用户名: 密码: 验证码:
基于模糊ARX模型的水泥回转窑预测控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥回转窑是新型干法水泥生产线的核心设备,水泥生产过程中最关键的生料煅烧理化反应在回转窑内进行,回转窑的控制水平直接影响水泥的质量、产量以及能耗。研究水泥回转窑的建模及控制方法,对提高水泥回转窑的控制水平具有重要的理论和实际意义。本课题针对新型干法水泥回转窑煅烧过程具有的多时滞、多变量、非线性的特性,在对采样数据分析处理的基础上,运用组合模型建模理论、预测控制理论,基于模糊ARX模型对水泥回转窑的预测控制算法进行了研究,具体研究工作如下:
     首先,依据水泥回转窑的煅烧机理,分析影响水泥熟料质量及能耗的控制因素,研究参量间的变化规律。利用相关函数法分析控制参量的测试数据,确定回转窑煅烧系统建模变量,以回转窑窑尾烟室的氮氧化物含量,氧气含量和窑尾温度为控制目标量,以窑头喂煤量,高温风机挡板开度和料速积为操作变量,为建立水泥回转窑煅烧过程的预测模型提供基础。
     其次,基于系统稳态非线性特性和动态线性特性分离辨识的组合模型建模思想,提出基于T-S模糊模型的ARX模型增益实时修正方法,建立适用于多变量非线性系统的变增益模糊ARX模型;以数据驱动思想为基础,提出一种数据驱动模糊辨识改进算法,建立系统测试数据不能覆盖所有输入变量约束范围情况下的水泥回转窑煅烧系统稳态模型;运用外推差值法计算系统的实际动态增益来实时修正多时滞ARX模型的增益,提高建模的准确性,进而提出多时滞多变量非线性系统的变增益模糊ARX模型建模方法,以解决回转窑多时滞特性的建模问题;在对水泥回转窑的稳态和动态辨识数据分开进行预处理的基础上,建立水泥回转窑煅烧过程控制系统预测模型。
     进一步,采用序列二次规划优化算法,实时动态求解多变量非线性系统的输入变化量,构建基于多变量模糊ARX模型的预测控制算法。在此基础上,提出系数矩阵插值组合法,将多时滞加入到多变量非线性系统的多步预测输出表达式,建立基于多时滞变增益模糊ARX模型的预测控制算法,以实现回转窑煅烧过程的多时滞控制,进而建立水泥回转窑煅烧系统的预测控制算法。
     最后,利用现场DCS系统采集的水泥回转窑测试数据,进行数据的建模与分析,采用本文建立的水泥回转窑多时滞变增益模糊ARX模型及其预测控制算法,对水泥回转窑煅烧过程进行预测控制实验研究,验证本文提出算法的可行性和有效性。
Cement rotary kiln is the core equipment of the NSP cement production line, themost critical calcinations’ physical and chemical reactions of the raw material in thecement production is conducting in the kiln; the control level of the kiln has a directimpact on the production, quality and energy consumption. The research on modeling andcontrol method for the cement rotary kiln has important theoretical and practicalsignificance to improve the control level of the cement rotary kiln. For that thecalcinations’ process of the NSP cement rotary kiln has the characteristics of nonlinear,multivariable and multi-delay, on the basis of analysis process to the sample data, thispaper uses the combined modeling theory and the predictive control theory to study thepredictive control method of the cement rotary kiln based on fuzzy ARX model, specificresearch work are shown as follows:
     First of all, according to the calcined mechanism of the cement rotary kiln, thecontrol factors that affect the quality and energy consumption of the cement clinker isanalyzed, the variation between the parameters are studied. The correlation functionmethod is used to analyze the test data of control parameters, and then the modelingvariables of the rotary kiln system are determined. The nitrogen oxides content in thesmoke room that is at the end of rotary kiln, oxygen content and temperature at the end ofthe rotary kiln are set as the control targets, and the amount of feeding coal at the head ofthe kiln, the baffle opening of high temperature fan and feeding speed area are set as theoperating variables. All these works provide the basis for the establishment of theprediction model for the cement rotary kiln calcinations’ process.
     Secondly, according to the combined modeling idea based on the separationidentification of nonlinear characteristic and dynamic linear characteristic in systemsteady state, the real gain correction method of ARX model based on T-S fuzzy model isproposed and the variant gain fuzzy ARX suiting for the multi-variable nonlinear systemis worked out. On basis of data driver thought, this paper puts forward a data driven fuzzyidentification improved algorithm and establishes cement rotary kiln calcining system steady model under the condition that the system test data can not cover all input variableconstraint range. Use the push difference method to calculate the actual system dynamicgain for real-time correction of multi-delay ARX model gain and improve the accuracy ofthe model, and then put forward the variable gain fuzzy ARX model method formulti-delay multivariable nonlinear system in order to solve the modeling problem ofmuch delay characteristics in the rotary kiln. Based on the separately preprocessing ofsteady state and dynamic identification data in the cement rotary kiln, the control systemprediction model of cement rotary kiln calcining process is established.
     Furthermore, the sequential quadratic programming optimization algorithm isutilized to dynamically solve the input change of multivariable nonlinear system and apredictive control algorithm based on multivariable fuzzy ARX model is developed. Onthis basis, the coefficient matrix interpolation combination method is proposed, and themulti-delay is added into the multi-step prediction output expression of the multivariablenonlinear system. And then a predictive control algorithm of the multi-delay multivariablefuzzy ARX model is designed so as to realize the multi-time delay control of rotary kilnsintering process, and then the prediction control algorithm for the cement rotary kilncalcine system was designed.
     Finally, using the DCS system to collect the test data of cement rotary kiln, and thedata is modeled and analyzed. According to the proposed multi-time delay variable gainfuzzy ARX model and its prediction algorithm of cement rotary kiln in this paper, thepredictive control experiment of cement rotary kiln is performed. The experimentalresults can reveal that the feasibility and validity of the proposed algorithms in this paper.
引文
[1] Energy Efficiency Component EU-China. A reference book for the industry[M]. Beijing,2009.
    [2] Mackie A, Boilard S, Walsh ME, et al. Physicochemical characterization of cement kiln dust forpotential reuse in acidic wastewater treatment[J]. Journal of Hazardous Materials,2010,173(1-3):283-291.
    [3] Abdelaziz EA, Saidur R, Mekhilef S. A review on energy saving strategies in industrial sector[J].Renewable and Sustainable Energy Reviews,2011,15(1):150-168.
    [4] R Saidur, M S Hossaina, M R Islama, et al. Mohammed. A review on kiln system modeling[J].Renewable and Sustainable Energy Reviews,2011,15:2487-2500.
    [5] Iman Makaremi, Alireza Fatehi, et al. Abnormal condition detection in a cement rotary kiln withsystem identification methods[J]. Journal of Process Control,2009,19(9):1538-1545.
    [6] Yilmaz S. Modeling of a mechanical cooling system with variable cooling capacity by usingartificial neural networks[J]. Appl Thermal Eng,2007,27:2308-2313.
    [7] Guo Feng, Liu Bin, Hao Xiaochen, et al. Research on the fuzzy predictive control for calciningtemperature of the rotary cement kiln[C]. IEEE10th International Conference on SignalProcessing, Proceedings, Beijing,2010,2568-2571.
    [8] Adam JC. Improved and more environmentally friendly charcoal production system using alow-cost retort-kiln (Eco-charcoal)[J]. Renewable Energy.2009,34(8):1923-1925.
    [9] Richalet J, Rault A, Testud J L, Papon J. Model predictive heuristic control: application toindustrial processes[J].Automatica,1978,14(5):413-428.
    [10] Culter, C R, Ramaker, B L, Dynamic matrix control-a computer control algorithm proceedings[C].Joint Automatic Control Conference,1980.
    [11] Rouhani, R, Mehra, R.K., Model algorithmic control (MAC): basic theoretical properties[J].Automatica,1982,18(4):401-414.
    [12] Garcia, C E, Morari, M., Internal model control:a unifying review and some new results[J].Industrial&Engineering Chemistry Process Design and Development,1982,21(2):308-323.
    [13] Clarke, D W, Montadi, C, Tuffs, P S, Generalized predictive control[J]. Automatica,1987,23(2):137-162.
    [14] Al Seyab, R K, Cao, Y. Nonlinear model predictive control for the ALSTOM gasifier[J]. Journalof Process Control,2006,16(8):795-808.
    [15] Henson, M A, Nonlinear model predictive control: current status and future directions[J].Computers and Chemical Engineering,1998,23(2):187-202.
    [16] Morari, M, Lee, J H, Model predictive control: past, present and future[J]. Computers andChemical Engineering,1999,23(4-5):667-682.
    [17] Qin, S J, Badgwell, T A, A survey of industrial model predictive control technology[J]. ControlEngineering Practice,2003,11(7):733-764.
    [18] Camacho, E F, Bordons, C. Nonlinear model predictive control: an introductory review[J].Assessment and Future Directions of Nonlinear Model Predictive Control,2007,358:1-16.
    [19] John D, Hedengren, Thomas F Edgar. Approximate nonlinear model predictive control with in situadaptive tabulation[J]. Computers&Chemical Engineering,2008,32(4-5):706-714.
    [20] Ri-Dong Zhang, Shu-Qing Wang, An-Ke Xue, et al. Adaptive extended state space predictivecontrol for a kind of nonlinear systems[J]. ISA Transactions,2009,48(4):491-496.
    [21] Garcia C E.Quadratic dynamic matrix. control of nonlinear process.An Application to a BatchReactor Processes[C],AIChE Annual Meeting, San Francisco,1984.
    [22] Lee J H and Picker N L. Extended kalman filter based nonlinear model predictive control[J]. Ind.Eng. Chem. Res.,1994,33:1530-1541.
    [23] Costas K and Chang-Bock Cliung. Nonlinear state feedback synthesis by global input/outputlinenrization[J]. AICHE Journal,1987,33(4):592-603.
    [24] Kurtz M J and Henson M A. Input-output linearizing control of constrained nonlinear processes[J].Journal of process contuol,1997,7(1):3-17.
    [25] Tri Chandra S. Wibowo, Nordin Sad. MIMO model of an interacting series process for robustMPC via system identification[J]. ISA Transactions,2010,49(3):335-347.
    [26]朱志斌,王岩,陈兴林.分段状态约束非线性预测控制数值算法研究[J].系统工程与电子技术,2009,31(6):1436-1440.
    [27] Xiaobing Shao.Identification for polynomial wiener model using improved back propagationmethod[J] Physics Procedia,2012,33:718-725.
    [28] Hakan Hjalmarsson, Jonas Martensson. Finite model order accuracy in Hammerstein modelestimation[J] Automatica,2012,48:2640-2646.
    [29] Céline Casenave.Time-local formulation and identification of implicit Volterra models by use ofdiffusive representation[J]. Automatica,2011,47:2273-2278.
    [30] Mustafa Gulsu, Burcu Gurbuz, Yalc n Ozturk, Laguerre polynomial approach for solving lineardelay difference equations[J]. Applied Mathematics and Computation,2011,217:6765-6776.
    [31] Tara Baldacchino, Sean R. Anderson, Visakan Kadirkamanathan. Structure detection andparameter estimation for NARX models in a unified EM framework[J]. Automatica,2012,48:857-865.
    [32] Ian J. Couchman, Eric C. Kerrigan, Christoph Bohmb. Model reduction of homogeneous in the st-ate bilinear systems with input constraints[J]. Automatica,2011,47:761-768.
    [33]陈进东,张相胜,潘丰.基于wiener模型的非线性预测函数控制[J].吉林大学学报(工学版),2011,41(1):264-269.
    [34] Ronald K Pearson, Martin Pottmanni. Gray-box identification of block-oriented nonlinearmodels[J]. Journal of Process Control,2000,10:301-315.
    [35]王峰,刑科义,徐小平.辨识Hammerstein模型方法研究[J].系统仿真学报,2011,23(6):1090-1136.
    [36] Jasem Tamimi, Pu Li Tamimi. A combined approach to nonlinear model predictive control of fastsystems[J]. Journal of Process Control,2010,20(9):1092-1102.
    [37] Xingjian Jing, Ziqiang Lang, Stephen A. Billings. Determination of the analytical parametricrelationship for output spectrum of Volterra systems based on its parametric characteristics[J].Journal of Mathematical Analysis and Applications,2009,351:694-706.
    [38] Piotr M. Marusak. Advantages of an easy to design fuzzy predictive algorithm in control systemsof nonlinear chemical reactors[J]. Applied Soft Computing,2009,9(3):1111-1125.
    [39] Mei LU, Chengbo JIN, Huihe SHAO. An improved fuzzy predictive control algorithm and itsapplication to an industrial CSTR process[J]. Chinese Journal of Chemical Engineering,2009,17(1):100-107.
    [40]苏佰丽,李少远.具有不确定性的非线性切换系统的约束预测控制[J].自动化学报,2008,34(9):95-100.
    [41] Lisheng Wei, Minrui Fei, Huosheng Hu. Modeling and stability analysis of grey-fuzzy predictivecontrol[J]. Neurocomputing,2008,72(1-3):197-202.
    [42] Xing Zong-Yi, Jia Li-Min, Zhang Yong, et al.. A case study of date-driven interpretable fuzzymodeling[J]. Acta Automatica Sinca,2005,31(6):815-824.
    [43]刘开第,庞彦军,周少玲等.一种无监督数据驱动的学习算法[J].控制与决策,2009,24(3):472-476.
    [44] Babak Rezaee, M.H. Fazel Zarandi. Multiple data-driven fuzzy modeling for Takagi-Sugeno-Kangfuzzy system[J]. Information Sciences,2010,180:241-255.
    [45] Vapnik. V. The nature of statistical learning theory[C]. New York: Springer-Verlag,1995.
    [46] Sjoberg J, Zhang Q, Ljung L, et al. Nonlinear black-box modeling in system identification:aunified overview[J]. Automatica,1995,31(12):1691-1724.
    [47] Drucker,H, Burges, C.J.C, Kaufman, L., et al. Support vector regression machines[J]. Advances inNeural Information Processing Systems,1997,1:155-161.
    [48] Jongho Shin, H. Jin Kim, Sewook Park, et al. Model predictive flight control using adaptivesupport vector regression[J]. Neurocomputing,2010,73(4-6):1031-1037.
    [49] Jing Na, Xuemei Ren, Cong Shang, et al. Adaptive neural network predictive control for nonlinearpure feedback systems with input delay[J]. Journal of Process Control,2012,22:194-206.
    [50] R K Al Seyab, Yi Cao. Differential recurrent neural network based predictive control[J].Computers&Chemical Engineering,2008,32(7):1533-1545.
    [51] Cédric Damour, Michel Benne, Brigitte Grondin-Perez, et al. Nonlinear predictive control basedon artificial neural network model for industrial crystallization[J]. Journal of Food Engineering,2010,99:225-231.
    [52] R K Al Seyab, Y Cao. Nonlinear system identification for predictive control using continuous timerecurrent neural networks and automatic differentiation[J]. Journal of Process Control,2008,18(6):568-581.
    [53] Maciej awrynczuk. Online set-point optimisation cooperating with predictive control of a yeastfermentation process: A neural network approach[J]. Engineering Applications of ArtificialIntelligence,2011,24:968-982.
    [54] Samuel da Silva, Scott Cogan, Emmanuel Foltête. Nonlinear identification in structural dynamicsbased on wiener series and kautz filters[J]. Mechanical Systems and Signal Processing,2010,24:52-58.
    [55] F. Giri, Y. Rochdi, A. Brouri, et al. Parameter identification of Hammerstein systems containingbacklash operators with arbitrary-shape parametric borders[J]. Automatica,2011,47:1827-1833.
    [56] Yang J.-F, Xiao,L.-F, Qian,J.-X, et al. Nonlinear model predictive control using parameter varyingBP-ARX combination model[J]. International Journal of Systems Science,2012,43(3):475-490.
    [57] Peng H, Ozaki T, Toyoda Y, et a1. RBF-ARX model based nonlinear system modeling andpredictive control with application to a NOx decomposition process[J]. Control EngineeringPractice,2004,12:191-203.
    [58] Yin P Y, Yu S S, Wang P P, et al. Multi-objective task alloeation in distributed computing systemsby hybrid particle swarm optimization[J]. Applied Mathematics and Computation,2007,184(2):407-420.
    [59]杨剑锋,赵均,钱积新等.一类化工过程多变量系统的自适应非线性预测控制[J].化工学报,2008,59(4):934-940.
    [60] Maryam Salimifard, Masoumeh Jafari, Maryam dehghani. Identification of nonlinear MIMOblock-oriented systems with moving average noises using gradient based and least squares basediterative algorithms[J]. Neurocomputing,2012,94:22-31.
    [61] Feng Ding, Xiaoping Peter Liu, Guangjun Liu. Identification methods for Hammerstein nonlinearsystems[J]. Digital Signal Processing,2011,21:215-238.
    [62] Maciej Lawrynczuk. Computationally efficient nonlinear predictive control based on neuralWiener models[J]. Neurocomputing,2010,74:401-417.
    [63] D R Van Puyvelde. Simulating the mixing and segregation of solids in the transverse section of arotating kiln[J]. Powder Technol,2006,164:1-12.
    [64] Fan Geng, Yimin Li, Xinyong Wang, et al. Simulation of dynamic processes on flexiblefilamentous particles in the transverse section of a rotary dryer and its comparison withideo-imaging experiments[J]. Powder Technology,2011,207:175-182.
    [65] Eckehard Specht, Yi-Chun Shi, Herrmann Woche, et al. Experimental investigation of solid beddepth at the discharge end of rotary kilns[J]. Powder Technology,2010,197:17-24.
    [66] K S Mujumdar, V V Ranade. Simulation of rotary cement kilns using a one-dimensional model[J].Chemical Engineering Research and Design,2006,84(3):165-177.
    [67] Mujumdar KS, Ganesh KV, Kulkarni SB, et al. Rotary cement kiln simulator (ROCKS): integratedmodeling of pre-heater, calciner, kiln and clinker cooler[J]. Chemical Engineering Science,2007,62(9):2590-2607.
    [68] Coz Díaz JJ, Mazón FR, García Nieto PJ, et al. Design and finite element analysis of a wet cyclecement rotary kiln[J]. Finite Elements in Analysis and Design,2002,39(1):17-42.
    [69] Anders Rooma Nielsen, Rasmus Wochnik Aniol, Morten Boberg Larsen, et al. Mixing large andsmall particles in a pilot scale rotary kiln[J]. Powder Technology,2011,210:273-280.
    [70] S güt Z, Oktay Z, Karakoc H. Mathematical modeling of heat recovery from a rotary kiln[J].Applied Thermal Engineering,2010,30(8):817-825.
    [71] Mahlia TMI, Saidur R, Husnawan M,et al. An approach to estimate the life-cycle cost of energyefficiency improvement of room air conditioners[J]. Energy Education Science and TechnologyPart A: Energy Science and Research,2011,27(1):1-11.
    [72] Tahsin Engin, Vedat Ari. Energy auditing and recovery for dry type cement rotary kiln systems-acase study[J]. Energy Conversion and Management,2005,(46):551-562.
    [73] Chmielowski M, Specht E. Modelling of the heat transfer of transport rollers in kilns[J]. AppliedThermal Engineering,2006,26(7):736-744.
    [74] Kaya S, Kückada K, Mancuhan E. Model-based optimization of heat recovery in the cooling zoneof a tunnel kiln[J]. Applied Thermal Engineering,2008,28(5-6):633-641.
    [75] J Mellmann. The transverse motion of solids in rotating cylinders—forms of motion and transitionbehavior[J]. Powder Technology,2001,118:251-270.
    [76] Maslehuddin M, Al-Amoudi OSB, Shameem M, et al. Usage of cement kiln dust in cementproducts-research review and preliminary investigations[J]. Construction and Building Materials,2008,22(12):2369-2375.
    [77] Liu XY, Specht E. Temperature distribution within the moving bed of rotary kilns: measurementand analysis[J]. Chemical Engineering and Processing: Process Intensification,2010,49(2):147-150.
    [78] Yang J, Malendoma C, Roy C. Determination of the overall heat transfer coefficient in a vacuumpyrolysis moving and stirred bed reactor[J]. Chemical Engineering Research and Design,2000,78(4):633-642.
    [79] Luna D, Nadeau JP, Jannot Y. Model and simulation of a solar kiln with energy storage[J].Renewable Energy,2010,35(11):2533-2542.
    [80] Wang Zhuo, Wang Tianran, Yuan Mingzhi, et al. Dynamic model for simulation and control ofcement rotary kilns[J]. Journal of System Simulation,2008,20(19):5131-5135.
    [81] Abraham A. Neuro-Fuzzy systems: State-of-the-art modeling techniques[C]. In Mira J and PrietoA (Eds.), Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence,Springer-Verlag Germany,2001,269-276.
    [82] Hopfield J, Tank D. Neural computation of decisions in optimization problems[J]. Biol. Cybem,1985,52:141-152.
    [83] Zadeh L. Fuzzy outline of a new approach to the analysis of complex systems and decisionprocesses[J]. IEEE Trans. Syst, Man, Cybem,1973,3(1):28-44.
    [84] Jager G, Walen K H, Wedag H. Cement plant automation[J]. World Cement,1996,7:46-52.
    [85] A Correcher, Failure diagnosis of a cement kiln using expert systems[J].28th Annual Conferenceof The IEEE Industrial Electronics Society,2002,3:1881-1886.
    [86]王庆陶.水泥回转窑的模糊控制模型[J].工科数学,2001,17(1):12-15.
    [87] Hou TH. Using neural networks and immune algorithms to find the optimal parameters for an ICwire bonding process[J]. Expert Syst Appl,2006,34:427-436.
    [88] Masoud Sadeghiana, Alireza Fatehi. Identification, prediction and detection of the process fault ina cement rotary kiln by locally linear neuro-fuzzy technique[J]. Journal of Process Control,2011,21(2):302-308.
    [89] K. Pazand, M. Shariat Panahi, M. Pourabdoli. Simulating the mechanical behavior of a rotarycement kiln using artificial neural networks[J]. Materials and Design,2009,30(9):3468-3473.
    [90]谢刚,杨帆,谢克明.基于免疫神经网络的水泥分解炉温度控制[J].太原理工大学学报.2007,38(4):287-289.
    [91]袁铸钢,狄小峰,申涛.模糊控制及其在水泥分解炉的应用[J].济南大学学报,2006,20(1):58-61.
    [92]李友善,赵福顺.应用Fuzzy集合理论测辨系统Fuzzy模型的新方法—Fuzzy推理合成法[J].自动化学报,1991,17(3):257-263.
    [93]高玉琦,李友善,马家辰.水泥回转窑的计算机控制[J].自动化学报,1991,17(2):166-173.
    [94] L. Giarré, D. Bauso, P. Falugi, et al. LPV model identification for gain scheduling control: Anapplication to rotating stall and surge control problem[J]. Control Engineering Practice,2006,14(4):351-361.
    [95] Vincent A. Akpan, George D. Hassapis. Nonlinear model identification and adaptive modelpredictive control using neural networks[J]. ISA Transactions,2011,50:177-194.
    [96] Babak Rezaee, M.H. Fazel Zarandi. Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzysystem[J]. Information Sciences,2010,180:241-255.
    [97]潘天红,薛振框,李少远.基于减法聚类的多模型在线辨识算法[J].自动化学报,2009,35(2):220-224.
    [98]汪浩,张少华,李天民等.水泥窑外分解窑的自动控制[J].控制理论与应用,1993,10(4):410-416.
    [99]袁南儿,周德泽,梁丰等.现代智能自动化技术在水泥回转窑生产中的应用[J].硅酸盐学报,1999,27(2):127-132.
    [100] A Correcher, F Morant, E Garcia, et al. Failure diagnosis of a cement kiln using expertsystems[C]. IECON Proceedings Industrial Electronics Conference,2002. Sevilla, Spain:1881-1886.
    [101] Shaolin Wang, Fengbo Dong, DongFeng Yuan. The design and implementation of an cement kilnexpert system[C]. Proceedings of the IEEE International Conference on Automation and Logistics,2007,2716-2719.
    [102]刘可文,程新丽,涂利锐.神经网络在水泥窑优化控制系统中的应用[J].武汉理工大学学报,2001,23(10),30-33.
    [103]张宏斌,岳超源,刘文斌,杨惟高,潘林强. BP神经网络在水泥窑控制建模中的应用[J].计算机工程与应用,2002,14:235-238.
    [104]黄清宝,林小峰,宋绍剑等.基于Elman网的水泥回转窑模型及其DHP控制器设计[J].系统仿真学报,2011,23(3):583-587.
    [105] Maryam Fallahpour, Alireza Fatehi, Babak N, et al. A supervisory fuzzy control of back-endtemperature of rotary cement kilns[C]. International Conference on Control, AutomationandSystems,2007,429-434.
    [106]杨为民,张莲,张宏勋.水泥回转窑二次风温模糊控制[J].东北大学学报,1997,18(2):174-177.
    [107]韩大平,林国海,杜钢等.模糊PID控制算法在回转窑温度控制中的应用[J].材料与冶金学报,2005,4(4):321-325.
    [108] Chiang, D, A design methodology of constraint based fuzzy logic controller[J]. IFSA WorldCongress and20th NAFIPS international Conference,2001,1259-1264.
    [109] Bob Boughton. Evaluation of shredder residue as cement manufacturing feedstock[J]. Resources,Conservation and Recycling,2007,51(3):621-642.
    [110] E. Boe, S. J. McGarel, T. Spaits, et al. Predictive control and optimization applications in amodern cement plant[C]. IEEE Cement Industry Technical Conference Record,2005. Kansas, MO:1-10.
    [111] L. Sragner, G. Horváth. Improved model order estimation for nonlinear dynamic systems[C].IEEE International Workshop on Intelligent Data. Acquisition and Advanced Computing Systems:Technology and Applications,2003,266-271.
    [112] Sahasrabudhe R, Sistu P, Sardar G, et al. Control and optimization in cement plants[J]. IEEEControl Systems Magazine,2006,6(26):56-63.
    [113] Koumboulis, F N., Kouvakas N D. Model predictive temperature control towards improvingcement precalcination proceedings of the institution of mechanical engineers[J]. Part I: Journal ofSystems and Control Engineering,2003,217(2):147-153.
    [114] Konrad S Stadler, Jan Poland, Eduardo Gallestey. Model predictive control of a rotary cementkiln[J]. Control Engineering Practice,2011,19(1):1-9.
    [115] Adam JC. Improved and more environmentally friendly charcoal production system using alow-cost retort-kiln (Eco-charcoal)[J]. Renewable Energy,2009,34(8):1923-1925.
    [116]楼波,罗玉和,马晓茜.回转窑内生物质高温空气燃烧NOx生成模型与验证[J].中国电机工程学报,2007,27(29):68-73.
    [117] Krista Rizman Zalik. Cluster validity index for estimation of fuzzy clusters of different sizes anddensities[J]. Pattern Recognition,2010,43:3374-3390.
    [118] M J García-Ligero, A Hermoso-Carazo, J Linares-Pérez. Least-squares linear estimation ofsignals from observations with markovian delays[J]. Journal of Computational and AppliedMathematics,2011,236:234-242.
    [119]师黎,陈铁军,李晓媛等.智能控制理论及应用[M].北京:清华大学出版社,2009.
    [120]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-666.
    [121]唐成龙,王石刚.基于数据间内在关联性的自适应模糊聚类模型[J].自动化学报,2010,36(11):1544-1556.
    [122]杜启亮.锌钡白煅烧回转窑过程控制的分析与研究[D].广东:华南理工大学,2008,4:32-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700