用户名: 密码: 验证码:
多芯光子晶体光纤激光器及光子晶体光纤表面等离子体共振传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤以其灵活的结构设计和优异的光学性能受到广泛关注,成为光纤光学领域中研究的热点,尤其在光纤激光和光纤传感领域中尤为突出。本文从理论和实验出发研究了多芯光子晶体光纤和柚子型光子晶体光纤在以上两个领域中的应用:利用有限元法数值模拟了多芯光子晶体光纤激光器的模场和温度分布特性;开展了18芯光子晶体光纤激光器的近场同相位超模选择及纵向温度分布的实验研究;数值模拟并实验分析了基于柚子型光子晶体光纤的表面等离子共振传感特性。
     本文的主要工作和创新点归纳如下:
     1.理论分析了多芯光子晶体光纤激光器的模式耦合原理及超模分布特性,利用有限元法分别对具有16芯矩形阵列结构及18芯和19芯环形阵列结构的光子晶体光纤激光器的超模分布特性进行了数值模拟分析。
     2.分析研究了光纤激光器的泵浦耦合系统,采用Basic语言对耦合过程进行了可视化编程设计,分析了不同透镜组合的耦合特性;通过选用两块凸面相对的非球面透镜组成了泵浦耦合系统,实现了对泵浦光1:1的高效空间耦合;利用显微物镜和CMOS图像传感器结合图像处理技术自主设计了一套光纤激光器近场观测装置,实现了对光子晶体光纤端面的显微成像,并实时观测了18芯PCF激光器的近场模式分布特性;采用折叠腔和小孔选模技术实现了18芯PCF激光器同相位超模的选模输出,当泵浦功率为33.75W时获得了14.85W的1037nm单一波长的激光输出。
     3.理论分析了PCF激光器的热传导机理,利用有限元法数值模拟了高功率泵浦下单芯、18芯和19芯PCF激光器的端面热分布特性;采用光纤光栅阵列温度测量方法实验测量了18芯PCF激光器在自然散热条件下的纵向温度分布特性,结合数值模拟方法分析研究了其三维温度分布特性。
     4.数值模拟了采用五瓣和六瓣结构的柚子型光子晶体光纤的表面等离子共振传感特性;模拟研究了镀银薄膜、填充银纳米线及混合填充三种金属介质填充方式对PCF-SPR传感特性的影响;开展了基于六瓣柚子型PCF的镀银薄膜实验并研究了其表面等离子共振特性。
The Photonic crystal fiber (PCF) has attracted more attentions for its flexiblestructure design and excellent optical performance, and it has become a new focus inthe fiber optical research domain, particularly prominent in the research areas of fiberlaser and fiber sensor. In this dissertation, multi-core PCF laser and grapefruit-typePCF sensor based on surface plasmon resonance technology are theoretically andexperimentally investigated. The characteristics of mode field distribution andtemperature distribution in multi-core PCF laser are numerically simulated by finiteelement method; The in-phase supermodel selection and vertical temperaturedistribution of the18core PCF lasers are studied experimentally. The surface plasmonresonance sensing properties based on grapefruit-type PCF are numerically simulatedand the PCF-SPR sensor experiment based on silver film plating has been carried out.
     The main work and innovations are summarized as follows:
     1. The mode coupling principle and supermodel distribution characteristics ofmulti-core PCF laser are theoretically analyzed; The supermodel distributioncharacteristics of multi-core PCF laser based on the structure of16cores rectangulararray,18cores circular array and19cores circular array are numerically simulatedrespectively with the finite element method.
     2. The coupling system for the PCF laser is analyzed and the coupling process isdesigned based on visual Basic program; The efficient1:1space coupling is achievedby the coupling system which is consisted of two aspheric lens; The near-fieldobservation device which is used to immediately observe the near-field pattern of the18-core PCF laser is designed by using a microscope objective lens and CMOS imagesensor; The in-phase supermodel of18core PCF laser is selected experimentallythrough small holes election technology, The14.85W laser with single wavelength of1037nm is achieved when the pumping power is33.75W.
     3. The thermal properties in multi-core PCF laser with the structure of singlecore,18-cores and19-cores are analyzed with full-vector fnite-element method. Thetemperature sensing technique based on fiber Bragg grating sensor array is proposedto measure the longitudinal temperature distribution, and the three-Dimensionalthermal properties of18-cores PCF lasers operated under natural convection are investigated.
     4. The surface plasmon resonance sensing properties of PCF based on differentgrapefruit-type structures are numerically simulated; The influence of the metaldielectric-filled method with silver film, silver nanowires and mixed mode are studied;The silver-film coating experiments in the inner wall of grapefruit-type PCF is carriedout and the PCF-SPR characteristics are investigated.
引文
[1] J. C. Knight, T. A. Birks, et al., All-silica single-mode optical fiber withPhotonic crystal cladding, Opt. Lett.,1996,21:1547-1549
    [2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics, Phys. Rev. Lett.,1987,58:2059
    [3] S. John, Strong localization of photons in certain cisordered dielectric superlattices,Phys. Rev. Lett.,1987,58:2486
    [4] J. W. S. Rayleigh, On the remarkable phenomenon of crystalline reflexiondescribed by Prof. Stokes, Phil. Mag.,1888,26:256-265
    [5]刘恩科,朱秉升,罗晋生,半导体物理学,西安:西安交通大学出版社,1994
    [6] J. C. Knight, J. Broeng, et al., Photonic bandgap guidance in optical fibers,Science,1998,282(5393):1476-1478
    [7] A. Ortigosa-Blaneh, J. C. Knight, et al., Highly birefringent Photonic crystal fibers,Opt. Lett.,2000,25:1325-1327
    [8] M. J. Steel and R. M. Osgood, Elliptical-hole Photonic crystal fibers, Opt. Lett.,2001,26:229-231
    [9] N. A. Mortensen, M. D. Nielsen, et al., Improved large-mode-area endlessly singlemode photonic crystal fibers, Opt. Lett.,2003,28:393-395
    [10] P. Russell, Photonic Crystal Fibers, Science,2003,299(5605):358-362
    [11] J. C. Knight, Photonic crystal fibers, Nature,2003,424:847-851
    [12] J. Broeng, et al., Photonic crystal fibers: A new class of optical waveguides,Optical Fiber Technology,1999,5(3):305-330
    [13] T. A. Birks, et al., Dispersion compensation using single-material fibers, IEEEPhotonics Technology Letters,1999,11(6):674-676
    [14] W. J. Wadsworth, et al., Very high numerical aperture fibers, IEEE PhotonicsTechnology Letters,2004,16(3):843-845
    [15] N. A. Issa, High numerical aperture in multimode microstructured optical fibers,Applied Optics,2004,43(33):6191-6197
    [16] T. A. Birks, J. C. Knight and P. S. J. Russell, Endlessly single-mode photoniccrystal fiber, Opt. Lett.,1997,22(13):961-963
    [17] J. C. Knight, et al., Properties of photonic crystal fiber and the effective indexmodel, Journal of the Optical Society of America a-Optics Image Science and Vision,1998,15(3):748-752
    [18] P. J. Roberts, et al., Ultimate low loss of hollow-core photonic crystal fibres, Opt.Express,2005,13(1):236-244
    [19] P. S. J. Russell, Photonic-crystal fibers, Journal of Light wave Technology,2006,24(12):4729-4749
    [20] J. C. Knight, J. Arriaga et al., Anomalous dispersion in photonic crystal fiber,IEEE Photonics Technology Letters,2000,12(7):807-809
    [21] B. Kuhlmey, R. McPhedran, et al., Microstructured optical fibers: where’s theedge?, Opt. Express,2002,10(22):1285-1290
    [22] B. T. Kuhlmey, R. C. McPhedran and C. D. Sterke, Modal cutoff inmicrostructured optical fibers, Opt. Lett.,2002,27(19):1684-1686
    [23] N. A. Mortensen, J. R. Folkenberg, et al., Modal cutoff and the V parameter inphotonic crystal fibers, Opt. Lett.,2003,28(20):1879-1881
    [24] N. A. Mortensen and J. R. Folkenberg, Low-loss criterion and effective areaconsiderations for photonic crystal fibres, Journal of Optics A: Pure and AppliedOptics,2003,5(3):163-167
    [25] N. A. Mortensen, M. D. Nielsen, et al., Improved large-mode-area endlesslysingle-mode photonic crystal fibers, Opt. Lett.,2003,28(6):393-395
    [26] J. Limpert, O. Schmidt, et al., Extended single-mode photonic crystal fiber lasers,Opt. Express,2006,14(7):2715-2720
    [27] Y. Tsuchida, K. Saitoh and M. Koshiba, Design of single-mode holey fibers withlarge-mode-area and low bending losses: the significance of the ring-core region, Opt.Express,2007,15(4):1794-1803
    [28] A. Ferrando, et al., Nearly zero ultraflattened dispersion in photonic crystal fibers,Opt. Lett.,2000,25(11):790-792
    [29] A. Ferrando, et al., Designing the properties of dispersion-flattened photoniccrystal fibers, Opt. Express,2001,9(13):687-697
    [30] W. Reeves, J. Knight, et al., Demonstration of ultra-flattened dispersion inphotonic crystal fibers, Opt. Express,2002,10(14):609-613
    [31] K. P. Hansen, Dispersion flattened hybrid-core nonlinear photonic crystal fiber,Opt. Express,2003,11(13):1503-1509
    [32] G. Renversez, B. Kuhlmey and R. McPhedran, Dispersion management withmicrostructured optical fibers: ultraflattened chromatic dispersion with low losses,Opt. Lett.,2003,28(12):989-991
    [33] K. Saitoh, M. Koshiba, et al., Chromatic dispersion control in photonic crystalfibers: application to ultra-flattened dispersion, Opt. Express,2003,11(8):843-852
    [34] S. Varshney, T. Fujisawa, et al., Novel design of inherently gain-flattened discretehighly nonlinear photonic crystal fiber Raman amplifier and dispersion compensationusing a single pump in C-band, Opt. Express,2005,13(23):9516-9526
    [35] J. Wang, C. Jiang, et al., Modified design of photonic crystal fibers with flatteneddispersion, Optics and Laser Technology,2006,38(3):169-172
    [36] A. Huttunen and P. T rm, Optimization of dual-core and microstructure fibergeometries for dispersion compensation and large mode area, Opt. Express,2005,13(2):627-635
    [37]孙婷婷,光子晶体光纤激光器和超连续光源的研究,[博士学位论文],天津:南开大学,2008
    [38] T. P. Hansen, J. Broeng, et al., Highly birefringent index-guiding photonic crystalfibers, IEEE Photonics Technology Letters,2001,13(6):588-590
    [39] A. Ortigosa-Blanch, J. C. Knight, et al., Highly birefringent photonic crystalfibers, Opt. Lett.,2000,25(18):1325-1327
    [40] P. R. Chaudhuri, V. Paulose and C. Zhao, Near-Elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics andrealization, IEEE Photonics Technology Letters,2004,16(5):1301-1135
    [41] K. Saitoh and M. Koshiba, Photonic bandgap fibers with high birefringence,IEEE Photonics Technology Letters,2002,14(9):1291-1293
    [42] G. Statkiewicz, T. Martynkien and W. Urbanczyk, Measurements of modalbirefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostaticpressure and strain, Opt. Commun.,2004,241(4-6):339-348
    [43] K. Saitoh and M. Koshiba, Single-polarization single-mode photonic crystalfibers, IEEE Photonics Technology Letters,2003,15(10):1384-1386
    [44] T. Schreiber, et al., Stress-induced single-polarization single-transverse modephotonic crystal fiber with low nonlinearity, Opt. Express,2005,13(19):7621-7630
    [45] M. Szpulak, et al., Polarizing photonic crystal fibers with wide operation range,Opt. Commun.,2004,239(1-3):91-97
    [46] N. G. R. Broderick, et al., Nonlinearity in holey optical fibers: measurement andfuture opportunities, Opt. Lett.,1999,24(20):1395-1397
    [47] N. A. Mortensen, Effective area of photonic crystal fibers, Opt. Express,2002,10(7):341-348
    [48] V. Finazzi, T. M. Monro, et al., The role of confinement loss in highly nonlinearsilica holey fibers, IEEE Photonics Technology Letters,2003,15(9):1246-1248
    [49] H. Ebendorff-Heidepriem, P. Petropoulos, et al., Bismuth glass holey fibers withhigh nonlinearity, Opt. Express,2004,12(21):5082-5087
    [50] X. Feng, T. M. Monro and P. Petropoulos, Extruded single-mode high-index-coreone-dimensional microstructured optical fiber with high index-contrast for highlynonlinear optical devices, Appl. Phys. Lett.,2005,87(8):081110
    [51] K. Furusawa, et al., Cladding pumped Ytterbium-doped fiber laser with holeyinner and outer cladding, Opt. Express,2001,9(13):714-720
    [52] W. Wadsworth, R. Percival, et al., High power air-clad photonic crystal fibre laser,Opt. Express,2003,11(1):48-53
    [53] W. Chen, J. Y. Li, et al., All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laserwith High Efficiency, Chinese Physics Letters,2008,25(3):960-964
    [54] W. J. Wadsworth, J. C. Knight, et al., Yb3+-doped photonic crystal fibre laser,Electronics Letters,2000,36(17):1452-1454
    [55] J. C. Knight, T. A. Birks, et al., Multicore photonic crystal fibres, Proc. OpticalFiber Sensors,1997, PDP5
    [56] B. J. Mangan, J. C. Knight, et al., Experimental study of dual-core photoniccrystal fibre, Electronics Letters,2000,36(16):1358-1359
    [57] W. N. MacPhersona, M. J. Gander, et al., Remotely addressed optical fibrecurvature sensor using multicore photonic crystal fibre, Opt. Commun.,2001,193:97-104
    [58]侯蓝田,李曙光,周桂耀等,多孔微结构集束光子晶体光纤,中国光电,2003,1(1):36-42
    [59] Arash Mafi and Jerome V. Moloney, Phase locking in a passive multicorephotonic crystal fiber, J. Opt. Soc. Am. B,2004,21(5):897-902
    [60] L. Michaille, C. R. Bennett, et al., Phase locking and supermode selection inmulticore photonic crystal fiber lasers with a large doped area, Opt. Lett.,2005,30(13):1668-1670
    [61] W. Guo, G. Y. Zhou, et al., The fabrication of micro-structure fiber with theimproved stacking-capillary method, Proc. Conf. Advanced Laser Technologies,2006,6344:15
    [62] P. St. Russell, Photonic-Crystal Fibers, J. Lightwave Tech.,2006,24(12):4729-4749
    [63] W. Guo, G. Y. Zhou et al., Fabrication of micro-structure fiber by improvedstacking-capillary method, Journal of optoelectronics Laser,2006,17:1035-1038
    [64] T. Y. Guo, S. Q. Lou, et al., Control of the fabrication parameters during thefabrication of Photonic Crystal Fibers, Acta. Physica Sinica,2009,58(9):6308-6315.
    [65] M. van Eijkelenborg, M. C. J. Large and A. Argyrosetal., Microstructuredpolylmer optical fibre, Opt. Express,2001,9(7):319-327
    [66] P. Petropoulos, H. E. HeidePriem, et al., Highly nonlinear and anomalouslydispersive lead silicate glass holey fibers, Opt. Express,2003,11(26):3568-3573
    [67] M. van Eijkelenborg, Imaging with microstructured polylmer optical fibre, Opt.Express,2004,12(2):342-346
    [68] M. C. J. Large, S. Ponrathnam, et al., Microstructured polylmer optical fibres:New opportunities and challenges, Mol. Cryst. Liq. Cryst.,2006,446:219-231
    [69] G. R. Piekrell, D. Kominsky et al., Novel techniques for the fabrication of holeyoptical fibers, Proc. SPIE: Fiber Optic Sensor Technology and Applications,2001,4578:271-282
    [70] R. T. Bise and D. J. Trevor, Sol-gel Derived Microstructured Fiber: Fabricationand Characterization, Optic Fiber Commun.(OFC),2005, AnaheimCA
    [71] X. Feng, A. K. Mairaj, et al., Nonsilica Glasses for Holey Fibers, J. LightwaveTech.,2005,23(6):2046-2054
    [72] Y. F. Li, C.Y. Wang and M. L. Hu, A fully vectorial effective index method forphotonic crystal fibers: application to dispersion calculation, Opt. Commun.,2004,238(1-3):29-33
    [73] D. S. Zhang, et al., Studies on the dispersion in phontnic crystal fiber using thestep effective index model. Acta Physica Sinica,2005,54(3):1235-1240
    [74] X. T. Zhao, et al., Dispersion analysis of photonic crystal fiber using improvedfull-vectorial effective index method. Acta Physica Sinica,2007,56(4):2275-2280
    [75] Y. F. Li, et al., Effective index method for all-solid photonic bandgap fibres.Journal of Optics a-Pure and Applied Optics,2007,9(10):858-861
    [76] K. M. Ho, C. T. Chan and C. M. Soukoulis, Existence of a photonic gap inperiodic dielectric structures, Phys. Rev. Lett,1990,65(25):3152-3155
    [77] R. D. Meade, A. M. Rappe, et al., Accurate theoretical analysis of photonicband-gap materials, Phys. Rev. B,1993,48(11):8434-8437
    [78] A. Ferrando, E. Silvestre, et al., Full-vector analysis of a realistic photonic crystalfiber, Opt. Lett,1999,24(5):276-278
    [79] S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methodsfor Maxwell's equations in a planewave basis, Opt. Express,2001,8:173-190
    [80] G. J. Pearce, T. D. Hedley and D. M. Bird, Adaptive curvilinear coordinates in aplane-wave solution of Maxwell's equations in photonic crystals, Physical Review B,2005,71(19):432-436
    [81] R. Kotynski, M. Dems and K. Panajotov, Waveguiding losses of micro-structuredfibres plane wave method revisited, Optical and Quantum Electronics,2007,39(4-6):469-479
    [82] D. J. Monro, N. Richardson, et al., Holey optical fibers: an efficient modal mode.J. Lightwave Tech.,1999,17(6):1093-1102
    [83] M. Qiu, Analysis of guided modes in photonic crystal fibers using thefinite-difference time-domain method, Microwave and Optical Technology Lett.,2001,30(5):327-330
    [84] C. P. Yu and H. C. Chang, Yee-mesh-based finite difference eigenmode solverwith PML absorbing boundary conditions for optical waveguides and photonic crystalfibers, Opt. Express,2004,12(25):6165-6177
    [85] P. Kowalczyk, M. Wiktor and M. Mrozowski, Efficient finite difference analysisof microstructured optical fibers, Opt. Express,2005,13(25):10349-10359
    [86] P. Kowalczyk and M. Mrozowski, Anew conformal radiation boundary conditionfor high accuracy finite difference analysis of open waveguides, Opt. Express,2007,15(20):12605-12618
    [87] B. TKuhlmey, T. P. White, et al., Multipole method for microstructured opticalfibers. II. Implementation and results, J. Opt. Soc.Am. B,2002,19(10):2331-2340
    [88] T. P. White, B. TKuhlmey, et al, Multipole method for microstructured opticalfibers. I. Formulation, J. Opt. Soc.Am. B,2002,19(10):2322-2330
    [89] B. T. Kuhlmey, et al., Multipole method for microstructured optical fibers. II.Implementation and results, J. Opt. Soc. Am. B,2002,19(10):2331-2340
    [90] Z. M. Zhu and T. G. Brown, Multipole analysis of hole-assisted optical fibers,Opt. Commun.,2002,206(4-6):333-339
    [91] C. E. Kerbage, B. J. Eggleton, et al., Experimental and scalar beam propagationanalysis of an air-silica microstructure fiber, Opt. Express,2000,7(3):113-122
    [92] M. Koshiba and K. Saitoh, Numerical verification of degeneracy in hexagonalPhotonic crystal fibers, IEEE Photonics Technology Letters,2001,13(12):1313-1315
    [93] T. P. White and R. C. McPhedran, Calculations of air-guided modes in photoniccrystal fibers using the multipole method, Opt. Express,2001,9(13):721-732
    [94] S. Guenneau, A. Nicolet, et al., Modeling of Photonic Crystal optical Fibers WithFinite Elements, IEEE Transactions on Magnetics,2002,38(2):1261-1264
    [95] A. Cucinotta, et al., Perturbation analysis of dispersion properties in photoniccrystal fibers through the finite element method, J. Lightwave Tech.,2002,20(8):1433-1442
    [96] T. Fujisawa and M. Koshiba, Finite element characterization of chromaticdispersion in nonlinear holey fibers, Opt. Express,2003,11(13):1481-1489
    [97] B. M. A. Rahman, et al., Finite element modal solutions of planar photoniccrystal fibers with rectangular air-holes, Optical and Quantum Electronics,2005,37(1-3):171-183
    [98] B. M. A. Rahman, et al., Birefringence study of photonic crystal fibers by usingthe full-vectorial finite element method. Applied Physics B-Lasers and Optics,2006,84(1-2):75-82
    [99]邴丕彬,太赫兹连续波成像及光子晶体光纤表面等离子体共振传感研究,
    [博士学位论文],天津:天津大学,2011
    [100]邸志刚, THz检测技术及表面增强拉曼散射光子晶体光纤传感研究,[博士学位论文],天津:天津大学,2011
    [101] K. Saitoh and M. Koshiba, Full-vectorial imaginary-distance beam propagationmethod based on a finite element scheme: Application to photonic crystal fibers, IEEEJournal of Quantum Electronics,2002,38(7):927-933
    [102] Y. Z. He and F. G. Shi, Finite-difference imaginary-distance beam propagationmethod for modeling of the fundamental mode of photonic crystal fibers, Opt.Commun.,2003,225(1-3):151-156
    [103] J. P. Berenger, A Perfectly matched layer for absorbing of electromagneticwaves, Journal of Computational Physics,1994,114(2):185-200
    [104]聂秋华,光纤激光器和放大器技术,北京:电子工业出版社,1997
    [105]李燕,双包层光子晶体光纤激光器及波长转换器研究,[博士学位论文],天津:南开大学,2007
    [106] E. Snizer., Optical maser action of Nd3+in a barium crown glass, Phys. Rev.Lett.,1961,7(12):444-449
    [107] J. Stone and C. A. Burros., Neodymium-doped silica lasers in end-pumped fibergeometry, Appl. Phys. Lett.,1973,23:388-391
    [108] G. A. Hockham and K. C. Kao, Dielectric-fibre surface waveguides for opticalfrequencies, Institution of Electrical Engineers,1966,113:1151-1158
    [109] V. Dominic, et al.,110W fibre laser, Electronics Letters,1999,35(14):1158-1160
    [110] J. Nilsson, J. K. Sahu, et al., High power fiber laser: new developments, Proc. ofSPIE,2003,4974:50
    [111] C. H. Liu, et al.,810W continuous-wave and single transverse-mode fibre laserusing20μm core Yb-doped double-clad fibre, Electronics Letters,2004,40(23):1471-1472
    [112] H. Po, et al., Double-clad high brightness Nd fiber laser pumped by GaAsphased arry, Proc. OFC’89,1989, PD7
    [113] H. M. Pask, J. L. Archambault and D. C. Hanna, Operation of cladding-pumpedYb3+-doped silica fibre lasers in lμm region, Electronics letters,1994,30(11):863-865
    [114] M. Muedel, B. Engstrom et al,35-Watt cw single mode ytterbium fiber laser at1.1μm, Proc. CLEO,1997, CPD30-1
    [115] V. Dominic, et al.,110W fibre laser, Electronics Letters,1999,35(14):1158-1160
    [116] Y. Jeong, J. K.sahu, et al., Ytterbium-doped large-core fibre laser with272W ofoutput power, Electronics Letters,2003,39(13):977-978
    [117] E. Snitzer, H. Po, et al., Double-clad offset core Nd fiber laser, Proc. Conf.Optical Fiber Sensors,1988,41: PD5
    [118] Y. Jeong, J. Sahu, et al., Ytterbium-doped large-core fiber laser with1.36kWcontinuous-wave output power, Opt. Express,2004,12(25):6088-6092
    [119] J. X. Chen, Z. Sui, et al., Output characteristic of Yb3+-doped fiber laser atdifferent temperatures, Chinese Optics Letters,2006,4(3):173-174
    [120] S. P. Yin, P. Yan and M. L. Gong, End-pumped300W continuous-waveytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiersconfiguration, Opt. Express,2008,16(22):17864-17869
    [121] Sergey Kobtsev, Sergey Kukarin and Yurii Fedotov, Ultra-low repetition ratemode-locked fiber laser with high-energy pulses, Opt. Express,2008,16(26):21936-21941
    [122] V. Filippov, Y. Chamorovsjii, et al.,600W power scalable single transversemode tapered double-clad fiber laser, Opt. Express,2009,17(3):1203-1214
    [123] Y. Wang, Dynamics of stimulated Raman scattering in double-clad fiber pulseamplifiers, IEEE Journal of Quantum electronics,2005,41(6):779-788
    [124] S. D. Jackson and A. Lauto, Diode-pumped fiber lasers: A new clinical tools, J.Lasers in Surgery and Medicine,2002,30:184-190
    [125] J. Limpert, A. Liem, et al.,500W continuous-wave fibre laser with excellentbeam quality, Electronics Letters,2003,39:645-647
    [126] Y. Jeong, J. K. Sahu, et al., Cladding-pumped ytterbium-doped large-core fiberlaser with610W of output power, Opt. Commun.,2004,234:315-319
    [127] Y. Jeong, J. K. Sahu, et al., Ytterbium-doped large-core fibre laser with1kW ofcontinuous-wave output power, Electron. Lett.,2004,40:470-471
    [128] J. Limpert, A. Liem, et al., Low-nonlinearity single transverse mode ytterbiumdoped photonic crystal fiber amplifier, Opt. Express,2004,12(7):1313-1319
    [129] C. D. Brooks and F. D. Teodoro, Multi-megawatt peak-power, single transversemode operation of a100μm core diameter, Yb-doped rod-like photonic crystal fiberamplifier, Appl. Phys. Lett.,2006,89:111119-111121
    [130] K. Furusawa, A. Malinowski, et al, Cladding pumped Ytterbium-doped fiberlaser with holey inner and outer cladding, Opt. Express,2001,9:714-720
    [131] W. J. Wadsworth, R. M. Percival, et al., Highpowerair-clad Photonic crystalfibre laser, Opt. Express,2003,11(1):48-53
    [132] J. Limpert, et al., High-power air-clad large-mode-area photonic crystal fiberlaser, Opt. Express,2003,11(7):818-823
    [133] Jeff Heeht, The highest single-mode Powers of Yb-doped fiber lasers achieved2kW CW output, Lasers and Electro-Optics Europe,2005,6:508
    [134] J. Limpert, O. Sehmidt, et al., Extended single-mode photonic crystal fiberlasers, Opt. Express.,2006,14(7):2715-2720
    [135] O. Sehmldt, J. Rothhardt, et al., Single-polarization large-mode-area Yb-dopedphotonic crystal fiber, Proc. of IEEE,2008, CLEO/QELS:1-2
    [136] Kim P. Hansen, Air clad fiber laser technology, www.crystal-fiber.com
    [137]A. M. R. Pinto, O. Fraz o, et al., Multiwavelength fiber laser based on aphotonic crystal fiber loop mirror with cooperative Rayleigh scattering, AppliedPhysics B,2010,99(3):391-395
    [138] Marko Laurila, Julien Saby, et. al., Q-switching and efficient harmonicgeneration from a single-mode LMA photonic bandgap rod fiber laser, Opt. Express,2011,19(11):10824-10833
    [139]林浩佳,阮双深,程超,掺Yb3+双包层大模面积光子晶体光纤激光器的研究,光子学报,2004,33(10):797-799
    [140]阮双深,杜晨林,杨冰,15W光子晶体光纤激光器研究,光子学报,2004,33(10):1156-1158
    [141]张炜,李乙钢,门培光等,大模面积双包层掺Yb3+光子晶体光纤激光器,光电子·激光,2005,16(4):418-420
    [142] H. X. Su, Y. G. Li, et al., Wavelength tunable Yb3+-doped double-clad photoniccrystal fiber laser, Proceedings on High-Power Lasers and Applications IV,2008,6823:18-22
    [143]王建明,段开掠,赵振宇,高功率光子晶体光纤激光器实验研究.强激光与离子束,2009,21(l):11-14
    [144]杨林,段开掠,罗时荣等,高功率光子晶体光纤激光器实验研究.强激光与粒子束,2009,21(10):1446-1448
    [145] H. L. Chang, W.Z. Zhuang, et al., Widely tunable eye-safe laser by a passivelyQ-switched photonic crystal fiber laser and an external-cavity optical parametricoscillator, Laser Physics Letters,2011,8(9):678-683
    [146] J. Morel, A. Woodtli and R. Dandliker, Coherent coupling of an array ofNd3+-doped single-mode fiber lasers by use of all intracavity phase grating, Opt. Lett.,1993,18:1520-1522
    [147] V. A. Kozlov, J. Hernandez-Cordero and T. F. Morse, All-fiber coherent beamcombining of fiber lasers, Opt. Lett.,2001,24(24):1814-1816
    [148] M. Wrage, P. Glas, D. Fischer, et al., Phase locking in a multicore fiber laser bymeans of a Talbolt resonator, Opt. Lett.,2000,25(19):1436-1438
    [149] M. Wrage, P. Glas and M. Leitner, Combined phase locking and beam shapingof a multicore fiber laser by structured mirrors, Opt. Lett.,2001,26(13):980-982
    [150] S. J. Augst, T. Y. Fan and A. Sanchez, Coherent beam combining and phasenoise measurements of ytterbium fiber amplifiers, Opt. Lett.,2004,29:474-476
    [151] C. J. Corcoran, Compact Phase-locked fiber laser array,5th Annual DirectedEnergy Symposium,2002
    [152] M. Wickham, J. Anderegg, et al., Coherently coupled high power fiber arrays, inAdvanced Solid-State Photonics,2004, OSATechnical Digest: MA4
    [153] L. Liu, Y. Zhou, et al., Phase locking in a fiber laser array with varying pathlengths, Appl. Phys. Lett.,2004,85(21):4837-4839
    [154] H. Bruesselbach, D. C. Jones, et al., Self-organized coherence in fiber laserarrays, Opt. Lett.,2005,30(11):1339-1341
    [155] Q. Peng, Y. Zhou, et al., Phase locking of fiber lasers by self-imaging resonator,Electron. Lett.,2005,41(4):171-172.
    [156] B. He, Q. Lou, et al., Phase-locking of two large-core fiber lasers with60W ofcoherent output power, J. Opt.A: PureAppl. Opt.,2006,8(9):759-762.
    [157]何兵,楼棋洪,周军等,两根单芯双包层光纤激光器获得60W相干输出,光学学报,2006,26:1-2
    [158]王建明,段开掠,王屹山,两光纤激光器相千合成的实验研究,物理学报,2008,57(9):5627-5631
    [159]李剑峰,段开掠,王建明等,两光子品体光纤激光器相干锁定的实验研究,光学学报,2005,28:923-926
    [160]李伟,陈曦,武子淳等,大功率光纤激光合成功率突破1kW,强激光与粒子束,2009,21(1):19-21
    [161] Z. L. Chen, J. Hou, et al. Mutual injection locking and coherent combining ofthree individual fiber lasers, Opt. Commun.,2009,282(1):60-63.
    [162] Fotiadi Andrei A, Zakharov Nikita, et al. All-fiber coherent combining ofEr-doped amplifiers through refractive index control in Yb-doped fibers. Opt. Lett.,2009,34(22):3574-3576.
    [163] Moti Fridman, Passive phase locking of25fiber lasers, Opt. Lett.,2010,35(9):1434-1436
    [164] D. R. Scifres, Multiple core fiber lasers and optical amplifiers, US Patent No.5,566,196,1996
    [165] P. K. Cheo, A. Liu and G. G. King, A high-brightness laser beam fromphas-locked multicore Yb-doped fiber laser array, IEEE Photonics Tech. Lett.,2001,13:439-441
    [166] Y. Huo, P. K. Cheo and G. G. King, Fundamental mode operation of a19-corephase locked Yb-doped fiber amplifier, Opt. Express,2004,12:6230-6239
    [167]周朴,侯静,陈子伦等,多芯光纤激光器的超模及模式选择问题研究,光学学报,2007,27:812-816
    [168] C. Wang, F. Zhang and S. Jian, Microstructured optical fiber for in-phase modeselection in multicore fiber lasers,2008, Opt. Express,16:5505-5515
    [169]王春灿,张帆,童治等,改进的高功率19芯光纤激光器的理论分析,中国激光,2008,35:61-66
    [170] L. Michaille, C. R. Bennett, et al., Phase locking and supermode selection inmulticore photonic crystal fiber lasers with a large doped area, Opt. Lett.,2005,30:1668-1670
    [171] L. Michaille, C. R. Bennett, et al., Multicore photonic crystal fiber lasers forhigh power/energy applications, IEEE Select. Top. Quantum. Electron.,2009,15:328-335
    [172] Michio Matsumoto, Tetsuya Kobayashi et al., All-Fiber Phase-lockedMulti-core Photonic Crystal Fiber Laser,Advanced Solid-State Photonics (ASSP),2011, AMC3
    [173]王海云,侯蓝田,周桂耀等,双芯光子晶体光纤相干合成的研究,激光与红外,2008,6:515-518
    [174]张晓磊,多芯光纤激光器及新波长固体激光器,[博士学位论文],济南:山东大学,2011
    [175]方晓惠,胡明列,栗岩锋等,多芯光子晶体光纤锁模过程的数值模拟,科学通报,2009,54(19):2944-2949
    [176]韩伟涛,侯蓝田,耿鹏程,双包层多芯光子晶体光纤自相干合成的数值分析与实验,物理学报,2010,59(10):7091-7095
    [177]隋森芳,肖才德,杨军,表面等离子体激元共振生物传感器,上海:上海科学技术出版社,2008
    [178]吴斌,金属周期性纳米结构表面等离子体共振传感特性研究,[博士学位论文],上海:上海交通大学,2009
    [179] Katherine A. Willets and Richard P. Van Duyne, Localized Surface PlasmonResonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem.,2007,58:267-97
    [180] R. W. Wood, On a remarkable case of uneven distribution of light in adiffraction grating spectrum, Phil. Mag,1902,4(21):396-402
    [181] J. Zenneck, über die Fortpflanzung ebener elektromagnetischer Wellen l ngseiner ebenen Lieterfl che und ihre Beziehung zur drahtlosen Telegraphie, Ann. Phys.Lpz.,1907,23:846-866
    [182] A. Sommerfeld, Propagation of waves in wireless telegraphy, Annals der Physik,1909,28(3):665-736
    [183] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationarywaves on metallic surfaces (Sommerfelds waves), J. Opt. Soc. Am.1941,31:213-222
    [184] R. H. Ritchie, Plasma losses by fast electrons in thin films,1957, Phys. Rev.,106:874-881
    [185] C. J. Powell and J. B. Swan, Origin of the characteristic electro n energy lossesin aluminum, Phys. Rev.,1959,115:869-875
    [186] C. J. Powell and J. B. Swan, Effect of oxidation on the characteristic lossspectra of aluminum and magnesium,1960, Phys. Rev.,118:640-643
    [187] E. A. Stern and R. A. Ferrell, Surface plasma oscillations of a degenerateelectron gas, Phys. Rev.,1960,120:130-136
    [188] A. Otto, Excitation of nonradiative surface plasma waves in silver by themethod of frustrated total reflection, Zeitschrift für Physik,1968,216:398-410
    [189]E. Kretschmann and H. Raether, Radiative decay of non-radiative surfaceplasmons excited by light,1968, Z. Naturforsch. A,23:2135-2136
    [190] C. Nylander, B. Liedberg and T. Lind, Gas detection by means of surfaceplasmons resonance, Sensors and Actuators,1982,3:79-88
    [191] K. Tiefenthaler and W. Lukosz, Integrated optical switches and gas sensors, Opt.Lett.,1984,9(4):137-139
    [192] R. C. Jorgenson and S. S. Yee, A fiber-optic chemical sensor based on surfaceplasmon resonance, Sensors and Actuators B: Chemical,1993,12(3):213-220
    [193]郑荣升,表面等离子体共振技术与聚合物光纤传感应用研究,[博士学位论文],中国科学技术大学,2009
    [194] G. Nemova and R. Kashyap, Modeling of plasmon-polariton refractive-indexhollow core fiber sensors assisted by a fiber Bragg grating, J. Lightwave Tech.,2006,24(10):3789-3796
    [195] T. Allsop, R. Neal, et al., Characterization of infrared surface plasmonresonances generated from a fiber-optical sensor utilizing tilted Bragg gratings, J. Opt.Soc. Am. B,2008,25(4):481-490
    [196] W. Ding, S. R. Andrews, et al., Modal coupling in fiber tapers decorated withmetallic surface gratings, Opt. Lett.,2006,31(17):2556-2558
    [197] B. Lee, S. Roh and J. Park, Current status of micro-and nano-structured opticalfiber sensors, Optical Fiber Technology,2009,15:209-221
    [198] M. H. Chiu, C. H. Shi and M. H. Chi, Optimum sensitivity of single-modeD-type optical fiber sensor in the intensity measurement, Sens. Actuators B,2007,123(2):1120-1124
    [199] R. K. Verma, A. K. Sharma and B. D. Gupta, Surface plasmon resonance basedtapered fiber optic sensor with different taper profiles, Opt. Commun.,2008,281(6):1486-1491
    [200] A. Hassani and M. Skorobogatiy, Design of the microstructured opticalfiber-based surface plasmon resonance sensors with enhanced microfluidics, Opt.Express,2006,14(24):11616-11621.
    [201] B. Gauvreau, A. Hassani, et al., Photonic bandgap fiber-based Surface PlasmonResonance sensors, Opt. Express,2007,15(18):11413-11426.
    [202] M. Hautakorpi, M. Mattinen and H. Ludvigsen, Surface-plasmon-resonancesensor based on three-hole microstructured optical fiber, Opt. Express,2008,16(12):8427-8432.
    [203] Alireza Hassani and Maksim Skorobogatiy, Photonic crystal fiber-basedplasmonic sensors for the detection of biolayer thickness, J. Opt,2009,26(8):1550-1557
    [204]闫培光等,微结构光纤表面等离子体共振传感器研究,深圳大学学报理工版,2009,26(1):16-19
    [205]邴丕彬,姚建铨,黄晓慧等,表面等离子体共振类熊猫型光子晶体光纤传感,激光与红外,2011,7:784-787
    [1] T. Miya,Y. Terunuma, T. Hosaka, et al., Ultimate low-loss single-mode fibreat1.55μm, Electronics Letters,1979,15(4):106-108
    [2] J. C. Knight, T. A. Birks, et al., All-silica single-mode optical fiber with photoniccrystal cladding, Opt. Lett.,1996,21(19):1547-1549
    [3] P. Glas, M. Naumann, et al., The multicore fiber-a noveldesign for a diode pumpedfiber laser, Opt. Commun.,1998,151(1-3):187-195
    [4] P. J. Roberts and T. J. Shepherd, The guidance properties of multi-corehotoniccrystal fibres, Journal of Optics a-Pure and Applied Optics,2001,3(6):S133-S140
    [5] M. Wrage, P. Glas, et al., Phase locking in a multicore fiber laser by means of aTalbot resonator, Opt. Lett.,2000,25(19):1436-1438
    [6] M. Wrage, P. Glas and M. Leitner, Combined phase locking and beam shaping of amulticore fiber laser by structured mirrors, Opt. Lett.,2001,26(13):980-982
    [7] Y. Huo and P. K. Cheo, Thermomechanical properties of high-power andhigh-energy Yb-doped silica fiber lasers, IEEE Photonics Technology Letters,2004,16(3):759-761
    [8] H. M. Pask, R. J. Carman, et al., Ytterbium-doped Silica fiber laser: versatilesources for the1-1.2μm Region, IEEE J. Sel. Top. Quantum Electron,1995,1(1):2-13
    [9] I. Kelson and A. A. Hardy, Strongly pumped fiber lasers, IEEE J. QuantumElectron.,1998,34(9):1570-1577
    [10] A. W. Snyder, Coupled-mode theory for optical fibers, J. Opt. Soc. Am.,1972,62(11):1267-1277
    [11]张国亮,光子晶体光纤的特性及其应用于光纤激光器中的研究,[硕士学位论文],北京:北京交通大学,2010
    [12]王建明,高功率光子晶体光纤激光器及相干合成技术,[硕士学位论文],西安:中国科学院西安光学精密机械研究所,2009
    [13] T. A. Birks, J. C. Knight and P. S. J. Russell, Endlessly single-mode photoniccrystal fber, Opt. Lett.,1997,22,961-963
    [1] P. K. Cheo, A. Liu and G. G. King, A high-brightness laser beam from aphase-locked multi-core Yb-doped fiber laser array. IEEE PhotonTech Lett,2001,13:439-441
    [2] L. Li, A. Schülzgen, et al., Phase locking and in-phase supermode selection inmonolithic multicore fiber lasers, Opt. Lett.,2006,31:2577-2579
    [3] Y. M. Huo and P. K. Cheo, Analysis of transverse mode competition and selectionin multicore fiber lasers, J. Opt. Soc. Am. B,2005,22:2345-2349
    [4] C. J. Corcoran and K. A. Pasch, Self-Fourier functions and coherent lasercombination, J. Phys. A-Math. Gen.,2004,37: L461-L469
    [5] L. Michaille, D. M. Taylor, et al., Characteristics of a Q-switched multi-corephotonic crystal fiber laser with a very large mode field area, Opt. Lett.,2008,33:71-73
    [6]吴中林,楼祺洪,周军等,双包层光纤激光器泵浦源的光束整形及耦合系统,科学技术与工程,2004,4(2):115-117.
    [7]杨华军,胡渝,谢康,光通信中高精度激光束准直系统优化设计,光电子·激光,2008,19(6):724-727
    [8] O. Akira, S. Yasuo, K. Nobuhiro, et al., Multichannel optical coupling with anaspherical lens and its application to an all-optical monolithic wavelength convertermodule, Conf. Electronic Components and Technology,2002,52:29-33
    [9]翁晓羽,郭汉明,董祥美等,拉盖尔高斯径向偏振光高数值孔径聚焦特性,光子学报,2011,40(5):798-802
    [10] K. HyungTae and Y. HaeJeong, Semi-continuous interpolation algorithm foraspherical surface grinding, IEEE Tencon.,2005,10:1-5
    [11]温午麒,姚键铨,丁欣等,8.1W全固态准连续红光Nd:YAG激光器,中国激光,2004,31(11):1281-1284.
    [12]吕彦飞,檀慧明,夏菁等, LDA抽运Nd:YAG/LBO单通道腔内和频589nm激光器,激光与红外,2006,36(2):104-106
    [13] Shuichi Fujikawa, Tetsuo Kojima and Koji Yasui, High-power andhigh-efficiency operation of a cw-diode-side-pumped Nd: YAG rod laser, IEEE J.selected topics in quantum electronics,1997,3(1):40-44
    [14]范永金,李阔,周炳玉,激光光斑探测系统软件设计与分析,光电技术应用,2008,23(2):28-32
    [15]王庆有,图像传感器应用技术,北京:电子工业出版社,2006
    [16]姜楠,王健.常用多媒体文件格式与压缩标准,北京:电子工业出版社,2005
    [1]朱洪涛,楼祺洪等,双包层光子晶体光纤激光器散热能力的理论研究,光子学报,38(1):60-63
    [2]陈爽,冯莹,高功率光子晶体光纤激光器温度分布研究,光子学报,2008,37(6):1134-1138
    [3] W.M. Rohsenow, J.P. Hartnett, et al., Handbook of Heat Transfer, New York:McGraw,1998,78-85
    [4] T. Liu, Z. M. Yang and S. H. Xu,3-Dimensional heat analysis in short-lengthEr3+/Yb3+co-doped phosphate fiber laser with upconversion, Opt. Express,2009,17(1):243
    [5] Martin Gorjan, Marko Marin ek and Martin opi, Pump absorption andtemperature distribution in erbium-doped double-clad fluoride-glass fibers, Opt.Express,2009,17(22):19818
    [6] J. F. Philipps, T. T pfer, et al., Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses, Applied Physics B,2001,72(4):399-405
    [7] L. Li, H. Li, et al.,3-Dimensional thermal analysis and active cooling ofshort-length high-power fiber lasers, Opt. Express,2005,13:3420-3428
    [8]廖延彪,黎敏,张敏,光纤传感技术与应用,北京:清华大学出版社,2009
    [1] A. R. Zakharian, J. V. Moloney and M. Mansuripur, Surface plasmon polaritons onmetallic surfaces, Opt. Express,2006,15(1):183-197
    [2] A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, Cambridge:Cambridge University Press,1998:85
    [3] Rajan, A. K. Sharma and B. D. Gupta, Fibre optic sensor based on long-rangesurface plasmon resonance: a theoretical analysis, J. Opt. A: Pure Appl. Opt.,2007,9:682-687
    [4] Edward D. Palik, Handbook of Optical Constants of Solids, Boston: AcademicPress,1985
    [5] A. Hassani and M. Skorobogatiy, Design of the Microstructured OpticalFiber-based Surface Plasmon Resonance sensors with enhanced microfuidics, Opt.Express,2006,14(24):11616-11621
    [6] A. Hassani and M. Skorobogatiy, Design criteria for microstructured optical fberbased surface-plasmon-resonance sensors, J. Opt. Soc. Am. B,2007,24(6):1423-1429
    [7] P. J. A. Sazio, Adrian Amezcua-Correa, et al., Microstructured Optical Fibers asHigh-Pressure Microfluidic Reactors, Science,2006,311:1583-1586
    [8] X. Zhang, R. Wang, et al., Selective coating of holes in microstructured opticalfiber and its application to in-fiber absorptive polarizers, Opt. Express,2007,15(24):16270-16278
    [9] A. Amezcua Correa, J. Yang, et al., Surface-Enhanced Raman Scattering UsingMicrostructured Optical Fiber Substrates, Advanced Functional Materials,2007,17(13):2024-2030
    [10] X. Yang and L. Wang, Silver nanocrystals modified microstructured polymeroptical fibres for chemical and optical sensing, Opt. Commun.,2007,280(2):368-373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700