纳—微米黄铁矿晶须结晶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳—微米黄铁矿晶须,是黄铁矿矿物在介观尺度结晶生长的具体表现,对其进行研究,不仅可了解纳—微米矿物的聚集机理、介观尺度矿物结晶生长行为、纳米物质在一定物理、化学条件下发生变换的过程。同时,该矿物在不同条件下的结晶行为研究,可为揭示纳—微米物质的成矿、成藏条件提供科学依据。另外,该矿物多形貌成因和形成条件的科学数据,在指导矿物开发利用等方面都具有十分重要的意义。
     为了揭示黄铁矿以晶须状生长的结晶行为,我们开展了黄铁矿晶须形成宏观地质背景和基本条件研究;天然黄铁矿晶须及形成环境研究;黄铁矿晶须生长的模拟实验研究;讨论了纳—微米黄铁矿晶须生长基元的聚集机理。
     通过地质调查,晶须产出部位围岩、晶须共生矿物、矿体中矿石矿物、金矿物成因以及重晶石中包裹体研究,认为耿庄天然黄铁矿晶须是该区隐爆作用中热液注入作用结果,热液特征和注入方式直接影响和控制了晶须的生长。
     天然黄铁矿晶须及形成环境研究结果显示:晶须的形貌、成分和结构特征记录了热液演化过程。简单、平直晶须晶须为一次生长标型,代表稳定的生长环境;串珠状、藕节状、蒲棒状均为加厚标型,代表亚稳定的生长环境;塔形晶等复杂形貌是相对高浓度条件的形貌标志,代表不稳定的生长环境。黄铁矿晶须形貌具有标型意义,是识别地质环境、流体特征的重要标志。
     分别用热硫化法和热转化—分解法,开展了黄铁矿晶须生长的模拟实验研究。在热硫化法实验中,当温度达到360℃时形成了晶须。在热转化—分解法实验中在380℃时形成了晶须。其形成温度均比同种条件下晶体生长温度低。获得了晶须是同种晶体在相对低温条件下结晶生长的实证结论。
     运用矿物学、地球化学、晶体生长和现代纳米科学理论,分析讨论了黄铁矿晶须的结晶生长行为。认为天然黄铁矿晶须以异质成核为主,优先选择了重晶石的(011)、(101)、(210)晶面为生长基面。模拟实验中晶须以均匀成核为主,在封闭容器中以自由生长方式生长。天然晶须的生长经历了一次生长、二次加厚、多次叠加生长过程,反映出热液的脉动特点。模拟实验晶须只经历了一次生长。自然条件下晶须生长机制多样。天然黄铁矿晶须既有VLS生长机制、又有VS生长机制,这与地质作用过程的多样性、热液来源的复杂性、影响因素较多有关。模拟实验中晶须生长机制相对简单,热硫化法实验中晶须以VS机制生长,热转化—分解法中晶须生长机制为VLS向VS的转化。
     综合研究结果表明:黄铁矿晶须是黄铁矿型结构的线状晶体,与同种晶体相比,形成温度、饱和度相对较低,是同种晶体在不同生长条件下生长的多形貌表现。由此发现立方晶系矿物在适当的条件下可以生长成为非等轴状晶体。
     纳—微米黄铁矿晶须是最小结晶单元“临界晶核”自组装形成单晶体过程的中间体。形貌虽受其内部结构的对称性、结构基元间键合和晶体缺陷等因素的制约,但在很大程度上还受到环境因素的影响。生长基元在各面族上叠合的难易程度,每个面族在不同生长条件下生长速率的比率发生变化,是形成晶须形貌的重要原因。
     该项研究不仅是具体矿物晶须(黄铁矿晶须)生长的理论解释。在纳米矿化、纳米成矿研究、晶体—晶须生长理论研究、晶须材料研究等方面也具有科学理论意义和实际应用价值。
Nano-micro pyrite whiskers are pyrite minerals that exhibit meso-scale crystal growth. By studying this phenomenon we can understand the nano-micro mineral accumulation mechanism of meso-scale mineral crystal growth and also the transformation of nano-materials in a certain physical and chemical conditions. At the same time, studying of nato-pyrite crystallization in different conditions can provide a scientific basis which reveals the conditions of nano-micro material mineralization. In addition, the scientific data of nato-pyrite, which has multi-morphology, has important meaning in guiding the development and utilization of minerals.
     In order to reveal the growth of whisker-like crystallization behavior of the pyrite, we have carried out the formation of pyrite whiskers and the basic conditions for macro-geological background research, including natural pyrite whiskers, the formation of environmental studies and the simulation of the growth of pyrite whiskers. Experimental study on the simulation of the growth of pyrite whiskers discusses the aggregation mechanisms of nano-micron pyrite whiskers.
     Through Geological Survey, we study rocks that contain naturally created whiskers. Nano-pyrite whiskers coexist with mineral ores in mines and cause gold minerals and the inclusion of barite. We believe that natural pyrite whiskers in GengZhuang are the result of the effect of hydrothermal injection. Hydrothermal features and injected directly influence the whisker growth.
     The study of natural nano-pyrite and the environment when they form shows the morphology of the whiskers as well as composition and structural features that are recorded by hydrothermal evolution. Simply, straight whisker growth is a standard type of growth in a stable growth environment. Beads shaped like OuJie Pubang rods are a thicker standard type and develop in a meta-stable environment. Pyramid shaped crystals develop under relatively high concentration conditions in an unstable environment. Whisker morphology of pyrite has typomorphic meaning that is an important symbol which identifies the geological environment and the fluid characteristics.
     We carried out an experiment of the growth of pyrite whiskers using the heating-Sulfide method and thermal conversion-decomposition method. In the heating-Sulfide method, when the temperate reached360℃, whisker formation occurred. In the thermal conversion-decomposition experiment the whiskers formed at380℃. They both formed whiskers under conditions of lower temperatures than those in the same kind of crystals. We reached the conclusion the whiskers are the same crystal growth at a relatively low temperatures.
     We analyzed and discussed the crystallization of pyrite whisker growth behavior, using mineralogy, geochemistry, crystal growth and modern nano-science theory. We think that the natural pyrite whiskers grow according to heterogeneous nucleation, and (Oil),(101), and (210) of barite are selected the base surface. Simulation experiments with homogeneous nucleation of whisker mainly in a closed container in a free growth pattern of growth. Natural whisker growth experienced a growth of secondary thickening, multiple stacking growth process, reflecting the pulse of hydrothermal features. While in simulation experiment, the growth of whiskers only experienced on time growth. Whisker growth mechanism under natural conditions varied.
     Natural pyrite whiskers have both VLS and VS growth mechanism due to the diversity of geological processes, complexity of hydrothermal sources and other factors. In simulation experiments, whisker growth mechanisms are relatively simple. The whisker grows due the heating-Sulfide method according to the VS mechanism and the VLS mechanism during thermal conversion-decomposition.
     A comprehensive study shows that pyrite whiskers are the linear structure of pyrite-type crystals, as compared to the same kinds of crystals that form at temperatures and saturations that are relatively low the same kinds of crystals grown under different growth conditions. Cubic crystal led to the discovery of minerals of non-equiaxed crystals under specific conditions.
     Nano-micro crystalline pyrite whiskers are intermediates where the small "critical nuclei" unit self-assembles into a single crystal. Although its morphology is constrained by its internal structure, its symmetry, crystal defects and other characteristics are affected by environmental factors. The difficulty superimposed on each side and the changes of the growth rate ratio of each side under different growth conditions are important reasons for the formation of whisker morphology.
     The study offers theoretical explanations of whisker specific minerals (pyrite whiskers) and also offers scientific theoretical and practical application value in nano-mineralization crystal-whisker growth and whisker material growth.
引文
[1]陈丰.二十一世纪的矿物学[J],矿物学报,2001,21(1):2-13.
    [2]陈丰.矿物材料的应用研究与进展[A].欧阳自远,章振根,80年代地质地球化学进展[C].重庆:科学技术文献出版社重庆分社,1990.164-171.
    [3]陈丰.矿物材料研究[A].肖庆辉等.当代地质科学前沿我国今后值得重视的前沿研究领域[C].武汉:中国地质大学出版社,1993:279-281.
    [4]陈丰.矿物材料[A].陈述彭,地球系统科学[C].北京:中国科学技术出版社,1998.515-517.
    [5]李胜荣,陈光远.现代矿物的学科体系刍议[J],现代地质,2001,15(2):157-160.
    [6]Branner S S. The Growth and properties of whiskers [J].Seience,1958,128 (3324): 569-575.
    [7]C. C. Evans, Whiskers, MillsBoon Limited. London.1972,1-68.
    [8]王大文,白春礼.扫描隧道显微术在纳米科学技术中的应用[J],科技导报,1992,(4):21-24.
    [9]陈敬中.纳米科技的发展与纳米矿物学研究[J],地质科技情报,1994,Vol.13. No.2. Jun:32-38.
    [10]银剑钊.纳米矿床学[J].地学前缘1994.1(3-4):8
    [11]叶英,沈忠悦等.天然纳米-亚微米矿物堆积体:一种典型的非传统矿产资源.地球物理学进展,2002,17(4):653—654
    [12]廖宗廷,袁媛.纳米科技与矿床学研究.铜业工程.2004年03期:002:1—4
    [13]刘德良,杨强,李王晔,孙岩,张长鑫.郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现.科学技术与工程.2004年01期:44—45
    [14]Michael F, Hochella Jr. Nanoscience and technology:the next revolution earth sciences (J) Earth and Planetary Sciences Letters,2002,203:593-605.
    [15]丁振华.矿物学面临的困难与机遇—纳米科学对矿物学的启示.[J]矿物学报,1999,Vol. 19. No.3:379-384
    [16]徐国风,邵洁涟,黄铁矿的标型特征及其实际意义[J].地质论评,1980,26(6):541-546.
    [17]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987.
    [18]邵洁涟.金矿找矿矿物学[M].武汉:中国地质大学出版社,1988.
    [19]Murowchick J B, Barnse H L. Effects of temperature and degree of supersaturation on pyritemorphology[J]. Am Miner,1987,72:1241-1250.
    [20]夏学惠.东升庙矿床黄铁矿成因矿物学的研究[J],1990,4(18):47-53.
    [21]石俊仙鲁安怀卢晓英.自然状态与加热改性的黄铁矿处理含铬(Ⅵ)废水的实验研究[J].矿物岩石地球化学通报,1999,18(4):226-229.
    [22]陈永亨,张平,梁敏华,齐剑英,刘娟.黄铁矿对重金属的环境净化属性探讨[J].广州大学学报(自然科学版),2007,6(4):23-25.
    [23]卢龙,王汝成,薛纪越,等.黄铁矿氧化速率的实验研究[J].中国科学D辑(地球科学),2005,35(5):434-440.
    [24]陆瑞生,隆华庭,刘效疆.二硫化铁晶体结构对电化学性能的影响[J]电源技术,2001,25(3):225-227.
    [25]黄菲,金成洙,边为民,邓江宁,赵国君.山西耿庄金矿FeS2-Fe(Ni,Co)S2晶须的发现与成因探讨[J].矿物学报,2004,24(4):429-434.
    [26]黄菲,金成洙,边为民,赵爱玲,姚玉增.重晶石巨晶中FeS2-Fe (Ni、Co) S2晶须微观形貌多样性及研究意义—以山西耿庄金矿为例[J].地学前缘.2005年5月,2005年02期:142.
    [27]黄菲,金成洙,姚玉增,彭艳东,钟辉.山西耿庄金矿区晶须状FeS2-Fe (Ni、Co) S2的显微形态及生长机理分析[J].矿物学报,2006年9月,2006年03期:312-316.
    [28]刘星.山东玲珑金矿床黄铁矿形态成因与找矿[J].地质找矿论丛,1990,5(4):45-56.
    [29]张良钜.小秦岭金矿含金石英脉中黄铁矿晶体的表面微形貌研究[J].岩石矿物学杂志第23卷第2期2004年6月:167-172.
    [30]蔡元吉,周茂.金矿床黄铁矿晶形标型特征实验研究[J].中国科学B辑,1993,(09)
    [31]Branner S S. The Growth and properties of whiskers[J]. Seience,1958,128(3324): 569-575.
    [32]Zimmerle-W Authigenic growth of whisker-like fibrous sericite into detrital quartz. Estudios Geologicos (Madrid).38.3-4, Pages 361-365.1982.
    [33]Heide-K. Voelksch-G. Horn-L. Lehmann-T Calcitwhisker in rezenten Sedimenten Translated Title:Calcite whiskers in Recent sediments. Chemie der Erde.48.3. Pages 223-231.1988.
    [34]陈天虎.陈骏.季峻峰等.洛川黄土纳米尺度观察:纳米棒状方解石[J].地质论评,2005年06期.
    [35]Bonev-I-K, Reiche-M, Marinov-M, Morphology, perfection and growth of natural pyrite whiskers and thin platelets.Physics and Chemistry of Minerals. 12,4, Pages.223-232.1985.
    [36]Galuskin-Eugeny; Winiarski-Antoni_Syngenetic whisker inclusions of pyrite in quartz Morphology, structure and composition. Neues Jahrbuch fuer Mineralogie. Monatshefte.1997.5. Pages 229-240.
    [37]Ivan K B, Juan M G and et. Genesis of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy. December 2005.905-913
    [38]黄菲,金成洙,姚玉增,边为民,邓江宁.耿庄金矿FeS2-Fe(Ni,Co)S2系列晶须的特征及研究意义.矿物岩石地球化学通报2005.24(增刊):85-86.
    [39]王文魁,王继扬,赵珊茸.晶体形貌学[M],武汉:中国地质大学出版社,2001.
    [40]赵珊茸,王继扬,刘宏等.晶体形貌学的新近发展[J],高技术通讯,2001,5:108-110.
    [41]Yamada S, Nan jo J, Nomura S. et al. Morphology of iron pyrite crystals [J]. Journd of Crystal Gnowth,1979,46:10-14.
    [42]Murowchick J. B, Barnos H L. Effects of temperature and degree of supersaturation on pyrite morphology[J].Am. Mineralogist,1987,172(11-12): 1241-1250.
    [43]Sunagawa I. Variation in crystal habit of pyrite . Rept. Geol. Sur. Japan, 1957.175:1-41.
    [44]Endo Y. Surface microtopographics tudy of pyrite crystals [J].Bull. Sur. Japan, 1978.29 (11):701-745.
    [45]李胜荣,陈光远,邵伟,孙岱生.胶东乳山金矿黄铁矿形态研究[J].地质找矿论丛,1994.9(1):79-86.
    [46]初凤友,胡大千,于洪林,姚杰.黄铁矿晶体形态标型在金矿评价中的意义[J].吉林大学学报(地球科学版)2004,34(4):521-535.
    [47]余江滨潘恍.原始黄铁矿霉体的发现与研究[J].矿物学报Vol.8, No.4. Dec.1988.
    [48]初凤友,陈丽蓉,申顺喜,石学法.南黄海沉积物中自生黄铁矿的形态标型研究[J].海洋与湖沼.Vol.25, No.5. Sep.1994.461-468.
    [49]夏学惠,李钟模,鲕状黄铁矿的热水沉积与微生物成矿作用[J].沉积学报.Vo1.17.Supp. Dec.1999.
    [50]Z. Sawlowicz;王登红:黄铁矿微球丛及其发育:一种新的概念机制[J]地质地球化学.1994年06期:003.
    [51]刘星.山东玲珑金矿床黄铁矿形态成因与找矿[J].地质找矿论丛,1990,5(4):45-56.
    [52]廖立兵,马哲生,施倪承,唐跃刚,任德贻.黄铁矿表面的扫描隧道显微镜研究.地球科学-中国地质大学学报,1994(01):39-42.
    [53]叶荣,涂光炽,马喆生,赵伦山.热液矿床矿物微形貌与晶体生长环境研究[J].地学前缘,2005,12(2):240-246.
    [54]张良钜.小秦岭金矿含金石英脉中黄铁矿晶体的表面微形貌研究[J].岩石矿物学杂志,2004,23(2):167-172.
    [55]D·Babie,田今译,徐国凤校.热液作用形成的黄铁矿晶形[J].地球与环境, 1984,(02).D · Babie, N Jb. Miner. Mh.1982 H.12,551-557.
    [56]Murowchick J B, Barnse H L. Effects of temperature and degree of supersaturation on pyrite morphology[J]. Am Miner.1987,72:1241-1250.
    [57]James B.Murowchick, H.L.Barnes. American Mineralogist.1987,72,:1241-1250.
    [58]蔡元吉,周茂.金矿床黄铁矿晶形标型特征实验研究[J].中国科学B辑,1993,(09):972-978
    [59]赵伦山,陈岳龙,叶荣.含金黄铁矿的模拟合成实验及热液作用中金富集机制[J].地学前缘,1998,5(1-2):301-310.
    [60]宋学信.中国各种成因黄铁矿的微量元素特征[J],中国地质科学院矿床地质研究所刊,1986,(2):170.
    [61]卿敏,张立庆,牛翠伊,雷时斌,赵利青.山西堡子湾金矿床黄铁矿标型特征[J],黄金地质,2001.12,(7)4:22-27.
    [62]胡楚雁黄铁矿的微量元素及热电性和晶体形态分析[J]现代地质Vol.115 No.2 June2001:238-241
    [63]J.B.Murowchie.刘金中译.白铁矿转变和黄铁矿前身物的岩相学鉴定[J],《Water-RockInteraction》,Proceeding of the 7th International Symposiumon Water-Rock Interaction, Kharaka and Naest(eds) 1992Balkema, Rotterdam, ISBN 9054100752:319-322.
    [64]何铸文,杨忆.黄铁矿型结构的晶体化学,矿物学报[J],1996.12,(16)4:423-430.
    [65]ElliottN. Interatomicdistancesin FeS2, Co S2 andNiS2 [J]. Chem. Phys.1960, 33:903-905.
    [66]魏明秀.黄铁矿的晶胞参数公式[J],《科学通报》,1980,25(17):816.
    [67]魏明秀.黄铁矿晶胞参数计算及某些杂质含量分布特征[J],矿物学报,1986,6(3):245-251.
    [68]Vauchan.D.J. andCraig, J. R.:MineralChemistryofMetalSulfides, CambridgeUniversi tyPress,London,1978:156-190.
    [69]Riley, J. F.:An Inter mediate Member of the Binary System FeS2 (Pyrite)-Co S2 (Cattierite), Am. Mineral, vol,50,1965:1083-1086.
    [70]Riley, U. F., The Cobalt iferous Pyrite Series, Am, Mineral., vol.53,1968:293-295.
    [71]Fleisher, M. :Minor E lementsin Some Sulfide Minerals, Econ. Geol., vol,50:970-1024.
    [72]李胜荣,陈光远,邵伟等.胶东乳山金青顶金矿区黄铁矿化学成分研究[J],黄金科学技术,1994,(2):7-12.
    [73]李胜荣,陈光远,邵伟等.胶东乳山金矿金青顶矿区黄铁矿热电性研究[J],有色金属 矿产与勘查,1994,(3):302-307.
    [74]贾建业,朱自尊,潘兆橹,兰斌明.含金黄铁矿的拉曼光谱特征及其找矿意义初探[J].地球科学-中国地质大学学报.1997年06期:17-20
    [75]贾建业.黄铁矿的穆斯堡尔谱特征及其机理分析[J].西北地质,1996,(03)
    [76]贾建业.黄铁矿的中远红外谱及其对含金性的评价[J].西北地质,1996,(03)
    [77]陈永亨,张平,梁敏华,齐剑英,刘娟.黄铁矿对重金属的环境净化属性探讨[J]广州大学学报(自然科学版)2007年8月第6卷第4期:23-25.
    [78]贺永强,周红艳,兰叶青.黄铁矿对六价铬还原作用的研究[J].南京农业大学学报;2007年01期.
    [79]端木合顺,文生燕.天然黄铁矿吸附废水中Cd(Ⅱ)的实验研究[J],西安科技大学学报Vo.127 No.4.2007:576-580.
    [80]卢龙王汝成薛纪越陈骏陆建军.黄铁矿表面次生色:氧化程度的标志[J].矿物学报Vol.22. No.3 Sept.2002:211-216.
    [81]Schaufuss A G, Nesbitt H W, Kartiol. Reactivity of surface chem ical states on fractured pyrite[J]. Surface Science,1998,411:3212328.
    [82]卢龙,王汝成,薛纪越等.黄铁矿氧化速率的实验研究中国科学D辑地球科学2005,35(5):434-440.
    [83]Ennaoui A, Fiechter S, Goslowsky H, et al. Photoactive synthetic polycrystalline pyrite FeS2. Electrochemical Society,1985,132(7):1579-1582.
    [84]Ferrer I J,Nevskaia D M, de las Heras C, et al. About the band gap nature of FeS2 as determined from optical and photoelectrochemical measurements. Solid State Commun,1990,74 (9):913-916.
    [85]Vourlis H Li/FeS2 cell employing a solvent mixture of diox, DME and 3ME20x with a lithium2based solute[P] US:5432 030,1995.07.11.
    [86]Chu M Y, Visco S J, Dejonghe L CILayered arrangements of lithium electrodes[P]US:6 2002.07.02:1413 285,
    [87]Vissers D R.A preliminary investigation of high temperature lithi-um/iron sulfide secondary cells. Journal of Electrochemistry Society,1974,121:665-667.
    [88]Henriksen G L,Vissers D R. Lithium-aluminum/iron sulfide battery. Journal of Power Sources,1994,51:115-117.
    [89]董树本,刘延东,黄来和.锂铝-二硫化铁热电池发展现状[J].电源技术,1999,23(3):198-201.
    [90]杨华明,李晓鸣,邱冠周.高纯天然黄铁矿粉体用于LiAl-FeS2热电池[J]SeriesNo.324 June.2003:46-47.
    [91]陆瑞生.锂合金/二硫化铁热电池发展动向及对策[J]电子技术参考,1994(1):19-24.
    [92]C. C. Evans, Whiskers, Mills Boon Limited. London.1972,1-68.
    [93]Bideaux, R. A. Mineral rings and cylinders. Mineral. Rec.1970.1:105-112
    [94]Bonev I K, Reiche M, Marinov M, Morphology, perfection and growth of natural pyrite whiskers and thin platelets. Physics and Chemistry of Minerals. 1985.12(4):223-232.
    [95]Bonev, I K. Whisker growth of minerals. IMA 15th General Meeting, Abstr.1990,1: 382-384.
    [96]Galuskin. E, Winiarski A. Syngenetic whisker inclusions of pyrite in quartz Morphology, structure and composition. Neues Jahrbuch fuer Mineralogie. Monatshefte.1997,5:229-240.
    [97]黄菲,寇大明,姚玉增,倪培,丁俊英.拉曼光谱研究天然FeS2晶须结构及其相变规律[J].光谱学与光谱分析,2009,29(8):1-4.
    [98]黄菲.晶须状FeS2矿物学及其形成机制研究—以耿庄金矿为例[D].沈阳:东北大学(博士论文),2006.
    [99]Bonev,I K, Juan Manmuel GARCIA-RUIZ, Radostina ATANASSOVA, et al. Genesis of filamentary pyrite associated with calcite crystals [J]. Eur. J. Mineral. 2005,17,905-913.
    [100]杨洪英,周军,王建国.山西省义兴寨金矿地球化学[M],沈阳:东北大学出版社,1997,11.
    [101]张维根.陕西省耿庄金银矿矿床地质特征及成因[J],山西冶金地质,1986,(16-17):1-31.
    [102]孟庆春.山西省繁峙县耿庄金矿9号矿体详查地质报告[R],第二册75-89,冶金工业部第三地质勘查局316队1996年提交;报告现存山西省繁峙县五台山金矿.
    [103]李生元.耿庄次火山热液金矿的特征与成因[J],地质与勘探,1988,(5):1-7.
    [104]林建阳.耿庄金银矿区稀土元素及同位素地球化学特征[J],山西冶金地质,1989,(18):58-71.
    [105]韩吟文,马振东.地球化学[M],北京:地质出版社,2003,249.
    [106]张维根.耿庄金银矿床地质特征及成因[J],山西冶金地质,1986,(16-17):1-25.
    [107]张维根.山西耿庄金银矿区隐爆角砾岩研究[J],岩石学报,1988,3:79-87.
    [108]《岩金矿地质勘查规范》DZ/T0205-2002.地质出版社2003,3.
    [109]寇大明,黄菲*,姚玉增,金成洙.耿庄金矿床金矿物特征及其矿床成因意义[J].东北大学学报(自然科学版).2010,31(1):123-126.
    [110]邵洁涟.金矿找矿矿物学[M],武汉:中国地质大学出版社,1988,17-24.
    [111]陈光远,孙岱生,殷辉安等.成因矿物学与找矿矿物学[M],重庆:重庆出版社,1987.
    [112]黄菲,郑超,王建国等.烧锅营子金矿床金矿物的标型特征及赋存状态研究[J]贵金属地质1996,5(4):288-297.
    [113]陈柏林,吴淦国,叶德金等.北山地区金矿床金的赋存状态和金矿物特征[J].矿物学报.2000. Sept.20 (3):242-249.
    [114]段瑞焱,杨方,李兰英,等.周边国家金矿地质与我国金矿展望[M].北京:地质出版社,1990.
    [115]Huang F, Wang R C, Zhang W L, et al. Morphologic characteristics and growth interface stability of nano-micron FeS2 whiskers. Chinese Sci Bull,2009,54, 4479-4486, doi:10.1007/sll434-009-0617-1
    [116]黄菲,金成洙,姚玉增,赵玉山,温守钦.山西耿庄金矿重晶石巨晶中多相态包裹体研究.吉林大学学报(地球科学版)[J].2005年5月,2005年03期:313-319.
    [117]Hansma P K, Tersoff J. Scanning tunneling microscopy. J Apple Phys,1987,61(2): 1-23.
    [118]Eggleston C M, Hochella M F Jr. Scanning tunneling microscopy of sulfide surface. Geochimica et Cosmochimica Acta,1990,54:1511-1517.
    [119]廖立兵,施倪承,马喆生,白春礼.方铅矿和辉钼矿表面的STM研究[J].科学通报,1991,36(8):606—608.
    [120]Eggleston C M, hochella M F Jr. Scanning tunneling microscopy of pyrite{100} surface structure and step reconstruction. American Mineralogist,1992,77:221-224.
    [121]廖立兵,施倪承,马喆生,白春礼.黝锡矿和赤铁矿表面的STM研究.科学通报,1992,37(21):1986—1989.
    [122]廖立兵,马哲生,施倪承,唐跃刚,任德贻.黄铁矿表面的扫描隧道显微镜研究.地球科学-中国地质大学学报,1994(01):39—42.
    [123]廖立兵,马晓霞,马哲生,施倪承,白春礼.自然金{110}晶面微形貌的STM观察.矿物岩石,1995(02):1—5.
    [124]廖立兵,白春礼.微斜长石(010)解理面的原子力显微镜研究.矿物学报,1996,(3):242—244.
    [125]廖立兵,马哲生,施倪承.单斜铜泡石{001}解理面的AFM图象.科学通报,1996,(4):341—342.
    [126]叶荣,赵伦山,马喆生,沈镛立,赵小平.扫描隧道显微镜对黄铁矿表面微形貌的研究及成矿动力学意义.科学通报,1999,(11):1220—1222.
    [127]张良钜,雷威,李东升,赵淑霞.小秦岭金矿含金石英脉中石英晶体微形貌研究.岩石矿物学杂志,2003,(02):177—180.
    [128]张良钜.小秦岭金矿含金石英脉中黄铁矿晶体的表面微形貌研究[J].岩石矿物学杂志,2004,(02):167—172.
    [129]黄菲.晶须状FeS2矿物学及其形成机制研究—以耿庄金矿为例[D].沈阳:东北大学(博士论文),2006.
    [130]韩吟文,马振东.地球化学[M],北京:地质出版社,2003,249.
    [131]刘英俊,曹励明,李兆麟等.元素地球化学[M],北京:科学出版社,1986,460.92.102.369.
    [132]黄菲,寇大明,倪培,丁俊英.拉曼光谱研究天然FeS2晶须结构及其相变规律[J]光谱学与光谱分析.Vol.29, No.8:pp2112-2116.
    [133]袁建军,方琪,刘智恩.晶须的研究进展[J],材料科学与工程,1996,14(4):1-7.
    [134]徐兆瑜.晶须的研究和应用新进展[J],化工技术与开发,2005,34(2):11-17.
    [135]李慧青,张淑芬,张旖等.新型增强材料—硼酸镁晶须[J],化工新型材料,2001,29(1):16-18.
    [136]靳志良,王武,张志宏.硼酸镁晶须的合成研究[J],无机盐工业,2003,35(3):22-24.
    [137]孙新华.硼酸铝晶须的应用与制备[J],化工新型材料,1998,26(4):33-35.
    [138]曹有名.碳酸钙晶须合成及应用[J],化工新型材料,1998,26(10):223-224.
    [139]杨大勇,黄菲*,寇大明,李康,皮茂强,王岳松.黄铁矿晶体制备研究[J].矿物岩石地球化学通报,2009,28(2):195-200.
    [140]Soumitra Kar, Subhadra Chaudhuri. Solvothermal synthesis of nanocrystalline FeS2 with different morphologies[J]. Chemical Physics Letters.398(2004):22-26.
    [141]岳长涛,李术元,丁康乐等.碳酸盐岩系TSR系统中铁的硫化物生成模拟实验研究[J],沉积学报,2004,22(4):743-749.
    [142]陈艳华,郑毓锋,张校刚等.黄铁矿型FeS2纳米晶的溶剂热合成[J],中国科学G辑物理学力学天文学,2005,35(1):20-30.
    [143]吴容,郑毓锋,张校刚等.晶种水热法合成FeS2纳米晶[J],无机材料学报,2004,19(4):917-920.
    [144]段鹤,郑毓锋,张校刚等.水热法合成FeS2粉晶及其生长动力学的研究[J],物理学报,2005,54(4):1659-1664.
    [145]陈艳华,郑毓锋,张校刚等.PH值对溶剂热合成FeS2粉体的影响[J],物理化学学报,2005,21:419-424.
    [146]吴容,郑毓锋,张校刚等.EDTA辅助水热合成FeS2/NiSe2复合纳米晶及其薄膜光电性质[J],物理学报,2004,53(10):3493-3497.
    [147]吴容,郑毓锋,张校刚等.FeS2微粉的水热合成及晶体结构研究[J],新疆大学学报(自然科学版),2005,22(2):134-138.
    [148]R. Wu, Y. F. Zheng, X.G.Zhang, et al. Hydrothermal synthesis and crystal structure of pyrite[J], Journal of Crystal Growth,2004,266:523-527.
    [149]CHEN Yanhua, ZHENG Yufeng, ZHANG Xiaogang, et al. Solvothermal synthesis of nanocrystalline FeS2 [J], Science in China Ser. G Physics, Mechanics&Astronomy, 2005,48(2):188-200.
    [150]臧金鑫,赵高凌,王沛,韩高荣.溶剂热法制备FeS2[J],硅酸盐学报,2005,33(9):1075-1080.
    [151]Qian Xuefeng, Xie Yi, Qi Yitai. Solventothermal synthesis and morphological control of nanocrystalline FeS2 [J], Materials Letters,2001,5(48):109-111.
    [152]朱建平.二硫化铁(黄铁矿)的制备[J],化学世界,1989,8:100-102.
    [153]陈章其.多晶二硫化铁的热化学合成[J],太阳能学报,1996,17(3):278-281.
    [154]黄菲,金成洙,姚玉增等.山西耿庄金矿区晶须状FeS2-Fe(Ni、Co)S2的显微形态及生长机理分析[J].矿物学报,2006,03:312-316.
    [155]甘肃师范大学化学系《简明化学手册》编写组编.简明化学手册[M].兰州:甘肃人民出版社出版,1980:944-950.
    [156]朱世富,赵北君编著《材料制备科学与技术》[M].北京:高等教育出版社,2006:100-118.
    [157]姚连增.晶体生长基础[M],北京:中国科学技术出版社,1995.
    [158]张克丛.近代晶体基础[M],北京:科学出版社,1987.
    [159]闵乃本.晶体生长的物理基础[M],上海:上海科学技术出版社,1982.
    [160]闵乃本.实际晶体的长大机制[J],人工晶体学报,1992,21(3):217-229.
    [161]郑燕青,施尔畏,李汉军等.晶体生长理论研究现状与发展[J],无机材料学报,1998,14(3):321-331.
    [162]仲维卓,华素坤.晶体生长形态学[M],北京:科学出版社,1999.
    [163]仲维卓,华素坤,唐鼎元等.晶体生长基元与晶体结晶习性[J],结构化学,1990,14(5-6):463-467.
    [164]Vande Leemput LEC, Van Bentum P J M, driessen F AJ M, etal. Morphology and Driessen surface to pology of YBa2Cu707 crystals[J].Cryst. Growth,1989,98:551-560.
    [165]Sun B N, Hartman P, Woensdregt C F. Structural morphology of YBa2Cu707[J].Cryst. Growth.1990,100:605-614.
    [166]Kramer M,Wittmuss D,Kupper H, etal. Relationsbe tween crystal structure and growth morphology of-Si7N, [J]. Cryst. Growth,1994,140:167-166.
    [167]]Hartman P.Modern PBC theory. In:Ichiro Sunagawaed. Morphologv of Crystals. Tokyo:Terra Scien tific Publishing Company,1987:269.
    [168]仲维卓,刘光照,施尔畏等,在热液条件下晶体的生长基元与晶体形成机理[J],中国科学(B辑),1994,24(1):349-350.
    [169]仲维卓,华素坤.负离子配位多面体生长基元与晶体的结晶习性[J],硅酸盐学报,1995,23(4):464-470.
    [170]施尔畏,仲维卓,华素坤等,关于负离子配位多面体生长基元模型仁[J],中国科学(E辑),1998,28(1):37-45.
    [171]李汶军,施尔畏,仲维卓等,水热合成中负离子配位多面体生长基元模型与粉体的晶体粒度[J],硅酸盐学报,1999,27(2):164-171.
    [172]陈敬中.现代晶体化学—理论与方法[M],北京:高等教育出版社,2001,126-140.
    [173]邢建东.晶体定向生长[M],西安:西安交通大学出版社,2008,7-10.
    [174]陈尔凡,田雅娟,周本廉.晶须增强体及其复合材料研究进展[J],高分子材料科学与工程,2002,18(4):1-9.
    [175]BurtonW.K., CabreraN. andFrankF. C. TheGrowthofCrystalsandtheEquilibriumStruct ureofTheirSurfaces[J].PhilTranRoyalSoc,1950,243:299-358.
    [176]李汶军,施尔畏,田明原等.水热法制备氧化锌纤维及纳米粉体[J],中国科学(E辑),1998,28(3):212.
    [177]蔡红.晶须的制备[J],青海大学学报(自然科学版),1995,13(4):30-37.
    [178]魏钟睛,马培华.溶液系统中的晶须生长机理[J],盐湖研究,1995,3(4):57-65.
    [179]陈若愚,夏树屏,高世扬.硼酸铝晶须合成机理的研究[J],化学研究与应用,2001,13(5):513-516..
    [180]吴孟强,陈艾,周旺,徐榕青.水热晶化法合成Ti02晶须[J],硅酸盐学报,2001,29(6):587-590.
    [181]陈拥军,李建保,魏强民等.不同形貌TaCx晶须的制备及生长机理[J],材料工程,2002,10:15-18.
    [182]Chen Z. SYNTHESIS AND CHARACTERISATION OF BETA'-SIALON WHISKERS PREPARED FROM THE CARBOTHERMAL REACTION OF SILICA FUME AND ALPHA-A1203[J]. Journal of Materials Science.1993 Vol.28, No.22:6021-6025.
    [183]Wokulski Z. The Influence of Nickel on VLS Growth and Real Structure of TiC Whiskers[J] Cryst. Growth.1987 Mar. (II) Vol.82, no.3:427-434.
    [184]王启宝.多节状SiC晶须的VS生长机理及晶体缺陷分析[J],人工晶体学报,1997,26(2):180-183.
    [185]白朔,成会明,苏革等.哑铃形碳化硅晶须的制备与表征[J],材料研究学报, 1999,13(3):239-243.
    [186]白朔,成会明,苏革等.哑铃形碳化硅晶须的微观结构分析[J].材料研究学报,2000,14(5):469-474.
    [187]王启宝.多节状SiC晶须的合成及在矿冶工程材料中的应用[J],黑龙江矿业学院学报,2000,10(1):4-6.
    [188]袁洪涛,张跃,谷景华.原位生长高度定向ZnO晶须[J],物理学报,2004,53(2):646-650.
    [189]李武.无机晶须[M],北京:化学工业出版社,2005,5-14.
    [190]Wagner R. S, Ellis W. C, Appl. Phys. Letters,1964,4:39.
    [191]Frank F C. Philmag.1953,44:854.
    [192]靳治良,张志宏,李武.无机盐晶须材料的研究进展[J].海湖盐与化工,2003,31(5):4-13.
    [193]Wagner R S, Ellis W C. J Appl Phys.1964; 35(10):2993
    [194]Masahiro Y, Hiroyuki S, Kengo 0, et al. J.Mat Sci.1994; 29:3399
    [195]施尔畏,陈之战,元如林,郑燕青.水热结晶学[M],北京:科学出版社,2004,204.