davis, Don S. Harmer, and Kenneth C. Hoffman. Search for neutrinos from the sun. Phys. Rev. Lett.,20:1205-1209,1968.
    [19]K. S. Hirata et al. Observation in the kamiokande-ⅱ detector of the neutrino burst from supernova snl987a. Phys. Rev. D,38:448,1988.
    [20]J. N. Abdurashitov et al. Solar neutrino flux measurements by the soviet-american gallium experiment (sage) for half the 22-year solar cycle. J. Exp. Theor. Phys.,95:181,2002.
    [21]P. Anselmann et al. Gallex results from the first 30 solar neutrino runs. Phys. Lett. B,285:376,1992.
    [22]Y. Fukuda et al. Erratum:Measurements of the solar neutrino flux from super-kamiokande's first 300 days. Phys. Rev. Lett.,81:1158,1998.
    [23]M. Altmann et al. Gno solar neutrino observations:results for gno i. Phys. Lett. B,490:16,2000.
    [24]L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D,17:2369.1978.
    [25]S. P. Mikheev and A. Yu. Smirnov. Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys.,41:913,1985.
    [26]D. Casper et al. Measurement of atmospheric neutrino composition with the imb-3 detector. Phys. Rev. Lett., 66:2561,1991.
    [27]W. W. M. Allison et al. Measurement of the atmospheric neutrino flavour composition in soudan 2. Phys. Lett.B,391:491,1997.
    [28]M. Ambrosio et al. Measurement of the atmospheric neutrino-induced upgoing muon flux using macro. Phys. Lett. B,434:451,1998.
    [29]M. H. Ahn et al. Indications of neutrino oscillation in a 250 km long-baseline experiment. Phys. Rev. Lett., 90:041801,2003.
    [30]M. Apollonio et al. Search for neutrino oscillations on a long base-line at the chooz nuclear power station. Eur. Phys. J. C,27(3):331,2003.
    [31]F. Boehm et al. Search for neutrino oscillations at the palo verde nuclear reactors. Phys. Rev. Lett.,84:3744, 2000.
    [32]M. Acciarri et al. Determination of the number of light neutrino species from single photon production at lep. Phys. Lett.B,431:199,1998.
    [33]P. Abreu et al. Searches for neutral higgs bosons in e+e-collisions around (?)=189 gev. Eur. Phys. J. C, 17:53,2000.
    [34]G. Abbiendi et al. Experimental properties of gluon and quark jets from a point source. Eur. Phys. J. C,11: 217,1999.
    [35]D. Darate et al. Single and multi-photon production in e+e- collisions at a centre-of-mass energy of 183 gev. Phys. Lett.B,429:201,1998.
    [36]D. Karlen et al. The number of light neutrino types from collider experiments. J. Phys. G:Nucl. Part. Phys., 478:33,2006.
    [37]B. Kayser. Neutrino mass, mixing, and flavor change. J. Phys. G:Nucl. Part. Phys.,33:156,2006.
    [38]A. Aguilar et al. Evidence for neutrino oscillations from the observation of ve appearance in a vμ beam. Phys. Rev. D,64:112007,2001.
    [39]H. Murayama and T. Yanagida. Lsnd, sn1987a, and cpt violation. Phys. Lett. B,520:263,2001.
    [40]K. Eitel et al. The search for neutrino oscillations vμ→ve with karmen. Nucl. Phys. Proc. Suppl,77:212, 1999.
    [41]A. A. Aguilar-Arevalo et al. Search for electron neutrino appearance at the δm2~1ev2 scale. Phys. Rev. Lett,98:231801,2007.
    [42]A. A. Aguilar-Arevalo et al. Event excess in the miniboone search for vμ→ve oscillations. Phys. Rev. Lett, 105:181801,2010.
    [43]C. Amsler et al. Review of particle physics. Phys. Lett. B,667:1,2008.
    [44]C. Jarlskog. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal cp nonconservation. Phys. Rev. Lett.,55:1039,1985.
    [45]M. C. Gonzalez-Garcia, M. Maltoni, and J. Salvado. Updated global fit to three neutrino mixing:status of the hints of f θ13>0. JHPE,056:1004,2010.
    [46]B. Aharmim et al. Electron energy spectra, fluxes, and day-night asymmetries of 8b solar neutrinos from measurements with nacl dissolved in the heavy-water detector at the sudbury neutrino observatory. Phys. Rev. C,72:055502,2005.
    [47]V. D. Barger et al. Measurement of the high-mass drell-yan cross section and limits on quark-electron com-positeness scales. Phys. Rev. Lett,82:2640,1999.
    [48]S. Abe et al. Precision measurement of neutrino oscillation parameters with kamland. Phys. Rev. Lett,100: 221803,2008.
    [49]C. Arpesella et al. Direct measurement of the 7be solar neutrino flux with 192 days of borexino data. Phys. Rev. Lett.,101:091302,2008.
    [50]X. H. Guo et al. A precision measurement of the neutrino mixing angle θ13 using reactor antineutrinos at daya bay. arXiv:hep-ex/0701029,2007.
    [51]唐孝威等.粒子物理实验方法.人民教育出版社,第一版,北京,1982.
    [52]Arnault Christian. Configuration Management Tool(Version v1r18p20051101).2005.
    [53]Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Subversion(For Subversion 1.2). TBA, Creative Commons,559 Nathan Abbott Way, Stanford, California 94305, USA,2006.
    [54]G. Barrand et al. Gaudi-a software architecture and framework for building hep data processing applications. Computer Physics Communication,140(1-2):45-55,2001.
    [55]J. K. Ahn et al. Reno:An experiment for neutrino oscillation parameter θ13 using reactor neutrinos at yong-gwang. arXiv:1003.1391 [hep-ex],2010.
    [56]F. P. An et al. Observation of electron-antineutrino disappearance at daya bay. Phys. Rev. Lett.,108:171803, 2012.
    [57]F. P. An et al. A side-by-side comparison of daya bay antineutrino detectors. Nuclear Instruments and Methods in Physics Research A,685:78-97,2012.
    [58]L. A. Mikaelyan and V. V. Sinev. Neutrino oscillations at reactors:What is next? Phys. Atomic Nucl.,63: 1002,2000.
    [59]W. G. K. Schreckenbach, G. Colvin, and F. von Feilitzsch. Determination of the antineutrino spectrum from 235u thermal neutron fission products up to 9.5 mev. Phys. Lett. B,160:325,1985.
    [60]A. F. Vonfeilitzsch and K. Schreckenbach. Phys. Lett. B,118:162,1982.
    [61]A. A. Hahn et al. Antineutrino spectra from 241pu and 239pu thermal neutron fission products. Phys. Lett. B, 218:365,1989.
    [62]P. Vogel, G. K. Schenter, F. M. Mann, and R. E. Schenter. Reactor antineutrino spectra and their application to antineutrino-induced reactions.ii. Phys. Rev. C,24:1543,1981.
    [63]占亮.大亚湾中心探测器模拟与物理灵敏度研究.博士论文,中国科学院高能物理研究所:北京,2009.
    [64]S. Agostinelli et al. Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research A, 506(3):250-303,2003.
    [65]http://dayabay.bnl.gov/oum/_downloads/OfflineUserManual.pdf.
    [66]王玲玉.博士论文,中国科学院高能物理研究所:北京,2011.
    [67]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=7151/20120108_LAF_workshop. pdf.
    [68]S. Jetter, D. Dwyer, W. Q. Jiang, et al. Pmt waveform modeling at the daya bay experiment. Chinese Physics C,36(8):733-741,2012.
    [69]F. Li, X. L. Ji, and X. N. Li. Daq architecture design of daya bay reactor neutrino experiment. IEEE TRANS-ACTIONS ON NUCLEAR SCIENCE,58(4):1723,2011.
    [70]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=3442/The_raw_data_file_format_in_the_Daya_Bay_DAQ_v11.pdf.
    [71]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=2991/Data_Format_for_FEEV1. O.doc..
    [72]E. H. Bellamy, G. Bellettini, J. Budagov, et al. Absolute calibration and monitoring of a spectrometric channel using a photomultiplier. Nuclear Instruments and Methods in Physics Research A,339:468-476,1994.
    [73]王志民.中微子探测器模型的研究.博士论文,中国科学院高能物理研究所:北京,2009.
    [74]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=1564/mc_mixing.pdf.
    [75]陈希孺.概率论与数理统计.中国科学技术大学出版社,合肥,2009.
    [76]李惕培.实验的数据处理.科学出版社,北京,1980:54-55.
    [77]李小波.低本底和液体闪烁体探测器技术研究.博士论文,中国科学院高能物理研究所:北京,2011.
    [78]V. A. Kudryavtsev. Muon simulation codes music and musun for underground physics. Computer Physics Communications,180(3):339-346,2009.
    [79]刘金昌.大亚湾反应堆中微子实验中的中子本底研究.博士论文,中国科学院高能物理研究所:北京,2008.
    [80]Mark Allen Weiss.数据结构与算法分析—C++描述.人民邮电出版社,第三版,北京,2006.
    [81]Stanley B. Lippman, Barbara E. Moo, and Josee Lajoie. C++ Primer中文版.人民邮电出版社,第四版.特别版,北京,2011.
    [82]Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides设计模式一可复用面向对象软件的基础.机械工业出版社,北京,1994.
    [83]Y. F. Wang, L. Miller, and G. Gratta. New approach to background subtraction in low-energy neutrino exper-iments. Phys. Rev. D,62:013012,2000.
    [84]Carlo Bemproad, Giorgio Gratta, and Petr Vogel. Reactor-based neutrino oscillation experiments. Rev. Mod. Phys.,74:297-328,2002.
    [85]Itaru Shimizu. An evidence for spectral distortion of reactor anti-neutrinos and a study of three flavor neutrino oscillation. Ph.D. thesis, Department of Physics, Tohoku University:Sendai,2004.
    [86]Iwamoto Toshiyuki. Measurement of reactor anti-neutrino disappearance in kamland. Ph.D. thesis, Graduate School of Science, Tohoku University:Sendai,2003.
    [87]http://dayabay.ihep.ac.cn/DocDB/0005/000543/001/dayabay06.ppt.,
    [88]T. Hagner et al. Muon-induced production of radioactive isotopes in scintillation detectors. Astr. Part. Phys., 14:33-47,2000.
    [89]Y. F. Wang, V. Balic, G. Gratta, et al. Predicting neutron production from cosmic-ray muons. Phys. Rev. D, 64:013012,2001.
    [90]T. Suzuki and D. F. Measday. Total nuclear capture rates for negative muons. Phys. Rev. C,35:2212-2224, 1987.
    [91]S. Eidelman et al. Gauge and higgs boson summary table. Phys. Lett. B,592:31-88,2004.
    [92]R. W. Huff et al. Decay rate of bound muons. Ann. Phys.(N. Y.),16:288,1961.
    [93]N. C. Mukhopadhyay et al. Nuclear muon capture. Phys. Rep.,30C:1-144,1977.
    [94]关梦云.大亚湾反应堆中微子实验本底研究和模型研制.博士论文,中国科学院高能物理研究所:北京,2006.
    [95]安丰鹏.口大亚湾中微子流强计算及对实验灵敏度的影响.博士论文,中国科学院高能物理研究所:北京.2012.
    [96]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=7457/muonDecay_12Jan2012. pdf..
    [97]Hertenberger, M. Chen, and B. L. Dougherty. Muon-induced neutron and pion production in an organic liquid scintillator at a shallow depth. Phys. Rev. C,52:3449,1995.
    [98]L. B. Bezrukov et al. Sov. J. Nucl. Phys.,17:51,1973.
    [99]F. Boehm et al. Neutron production by cosmic-ray muons at shallow depth. Phys. Rev. D,62:092005,2000.
    [100]R. I. Enikeev et al. Sov. J. Nucl. Phys.,46:883,1987.
    [101]M. Aglietta et al. Measurement of the neutron flux produced by cosmic-ray muons with lvd at gran sasso. arXiv:hep-ex/9905047,1999.
    [102]M. Aglietta et al. Nuovo Cimento Soc. Ital. Fis. C,12:467,1989.
    [103]M. Aglietta et al. Muon-induced neutron production and detection with geant4 and fluka. Nucl. Instrum. Meth. A,545:398-411,2005.
    [104]http://dayabay.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=7191/about_flasher_summary. pdf..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700