脉冲噪声自适应有源控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对日益严重的噪声污染,有源噪声控制已被公认为与传统无源噪声控制方法相并列的一项技术。然而,随着研究的深入和工程应用范围的扩大,有源噪声控制出现了许多亟待研究和解决的问题。
     脉冲噪声的有源控制就是其中之一,已有研究表明,炮弹的爆炸声,鞭炮声,枪支射击声和婴儿恒温箱的噪声等都属于脉冲噪声的范畴,而将常用的基于二阶矩的自适应算法用于脉冲噪声控制,系统就会出现易发散、降噪性能不明显等现象。本文主要针对脉冲噪声有源控制中的自适应算法进行研究,目标是寻求收敛速度快,计算复杂度低,稳态性能好,鲁棒的自适应算法。主要内容及创新点阐述如下:
     (1)针对α稳定分布的脉冲噪声的前馈有源控制,定义了一种新的代价函数,即最小化误差绝对值对数变换的平方。在此基础上,提出了滤波对数变换最小均方算法。现有其他算法需要根据实际噪声信号的统计特性预先选择和设定某些参数才能保证算法的收敛和稳定,本文所提出的算法克服了已有算法这方面的局限性。并通过理论和仿真分析对比了所提算法与已有算法的性能。
     (2)脉冲声是指含有非期望的、瞬时发生的尖锐声的一类噪声,其时域采样通常表现为尖刺样本或者非常大的离群样本值。为改进脉冲噪声有源控制的稳定性,借鉴鲁棒性统计理论中的M估计器概念,提出了一类基于M估计器的自适应算法,并将现有多种算法归入基于M估计器算法族中。通过理论和仿真分析对比了所提算法与已有算法的性能。
     (3)提出了一种后滤波结构的自适应算法。该算法的代价函数是一个约束优化问题:在满足后验误差为零的约束条件下,使得当前待更新的滤波器系数矢量与过去所有滤波器系数矢量之间差的欧几里得范数加权平方和最小。采用拉格朗日数乘法求解该约束优化问题,得到该算法是归一化滤波最小均方算法的泛化形式,即将归一化滤波最小均方算法得到的滤波器系数通过一个一阶的无限脉冲响应滤波器。通过调节无限脉冲响应滤波器的极点位置,可以控制自适应算法的收敛速度,稳态误差及稳定性。理论分析和仿真验证了该算法的有效性。另一方面,后滤波规整最小均方算法的优化准则是直接对滤波器系数的范数加以控制,即保证每次迭代中,滤波器系数矢量的变化都尽可能的小,因此将该算法用于脉冲噪声的有源控制。此外,以实际的打桩机噪声有源控制为例,比较了已有的脉冲噪声控制算法的性能,给出了选择合适的自适应算法的过程。
     (4)内模型控制是自适应反馈有源噪声控制中常用的系统结构,该结构通过合成参考信号的方式将反馈系统转换成前馈系统,从而可以方便地将前馈自适应算法应用到反馈系统中。该方法中的参考信号是由误差信号与次级信号经过估计的次级路径滤波后的信号合成得到的。理想情况下,当次级路径的估计无误差时,该系统具有较好的性能。但是其计算量较大,特别是次级信号与估计的次级路径的滤波操作。从反馈有源噪声控制系统的实际情况出发,提出了一种简化的自适应反馈有源噪声控制系统,该系统将误差信号直接用作参考信号,从而省去了次级信号与估计的次级路径的滤波操作。理论分析和实验表明该简化系统的性能并没有明显的恶化,因而是可行的。
Active noise control (ANC), ranking with the passive noise control, is a well-known approach to solve the problem of noise pollution in the environments. After the tireless efforts of researchers for decades, ANC system, especially the adaptive ANC system achieves many concrete and encouraging progresses and the theoretical framework and research method of ANC have been established. However, with the developments of research and the scope of engineering applications, some difficulties are encountered and there are many urgent issues in need of study and solution.
     The adaptive algorithms in the adaptive ANC system are investigated in this dissertation and the target is to seek the algorithms which have fast convergence speed, low computation complexity, good steady-state performance and robustness for the practical ANC system. The main contributions of this dissertation are summarized as follows:
     For the adaptive feed-forward control of a stable distribution noises, the cost function which is defined as the logarithmic transformation square of error signal is introduced and the FxlogLMS algorithm is derived. The FxlogLMS algorithm does not require any prior knowledge or estimation of characteristic exponent and exhibits good stability for all the cases with different characteristic exponents. Numerical simulations demonstrate the effectiveness of the proposed algorithm.
     The M-Estimator based algorithm family is examined in the context of active impulse-like noise control, where several existing algorithms are reformulated into the algorithm family and two new members, i.e. the Fair and Cauchy algorithms, are proposed. The general characteristics of the algorithm family in terms of robustness and computation load are analyzed, and the convergence condition of the proposed new algorithms is developed mathematically. Simulations are performed to verify the effectiveness of the algorithms and it is shown that the proposed algorithms compare favorably with the competitor algorithm in terms of performance, complexity, and threshold selection, and the Cauchy algorithm exhibits better performance under a stable distribution noise condition.
     An improved algorithm named PFNLMS is proposed which features that the filter coefficients are processed by a post filter and then utilized for adaptation. It is shown that the PFNLMS algorithm exhibits inherent flexibility since it can balance the convergence speed and steady state performance by tuning the parameter in the post filter. Because the cost function of the PFNLMS algorithm is defined as the summation of the squared Euclidean norm of difference between the currently updated filter coefficients vector and all past filter coefficients vector subject to the constraint imposed on the adaptive filter output, The PFNLMS algorithm is very suitable for the active control of impulsive noise since it directly limits the dynamic range of the adaptive filter coefficients and prevents the heavy fluctuation of the filter coefficients. Simulations compare the performance of the proposed algorithm with the existing algorithms. In addition, a procedure of selecting an appropriate algorithm from the family for practical applications is illustrated by simulations of active control of recorded pile driving noise.
     The widely used adaptive feedback active noise control system is based on the internal model control (IMC) structure where the reference signal is regenerated by synthesizing the error signal and the secondary signal filtered with the estimation of the secondary path. A simplified adaptive feedback active noise control system which uses the error signal directly as the reference signal is presented and the advantages of the simplified adaptive feedback active noise control system are the low computational load and ease of implementation. The convergence and stability is investigated and the common observations in practical active noise control system support that the simplification is reasonable. The simulations and experiments of active noise control system in a long duct for narrow band noise suppression show that the performance of the simplified adaptive feedback active noise control system is comparable to that of the adaptive IMC feedback system.
引文
[1]http://www.chinagb.org.
    [2]陈克安,有源噪声控制,国防工业出版社,2003.
    [3]S. M. Kuo and D. R. Morgan, Active noise control systems:algorithms and DSP implementations, New York, Wiley,1996.
    [4]S. J. Elliott, Signal processing for active control, London (UK), Academic Press, 2001.
    [5]P. A. Nelson and S. J. Elliott, Active control of sound, Academic Press,1992.
    [6]S. J. Elliott and P. A. Nelson, "Active noise control," IEEE Signal Process. Mag., vol.10, no.4, pp.12-35, Oct.1993.
    [7]S. M. Kuo and D. R. Morgan, "Active noise control:a tutorial review," Proc. IEEE, vol.87, no.6, pp.943-973, Jun.1999.
    [8]P. Lueg, Process of silencing sound oscillations, German patent DRP, No.65508, 1993.
    [9]H. F. Olson, "Electronic sound absorber," Jounal of the Acoustical Society of America, vol.25, no.6, pp.1130-1136,1953.
    [10]J. C. Burgress, "Active adaptive sound control in a duct:a computer simulation," Jounal of the Acoustical Society of America, vol.70, no.3, pp.715-726,1981.
    [11]L. E. Rees and S. J. Elliott, "Adaptive algorithms for active sound-profiling,' IEEE Trans. Audio, Speech, Lang. Process., vol.14, no.2, pp.711-719, Mar. 2006.
    [12]Y. Hinamoto and H. Sakai, "Analysis of the filtered-X LMS algorithm and a related new algorithm for active control of multitonal noise," IEEE Trans. Audio, Speech, Lang. Process., vol.14, no.1, pp.123-130, Jan.2006.
    [13]Qiu X et al. " Feasibility study of developing practical virtual sound barrier system." In Proceedings of 12th International Congress on Soundand Vibration, Lisbon, Portugal."
    [14]Zou H. et al. "Performance analysis of the virtual sound barrier system with a diffracting sphere." Applied Acoustics, vol.69, pp.875-883,2008.
    [15]Zou H., Qiu X., Lu J. and Niu F. "A preliminary experimental study on virtual sound barrier system." Journal of Sound and Vibration, vol.307, pp.379-385, 2007.
    [16]邹海山,邱小军,牛锋,卢晶,虚拟声屏障的数值及实验分析术,声学学报,Vol.32,no.1:pp.26-41,2007.
    [17]Romeu J. et al. "Active noise control in ducts in presence of standing waves. Its influence on feedback effect," Applied Acoustics, vol.62, pp.3-14,2001.
    [18]Zander A.C. and Hansen C.H. "A comparison of error sensor strategies for the active control of duct noise." Journal of the Acoustical Society of America, vol.94, pp.841-848,1993.
    [19]Qiu X. et al. "A waveform synthesis algorithm for active control of transform noise:implementation," Applied Acoustics, vol.63, pp.467-479,2002.
    [20]S. H. Yu and J. S. Hu, "Controller design for active noise cancellation headphones using experimental raw data," IEEE/ASME Trans. Mechatron. vol.6, pp.483-490, 2001.
    [21]C. Y. Chang and S. T. Li, "Active noise control in headsets by using a low-cost microcontroller," IEEE Trans.industrial electronics, vol.58, pp.1936-1942,2011.
    [22]S. M. Kuo, Y. Song, and Y. Gong, "A robust hybrid feedback active noise cancellation headset," IEEE Trans.on Speech and Audio Process., vol.13, pp. 607-617,2005.
    [23]B. Rafaely and S.J. Elliott, "H2/H∞ active control of sound in a headrest:design and implementation," IEEE Trans. Contr. Syst. Technol. vol.7, pp.79-84,1999.
    [24]M. Bai and S. Chang, "Active noise control of enclosed harmonic fields by using BEM-based optimization techniques," Applied Acoustics, vol.48, pp.15-32, 1996.
    [25]黄华华,自然通风有源隔声窗研究,南京大学博士学位论文,2011.
    [26]B.Widrow et al., "Stationary and nonstationary learning charactereistics of LMS adaptive filter," PROC. of IEEE, vol.64, pp.1151-1162,1976.
    [27]B.Widrow et al. "Comments on an adaptive recursive LMS filter," PROC. of IEEE, vol.65, pp.1402-1404,1977.
    [28]B.Widrow et al., Adaptive inverse control, Prentice Hall,1996.
    [29]R. Leahy, Z. Zhou, and Y. C. Hsu, "Adaptive filtering of stable processes for active attenuation of impulsive noise," in Proc. IEEE ICASSP'95, May 1995, vol. 5, pp.2983-2986.
    [30]X. Sun, S. M. Kuo, and G. Meng, "Adaptive algorithm for active control of impulsive noise," J. Sound Vibr., vol.291, no.1-2, pp.516-522, Mar.2006
    [31]M. T. Akhtar and W. Mitsuhashi, "Improving performance of FxLMS algorithm for active noise control of impulsive noise," J. Sound Vibr., vol.327, no.3-5, pp. 647-656, Nov.2009.
    [32]S. M. Kuo, K. Kuo, and W. S. Gan, "Active noise control:open problems and challenges," in 2010 Proc. Green Circuits and Systems Int. Conf., Jun.2010, pp. 164-169.
    [33]P. Thanigainayagam, S. M. Kuo, and R. Yenduri, "Nonlinear active noise control for infant incubators in Neo-Natal intensive care units," in Proc. IEEE ICASSP, Apr.2007, vol.1, pp.109-112.
    [1]邱天爽,张旭秀,李小兵等,统计信号处理:非高斯信号处理及其应用,电子工业出版社,2004.
    [2]C. H. Hansen and S. D. Snyder, Active control of noise and vibration. London, U.K.:E&FN Spon,1997.
    [3]. R. Morgan, "A hierarchy of performance analysis techniques for adaptive active control of sound and vibration,"J. Acoust. Soc. Amer., vol.89, pp.2362-2369, May 1991.
    [4]K. Kido, "Reduction of noise by use of additional sound sources," in Proc. Inter-noise,1975, pp.647-650.
    [5]L.J. Eriksson, "Computer-aided silencing—An emerging technology,Sound Vib., vol.24, pp.42-45, July 1990.
    [6]S. M. Kuo and J. Tsai, "Acoustical mechanisms and performance of various active duct noise control systems," Appl. Acoust., vol.41, pp.81-91,1994.
    [7]L. E. Rees and S. J. Elliott, "Adaptive algorithms for active sound-profiling,' IEEE Trans. Audio, Speech, Lang. Process., vol.14, no.2, pp.711-719, Mar. 2006.
    [8]Y. Hinamoto and H. Sakai, "Analysis of the filtered-X LMS algorithm and a related new algorithm for active control of multitonal noise," IEEE Trans. Audio, Speech, Lang. Process., vol.14, no.1, pp.123-130, Jan.2006.
    [9]B. W. Stuck, "Minimum error dispersion linear filtering of scalar symmetric stable processes", IEEE Trans. Automatic Control, vol.23, no.3, pp.507-509, 1978.
    [10]C. L. Nikias and M. Shao, Signal Processing with Alpha Stable Distribution and Applications, New York:John Wiley & Sons,1995.
    [11]P. Kidmose, "Alpha-stable distributions in signal processing of audio signals," Proceedings of the 41st Conference on Simulation and Modeling, Scandinavian Simulation Society, pp.87-94,2000.
    [12]M. Shao and C. L. Nikias, "Signal processing with fractional lower order moments:stable processes and their applications," Proc. IEEE, vol.81, no.7, pp. 986-1010, Jul.1993.
    [13]R. Leahy, Z. Zhou, and Y. C. Hsu, "Adaptive filtering of stable processes for active attenuation of impulsive noise," in Proc. IEEE ICASSP 1995, vol.5, pp. 2983-2986, May 1995.
    [14]X. Sun, S. M. Kuo, and G. Meng, "Adaptive algorithm for active control of impulsive noise,"J. Sound Vibr., vol.291, no.1-2, pp.516-522, Mar.2006.
    [15]M. T. Akhtar and W. Mitsuhashi, "Improving performance of FxLMS algorithm for active noise control of impulsive noise," J. Sound Vibr.,vol.327, no.3-5, pp. 647-656, Nov.2009.
    [16]J. G. Gonzalez, J. L. Paredes, and G. R. Arce, "Zero-order statistics:a mathematical framework for the processing and characterization of very impulsive signals," IEEE Trans. Signal Process., vol.54, no.10, pp.3839-3851, Oct.2006.
    [17]R. Durrett, Probability:Theory and Examples.2nd ed., Wadsworth Publishing Company,1996.
    [1]R. Leahy, Z. Zhou, and Y. C. Hsu, "Adaptive filtering of stable processes for active attenuation of impulsive noise," in Proc. IEEE ICASSP'95, May 1995, vol. 5,pp.2983-2986.
    [2]X. Sun, S. M. Kuo, and G. Meng, "Adaptive algorithm for active control of impulsive noise," J. Sound Vibr., vol.291, no.1-2, pp.516-522, Mar.2006
    [3]M. T. Akhtar and W. Mitsuhashi, "Improving performance of FxLMS algorithm for active noise control of impulsive noise," J. Sound Vibr.,vol.327, no.3-5, pp. 647-656, Nov.2009.
    [4]S. M. Kuo, K. Kuo, and W. S. Gan, "Active noise control:open problems and challenges," in 2010 Proc. Green Circuits and Systems Int. Conf, Jun.2010, pp. 164-169.
    [5]P. Thanigainayagam, S. M. Kuo, and R. Yenduri, "Nonlinear active noise control for infant incubators in Neo-Natal intensive care units," in Proc. IEEE ICASSP, Apr.2007, vol.1, pp.109-112.
    [6]马大猷,室内有源噪声控制的潜力,声学学报,vol.18,pp.178-185,1993.
    [7]S. J. Elliott and P. A. Nelson, "Active noise control," IEEE Signal Process. Mag., vol.10, no.4, pp.12-35, Oct.1993.
    [8]S. M. Kuo and D. R. Morgan, Active Noise Control Systems:Algorithms and DSP Implementations. New York:Wiley,1996.
    [9]S. M. Kuo and D. R. Morgan, "Active noise control:a tutorial review," Proc. IEEE, vol.87, no.6, pp.943-973, Jun.1999.
    [10]S. J. Elliott, Signal Processing for Active Control. London, U. K.:Academic Press,2001.
    [11]Y. Xiao et al. "Properties of FXLMS-Based Narrowband Active Noise Control With Online Secondary-Path Modeling," IEEE Transactions on Signal Proces. Vol.57, pp.2931-2949,2009.
    [12]P. Babu et al. "Improving Tracking Performance of FxLMS Algorithm Based Active Noise Control Systems," RECENT TRENDS IN NETWORKS AND COMMUNICATIONS. Vol.90, pp.11-20,2010.
    [13]Y. Gong et al. "Performance analysis of the unconstrained FxLMS algorithm for active noise control", in Proc. ICASSP 2003.
    [14]Resende et al. "Statistical Analysis of the FXLMS Algorithm About the Steady-State Solution," in Proc. International Telecommunications Symposium 2006.
    [15]P. J. Huber, Robust Statistics. New York:Wiley,1981.
    [16]P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. New York:Wiley,1987.
    [17]A. Basu and K. K. Paliwal, "Robust M-estimates and generalized M-estimates for autoregressive parameter estimation," in Proc. Fourth IEEE Region 10 International Conference (TENCON), Bombay, India, Nov.1989, pp.355-358.
    [18]F. R. Hampel et al. Robust Statistics-The Approach Based on Influence Functions, Wiley,1986.
    [19]S. A. Kassam, Signal Detection in Non-Gaussian Noise. Springer-Verlag,1988.
    [20]P. Kidmose, "Alpha-stable distributions in signal processing of audio signals," Proceedings of the 41st Conference on Simulation and Modeling, Scandinavian Simulation Society,2000, pp.87-94.
    [1]B. Widrow and S. D. Steams, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,1985.
    [2]S. Haykin, Adaptive Filter Theory,4th edition, Englewood Cliffs, NJ: Prentice-Hall,2002.
    [3]P.S.R. Diniz, Adaptive filtering:algorithms and practical implementation,3rd edition, Springer,2008.
    [4]S. Roy and J.J. Shynk, "Analysis of the momentum LMS algorithm," IEEE Trans. Signal Process, vol.38, no.12, pp.2088-2098, December 1990.
    [5]L.K. Ting, C.F.N. Cowan and R.F. Woods, "LMS coefficient filtering for time-varying chirped signals," IEEE Trans.on Signal Process.vol.52, no.11, pp. 3160-3169, November 2004.
    [6]C.L. Phillips, J.M. Parr and E.A. Riskin, Signals, Systems, and Transforms,3rd edition, Pearson Education,2002.
    [7]S. J. Elliott and P. A. Nelson, "Active noise control," IEEE Signal Process. Mag., vol.10, no.4, pp.12-35, Oct.1993.
    [8]S. M. Kuo and D. R. Morgan, Active Noise Control Systems:Algorithms and DSP Implementations. New York:Wiley,1996.
    [9]S. M. Kuo and D. R. Morgan, "Active noise control:a tutorial review," Proc. IEEE, vol.87, no.6, pp.943-973, Jun.1999.
    [10]S. J. Elliott, Signal Processing for Active Control. London, U. K.:Academic Press,2001.
    [11]R. Leahy, Z. Zhou, and Y. C. Hsu, "Adaptive filtering of stable processes for active attenuation of impulsive noise," in Proc. IEEE ICASSP'95, May 1995, vol. 5, pp.2983-2986.
    [12]X. Sun, S. M. Kuo, and G. Meng, "Adaptive algorithm for active control of impulsive noise," J. Sound Vibr., vol.291, no.1-2, pp.516-522, Mar.2006
    [13]M. T. Akhtar and W. Mitsuhashi, "Improving performance of FxLMS algorithm for active noise control of impulsive noise,"J. Sound Vibr., vol.327, no.3-5, pp. 647-656, Nov.2009.
    [14]M. Bergamasco, F. B. Rossa and L. Piroddi, "Active noise control with on-line estimation of non-Gaussian noise characteristics," J. Sound Vib., vol.331, pp. 27-40,2012.
    [15]L. Wu, H. He, X. Qiu, "An active impulsive noise control algorithm with logarithmic transformation," IEEE Trans. Audio, Speech, Lang. Process., vol.19, no.4, pp.1041-1044,2011.
    [16]P. Kidmose, "Alpha-stable distributions in signal processing of audio signals", Proceedings of the 41st Conference on Simulation and Modeling, Scandinavian Simulation Society,2000, pp.87-94.
    [17]Bruel & Kj(?)r. Product Data-Head and Torso Simulator-Type 4128C, Handset Positioner for HATS-Type 4606:4 [M]. [S.1.]:Bruel & Kj(?)r,2010.
    [18]I. T. Ardekani, and W. H. Abdulla, "Filtered weight FxLMS adaptation algorithm:analysis, design and implementation," Int. J. Adapt. Control Signal Process., vol.25, pp.1023-1037,2011.
    [1]S. M. Kuo and D. R. Morgan, Active noise control systems:algorithms and DSP implementations, New York, Wiley,1996.
    [2]S. J. Elliott, Signal processing for active control, London (UK), Academic Press, 2001.
    [3]O'Brien et al. "Active noise control using robust feedback techniques," in Proc. ICASSP 2001.
    [4]S.M. Kuo and D. Vijayan, "Adaptive algorithms and experimental verification of feedback active noise control systems," Noise Control Eng. J., vol.47, pp.37-46, Mar.-Apr.1994.
    [5]H. Sakai et al. "Analysis of the adaptive filter algorithm for feedback-type active noise control," in Proc. ICASSP 2001.
    [6]J.C. Carmona et al. "A new feedback approach in active noise control:Robust pole placement control, " Active control in mechanical engineering, pp.73-84, 2000.
    [7]E. Leboucher et al. "A decentralized adaptive feedback active noise control system of periodic sound in free space," in Proc. Active 99.
    [8]赵洪亮等,单频反馈ANC系统的一种新算法,声学技术,328-330,2003.
    [9]田静等,有源护耳器的应用研究及商品化进程,声学技术,24-26,2000.
    [10]孙华强,自适应有源反馈噪声控制系统研究,西北工业大学硕士学位论文,2002.
    [11]S. J. Elliott, I. M. Stothers, and P. A. Nelson, "A multiple error LMS algorithm and its application to the active control of sound and vibration," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.1423-1434, Oct.1987.
    [12]S. Laugesen and S. J. Elliott, "Multichannel active control of random noise in a small reverberant room," IEEE Trans. Signal Processing, vol.1, pp.241-249, Apr.1993.
    [13]梁正炎等,多通道有源噪声控制算法的仿真研究,电声技术,52-54,2003.
    [14]宫赤坤等,多通道自适应有源噪声控制研究,噪声与振动控制,33-35,2008.
    [15]孙利峰等,多通道有源控制算法硬件实现及影响因素研究,电声技术,63-66,2006.
    [16]B. Rafaely and S. J. Elliott, "H2/H∞ active control of sound in a headrest:design and implementation," IEEE Trans. Contr. Syst. Technol. vol.7, pp.79-84, 1999.
    [17]S. H. Yu and J. S. Hu, "Controller design for active noise cancellation headphones using experimental raw data," IEEE/ASME Trans. Mechatron. vol.6, pp.483-490,2001.
    [18]C. Y. Chang and S. T. Li, "Active noise control in headsets by using a low-cost microcontroller," IEEE Trans.industrial electronics, vol.58, pp.1936-1942, 2011.
    [19]S. M. Kuo, Y. Song, and Y. Gong, "A robust hybrid feedback active noise cancellation headset," IEEE Trans.on Speech and Audio Process., vol.13, pp. 607-617,2005.
    [20]M. Pawelczyk, "Analogue active noise control," Applied Acoustics vol.63, pp. 1193-1213,2002.
    [21]陈克安,有源噪声控制,国防工业出版社,2003.
    [22]L. J. Eriksson, "Recursive algorithms for active noise control," in Proc. Int. Symp. Active Control of Sound Vib., pp.137-146,1991.
    [23]S. R. Popovich, D. E. Melton, and M. C. Allie, "New adaptive multi-channel control systems for sound and vibration," in Proc. Inter-noise, pp.405-408,1992.
    [24]M. Bai and D. Lee, "Implementation of an active headset by using the H oo robust control theory," J. Acoust. Soc. Am. vol.102, pp.2184-2190,1997
    [25]C. Bao, R. Pautobally, and J. Pan, "Feedback control of noise in room," Fifth international congress on sound and vibration, Dec.1997.
    [26]吴鸣,音频信号处理中建模问题及应用,南京大学博士学位论文,2007.
    [27]J. Laroche, "Optimal constraint-based loop-shaping in the cepstral domain,' IEEE Signal Process. Lett. vol.14, pp.225-227,2007.
    [28]M. Morari and Zaifiriou, Robust Process Control, Prentice Hall,1989.
    [29]M. A. Vaudrey, W. T. Baumann, and R. Saunders, "Stability and operating constraints of adaptive LMS-feedback control," Automatica, vol.39, pp. 595-605,2003.
    [30]W. A. Sethares, C. R. Jr. Johnson, D. A. Lawrence, and R. R. Bitmead, "Parameter drift in LMS adaptive filters," IEEE Trans.on Acoustics, Speech and Signal Process., vol.34, pp.868-879,1986.
    [31]O. J. Tobias and R. Seara, "Leaky-FXLMS algorithm:stochastic analysis for Gaussian data and secondary path modeling error," IEEE Trans.on Speech and Audio Process., vol.13, pp.1217-1230,2005.
    [32]http://www.antysound.com.
    [1]J.J. Shynk, "Adaptive IIR filtering," IEEE Acoust. Speech Signal Processing Mag., pp.4-21, Apr.1989.
    [2]L. J. Eriksson, M. C. Allie, and R. A. Greiner, "The selection and application of an IIR adaptive filter for use in active sound attenuation," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.433-437, Apr.1987.
    [3]E. Kaymak et al. "Active Control at High Frequencies," in Proc. Int. Congress Sound and Vibration,2006.
    [4]J.N. Guo and J. Pan, "Active control of moving noise source:effects of off-axis source position," J. Sound Vibr., vol.215, pp.457-475,2000.