Phillips铬系聚乙烯催化剂活性中心及其聚合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Phillips铬系催化剂(CrOx/SiO2)是一种重要的工业聚乙烯催化剂,生产了全世界总量40-50%的高密度聚乙烯以及少量线性低密度聚乙烯。与该催化剂在工业应用上取得的巨大成功相比,Phillips催化剂的学术研究尤其是对催化剂的活性中心以及聚合机理等的认识还停留在初级阶段。本文通过实验与基于密度泛函理论的分子模拟相结合的方法,考察了活性中心的配位环境以及表面改性对乙烯聚合行为的影响。主要内容如下:(1)通过基于密度泛函理论的分子模拟,我们考察了Phillips催化剂诱导期内甲醛脱附对活性位形成与转化的作用机理。通过计算结果发现,CrⅡOx, surface和甲醛分子之间的配位稳定,这主要是由于CrⅡ的高度配位不饱和以及甲醛上氧原子的孤对电子。由于甲醛的位阻效应,吸附两个甲醛分子的催化剂模型上没有任何反应可以发生。对于吸附一个甲醛分子的催化剂模型,乙烯配位后的第一步反应遵循金属环状机理生成铬金属五元环,接下来的反应倾向于开环形成一个CrⅣ-H中间产物继而二聚生成1-丁烯,或者形成铬金属四元环中间产物继而易位生成丙烯/乙烯。而在相对较高的温度和压力下,两个吸附的甲醛分子很可能从CrⅡOx. surface脱附,从而形成没有甲醛吸附的活性中心(nHCHO=0),该模型上乙烯吸附后的第一步反应通过金属环状机理形成铬金属五元环,后续反应不倾向于乙烯二聚和易位反应,而是环增长形成金属七元环,进而一步法消去生成1-己烯。同时我们还发现引发过程中存在的五自旋多重态和三自旋多重态之间的自旋交叉会对反应的能垒产生一定的影响。(2)通过基于密度泛函理论的分子模拟,我们探讨了硅胶载体表面氟改性和钛改性对Phillips催化剂诱导期内聚合行为的影响。研究发现氟改性和钛改性都会增强Cr的缺电子性,使得CrⅡOx. surface和甲醛的配位更为稳定。由于甲醛的位阻效应,吸附两分子甲醛的催化剂模型上没有反应发生。当催化剂模型上吸附一分子甲醛时,只能发生二聚和易位反应,且氟改性和钛改性的影响都很小。当催化剂模型上吸附的甲醛分子完全脱附后,可以进一步环增长生成铬金属七元环,并且氟改性和钛改性对这一步反应都有促进作用;氟改性对铬金属七元环进一步开环生成1-己烯是不利的,而钛改性对这一步反应则是有利的;硅胶表面氟改性和钛改性对三价烷基铬聚合活性中心上的链增长插入反应都是有利的。(3)通过将挥发性的CrO2Cl2在无水无氧和室温条件下负载到500或800℃预处理的硅胶上,然后在300℃的温度下加热并用CO还原,我们制备了两种二价的Phillips非均相模型催化剂。通过乙烯聚合实验发现,在同样的聚合条件下负载在800℃预处理硅胶上的催化剂表现出更高的乙烯聚合活性;CO吸附在CrⅡOx.surface上的傅里叶红外谱图及其分峰拟合结果表明,两种催化剂体系中可能都存在两种相对比例不同的活性位;通过将量子化学/经典力学分层计算运用到Phillips催化剂的研究上,我们建立了Cr°负载在β-方石英(100)晶面上的Phillips催化剂模型,而且发现该计算模型上吸附的CO红外振动频率与模型催化剂上吸附的CO红外表征结果基本一致;通过对高度水氧敏感CrⅡ的高分辨率X光吸收光谱谱图的解析,我们得到了Phillips催化剂二价活性中心的结构信息,并且发现不同预处理温度下得到的CrⅡOx,surface会和硅胶表面邻近的硅氧烷配体存在不同的配位,从而形成不同的乙烯聚合活性中心,进而阐明了不同焙烧温度引起的活性中心配位环境与聚合活性的关联。以上一系列的研究结果合理地解释了实验现象,同时对Phillips催化体系的活性中心和聚合机理有了更深入的理解。
Phillips CrOx/SiO2catalyst, one of the most important industrial catalysts for ethylene polymerization, is responsible for40-50%of the world production of high density polyethylene, as well as linear low density polyethylene. Compared with its commercial success, academic research still lags far behind, especially for the understandings of the active sites and polymerization mechanisms. In this study, heterogeneous models for Phillips catalyst have been established to investigate the correlation between the coordination environment of the active sites and polymerization behavior via the combination of experiments and theoretical simulation by density functional theory.
     First of all, theoretical calculations have been adopted to achieve a basic understanding of the effect of formaldehyde desorption on the active site formation and transformation during the induction period of the Phillips CrⅡOx/SiO2catalyst by density functional theory. The coordination of formaldehyde on CrⅡOx. surface is stable due to the high coordinative unsaturation of CrⅡ and lone-paired electrons of O in formaldehyde. No reaction can be initiated over the cluster model coordinated with two formaldehyde molecules owing to steric hindrance. The first reaction over cluster models, on which either one or no formaldehyde molecule is adsorbed, follows the metallacyclic mechanism into chromacyclopentane. Subsequent dimerization to1-butene and metathesis to propylene/ethylene are more favorable over the cluster model adsorbed with one formaldehyde molecule. Only after a complete desorption of formaldehyde does further ring expansion to chromacycloheptane followed by1-hexene formation become preferential. Spin crossing from quintet diethylene-Cr" complex to triplet chromacyclopentane with a spin acceleration effect is revealed.
     Secondly, theoretical calculations have been adopted to achieve a basic understanding of the effect of surface fluorination or titanium-modification of silica support on the ethylene initiation during the induction period of the Phillips CrⅡOx/SiO2catalyst adsorbed with different amounts of formaldehyde molecules. The electron deficiency of CrⅡOx. surface is enhanced and the coordination between formaldehyde and CrⅡOx. surface is more stable after surface fluorination or titanium-modification. It is demonstrated that no reaction can be initiated over cluster models adsorbed with two formaldehyde molecules on account of steric hindrance. For cluster models adsorbed with one formaldehyde molecule, ethylene dimerization to1-butene and metathesis to ethylene/propylene via the chromacyclobutane intermediate takes place and fluorination/titanium-modification of the silica support shows minor influence on both reactions. After a complete desorption of formaldehyde molecules, further ring expansion to chromacycloheptane occurs and the surface fluorination/titanium-modification of the silica support shows improvement on this process. Fluorination of the silica support is unfavorable to the ring-opening of chromacycloheptane to give1-hexene, while titanium-modification shows a positive effect to this process. It is also demonstrated that fluorination/titanium-modification shows positive effect on the chain propagation over the models of CrⅢ-alkyl active sites during chain propagation.
     Finally, compositionally and structurally uniform heterogeneous Phillips model catalysts have been prepared via the ambient temperature reaction of CrO2Cl2with silica pretreated at either500or800℃, followed by mild heating and CO reduction at300℃to obtain the corresponding CrⅡOx surface sites. CrⅡ grafted onto silica pretreated at800℃shows higher polymerization activity than that of500℃at the same reaction condition. The resulting structures have been investigated by IR spectroscopy of adsorbed CO combined with X-ray absorption spectroscopy and compared with model structures predicted by ONIOM calculations (B3PW91*/BS1:B3PW91*/STO-3G). The IR spectra suggest that there are two distinct and non-interconverting CrⅡOx. surface sites whose relative amounts differ on the two types of catalysts. The CO frequencies for the two model structures,(=SiO)2CrⅡ(CO)2and (=SiO)2(=Si2O)CrⅡ(CO), are calculated via the cluster models cut from the (100) crystal face of β-cristobalite. The calculated results agree well with experimental data. The X-ray absorption spectra reveal that the CO-free CrⅡOx. surface sites are coordinated by additional siloxane ligands, which might influence their propensity to initiate ethylene polymerization. Experimental observations have been rationalized well and deeper understandings on the active sites and polymerization mechanisms of Phillips catalyst have been achieved by this study.
引文
[1]L. L. Bohm. The ethylene polymerization with Ziegler catalysts:Fifty years after the discovery. Angew. Chem. Int. Ed.2003,42 (41):5010-5030
    [2]E. Groppo, C. Lamberti, S. Bordiga, G. Spoto, A. Zecchina. The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst:A frontier for the characterization methods. Chem. Rev.2005,105 (1):115-184
    [3]K. H. Theopold. Understanding chromium-based olefin polymerization catalysts. Chemtech.1997,27:26
    [4]Polyolefins planning service:Executive report, global commercial analysis. http://www.chemsystems.com/about/cs/news/items/POPS 10_Executive%20Report.cfm
    [5]M. P. McDaniel. A Review of the Phillips Supported Chromium Catalyst and Its Commercial Use for Ethylene Polymerization. Adv. Catal.2010,53:123-606
    [6]D. B. Malpass. Introduction to Industrial Polyethylene:Properties, Catalysts, and Processes, John Wiley & Sons, Inc., Hoboken, NJ, USA,2010, p.61-70
    [7]M. P. McDaniel, M. B. Welch. The activation of the Phillips polymerization catalyst. I. Influence of the hydroxyl population. J. Catal.1983,82 (1):98-109
    [8]M. P. McDaniel. Supported chromium catalysts for ethylene polymerization. Adv. Catal. 1985,33:47-98
    [9]A. Clark. Olefin polymerization on supported chromium oxide catalysts. Catal. Rev.1970, 3 (1):145-173
    [10]B. M. Weckhuysen, R.A. Schoonheydt. Olefin polymerization over supported chromium oxide catalysts. Catal. Today.1999,51 (2):215-221
    [11]C. A. Demmelmaier. R. E. White, J. A. van Bokhoven, S. L. Scott. Evidence for a chromasiloxane ring size effect in Phillips (Cr/SiO2) polymerization catalysts. J. Catal. 2009,262(1):44-56
    [12]C. A. Demmelmaier, R. E. White, J. A. van Bokhoven, S. L. Scott. Nature of (= SiO)CrO2Cl and (=SiO)2CrO2 sites prepared by grafting CrO2Cl2 onto silica. J. Phys. Chem. C.2008,112 (16):6439-6449
    [13]M. C. Beaudoin, O. Womiloju, A. Fu, J. A. N. Ajjou, G. L. Rice, S. L. Scott. Silica-supported alkylidene complexes:their preparation, characterization and reactivity, especially towards olefins. J. Mol. Catal. A:Chem.2002,190 (1-2):159-169
    [14]S. L. Scott, J. A. N. Ajjou. Surface organometallic investigation of the mechanism of ethylene polymerization by silica-supported Cr catalysts. Chem. Eng. Sci.2001,56 (13): 4155-4168
    [15]J. A. N. Ajjou, S. L. Scott. A kinetic study of ethylene and 1-hexene homo-and copolymerization catalyzed by a silica-supported Cr(IV) complex:Evidence for propagation by a migratory insertion mechanism. J. Am. Chem. Soc.2000,122 (37): 8968-8976
    [16]J. A. N. Ajjou, G. L. Rice, S. L. Scott. Kinetics and mechanisms of thermally induced alkane eliminations from silica-supported bis(alkyl)chromium(IV) and-vanadium(IV) complexes. J. Am. Chem. Soc.1998,120 (51):13436-13443
    [17]J. A. N. Ajjou, S. L. Scott, V. Paquet. Synthesis and characterization of silica-stabilized chromium(IV) alkylidene complexes. J. Am. Chem. Soc.1998,120 (2):415-416
    [18]J. A. N. Ajjou, S. L. Scott. Reactions of tetraalkylchromium(IV) with silica:mechanism of grafting and characterization of surface organometallic complexes. Organometallics. 1997,16(1):86-92
    [19]G. Agostini, E. Groppo, S. Bordiga, A. Zecchina, C. Prestipino, F. D'Acapito, E. van Kimmenade, P. C. Thune, J. W. Niemantsverdriet, C. Lamberti. Reactivity of Cr species grafted on SiO2/Si(100) surface:A reflection extended X-ray absorption fine structure study down to the submonolayer regime. J. Phys. Chem. C.2007,111 (44):16437-16444
    [20]E. M. E. van Kimmenade, A. E. T. Kuiper, Y. Tamminga, P. C. Thiine, J. W. Niemantsverdriet. A surface science model for the Phillips ethylene polymerization catalyst:thermal activation and polymerization activity. J. Catal.2004,223 (1):134-141
    [21]H. Ikeda, T. Monoi, Y. Sasaki. Performance of the Cr[CH(SiMe3)2]3/Si02 catalyst for ethylene polymerization compared with the performance of the phillips catalyst. J. Polym. Sci., Part A:Polym. Chem.2003,41 (3):413-419
    [22]X. Li, R. Cheng, J. Luo, Q. Dong, X. He, L. Li, Y. Yu, J. Da, B. Liu. Experimental and theoretical studies on ethylene polymerization using SiO2-supported silyl chromate type catalysts prepared by a green method. J. Mol. Catal. A:Chem.2010,330 (1-2):56-65
    [23]R. Cheng, C. Xu, Z. Liu, Q. Dong, X. He, Y. Fang, M. Terano, Y. Hu, T. J. Pullukat, B. Liu. High-resolution spectroscopy (XPS,'H MAS solid-state NMR) and DFT investigations into Ti-modified Phillips CrOx/SiO2 catalysts. J. Catal.2010,273 (2): 103-115
    [24](?). Espelid, K. J. Borve. Molecular-level insight into Cr/silica Phillips-Type catalysts: Polymerization-active dinuclear chromium sites. J. Catal.2002,206 (2):331-338
    [25](?). Espelid, K. J. B(?)rve. Molecular-level insight into Cr/silica Phillips-type catalysts: polymerization-active mononuclear chromium sites. J. Catal.2002,205 (2):366-374
    [26](?). Espelid, K. J. B(?)rve. Theoretical analysis of CO adsorption on the reduced Cr/silica system. J. Catal.2002,205 (1):177-190
    [27](?). Espelid, K. J. B(?)rve. Theoretical analysis of d-d transitions for the reduced Cr/silica system. Catal. Lett.2001,75 (1-2):49-54
    [28]R. Schmid, T. Ziegler. Ethylene-polymerization by surface supported Cr(Ⅳ) species: possible reaction mechanisms revisited by theoretical calculations. Can. J. Chem.2000, 78 (2):265-269
    [29](?). Espelid, K. J. B(?)rve. Theoretical models of ethylene polymerization over a mononuclear chromium(Ⅱ)/silica site. J. Catal.2000,195 (1):125-139
    [30]D. Gianolio, E. Groppo, J. G. Vitillo, A. Damin, S. Bordiga, A. Zecchina, C. Lamberti. Direct evidence of adsorption induced CrⅡ mobility on the SiO2 surface upon complexation by CO. Chem. Commun.2010,46 (6):976-978
    [31]E. Groppo, C. Prestipino, F. Cesano, F. Bonino, S. Bordiga, C. Lamberti, P. C. Thune, J. W. Niemantsverdriet, A. Zecchina. In situ, Cr K-edge XAS study on the Phillips catalyst: activation and ethylene polymerization. J. Catal.2005,230 (1):98-108
    [32]B. M. Weckhuysen, R. A. Schoonheydt, J.-M. Jehna, I. E. Wachs, S. J. Cho, R. Ryoo, S. Kijlstra, E. Poels. Combined DRS-RS-EXAFS-XANES-TPR study of supported chromium catalysts. J. Chem. Soc, Faraday Trans.1995,91 (18):3245-3253
    [33]M. P. McDaniel. In Handbook of Heterogeneous Catalysis,1st Ed., Vol 5 (Eds.:G. Ertl, H. Knozinger and J. Weitkamp), VCH, Weinheim,1997; pp.2004-2005.
    [34]A. Clark, J. P. Hogan, R. L. Banks, W. C. Lanning. Marlex catalyst systems. Ind. Eng. Chem.1956,481152-1155
    [35]S. M. Augustine, J. P. Blitz. A proposed mechanism for silica supported chromium HDPE catalyst activation. J. Catal.1996,161 (2):641-650
    [36]V. J. Ruddick, P. W. Dyer, G. Bell, V. C. Gibson, J. P. S. Badyal. Mechanistic study of the calcination of supported chromium(III) precursors for ethene polymerization catalysts. J. Phys. Chem.1996,100 (26):11062-11066
    [37]C. S. Kim, S. I. Woo. Characterization of chromium/silica ethylene polymerization catalyst by TPO/TPR and FT-IR. J. Mol. Catal.1992,73 (2):249-263
    [38]J. A. Chudek, G. Hunter, G. W. McQuire, C. H. Rochester, T. F. S. Smith.29Si magic-angle spinning NMR study of Phillips catalysts:multi-exponential spin-lattice relaxation resulting from adsorption of paramagnetic chromium species onto a silica surface. J. Chem. Soc, Faraday Trans.1996,92 (3):453-460
    [39]M. P. McDaniel. In Handbook of Heterogeneous Catalysis, Vol 8 (Eds.:G. Ertl, H. Knozinger, F. Schuth and J. Weitkamp), Wiley-VCH, Weinheim,2008; pp.3733-3792.
    [40]B. M. Weckhuysen, I. E. Wachs, R. A. Schoonheydt. Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem. Rev.1996,96 (8):3327-3349
    [41]W. K. Jozwiak, I. G. D. Lana. Interactions between the chromium oxide phase and support surface; redispersion of alpha-chromia on silica, alumina and magnesia. J. Chem. Soc, Faraday Trans.1997,93 (15):2583-2589
    [42]H. L. Krauss, U. Westphal. Surface compounds of transition metals.18. The influence of chromium concentration on oxidation number and "quality" of chromium surface compounds on silicagel. Z. Anorg. Allg. Chem.1977,430218-226
    [43]M. P. McDaniel. The state of chromium(VI) on the Phillips polymerization catalyst. IV. Saturation coverage. J. Catal.1982,76 (1):37-47
    [44]B. Liu, M. Terano.2005. In Advances in Polyolefins, Sonoma, CA.
    [45]A. Matta, Y. Zeng, T. Taniike, M. Terano. Vanadium-modified bimetallic Phillips catalyst with high branching ability for ethylene polymerization. Macromol. React. Eng.2012,6: 346-350
    [46]A. Ellison, T. L. Overton. Characterization of Cr/silica catalysts. Part 2. Ti-and Mg-modified catalysts. J. Chem. Soc, Faraday Trans.1993,89 (24):4393-4395
    [47]C. E. Marsden. In Studies in Surface Science and Catalysis, Vol 63 (Eds.:G. Poncelet, P. A. Jacobs, P. Grange and B. Delmon), Elsevier,1991; pp.215-227.
    [48]Y.-T. Hwang, H. L. Grimmett, DE Patent (1977), to Chemplex Co., USA
    [49]I. J. Levine, F. J. Karol, US Patent 4011382 (1977), to Union Carbide
    [50]A. Ellison, G. Diakun, P. Worthington. EXAFS-XANES studies of rhenium oxide-alumina and chromium oxide-silica catalysts. J. Mol. Catal.1988,46 (1-3): 131-149
    [51]R. Spitz, A. Revillon, A. Guyot. Supported chromium oxide catalysts for olefin polymerization. VIII. New model for the active centers. J. Catal.1974,35 (3):335-344
    [52]R. Spitz. Supported chromium oxide catalysts for olefin polymerization. IX. Nature of the narrow gamma-phase ESR signal and its correlation with catalytic activity. J. Catal. 1974,35 (3):345-352
    [53]A. Clark. Olefin polymerization on supported chromium oxide catalysts. Catal. Rev.1969, 3 (2):145-173
    [54]J. P. Hogan. Ethylene polymerization catalysis over chromium oxide. J. Polym. Sci. A-1. 1970,8 (9):2637-2652
    [55]H. L. Krauss, K. Hagen, E. Hums. Surface compounds of transition metals. Part 27. Redox reactions of reduced Phillips catalysts with olefins at higher temperatures: reactions via carbene/metallacyclobutane intermediates. J. Mol. Catal.1985,28 (1-3): 233-238
    [56]W. Kruse. Preparation of peralkylchromium(IV) compounds. J. Organomet. Chem.1972, 42 (1):C39-C42
    [57]K. Nag, S. Base. In Bond and Structure Models, Vol 63 (Eds.:M. J. Clarke, J. B. Goodenough, J. A. Ibers, C. K. Jorgensen, D. M. P. Mingos, J. B. Neilands, G. A. Palmer, D. Reinen, P. J. Sadler, R. Weiss and R. J. P. Williams), Springer-Verlag Berlin Heidelberg, Schwetzingen,1985; pp.153-197.
    [58]G. A. Ward, W. Kruse, B. K. Bower, J. C. W. Chien. EPR spectra of chromium(IV) in tetrakis-alkyl chromium compounds. J. Organomet. Chem.1972,42 (1):C43-C46
    [59]A. Zecchina, C. O. Arean, E. Groppo. Highly unsaturated CrⅡ/SiO2 single-site catalysts for reducing nitrogen oxides with CO:reaction intermediates and catalytic cycle. ChemCatChem.2010,2 (3):259-262
    [60]E. Groppo, A. Damin, C. O. Arean, A. Zecchina. Enhancing the initial rate of polymerisation of the reduced Phillips catalyst by one order of magnitude. Chem.-Eur. J. 2011,17(40):11110-11114
    [61]K. G. Miesserov. Mechanism of polymerization of alpha-olefins on oxide catalysts. J. Polym. Sci.A-1.1966,4(12):3047-3054
    [62]B. Rebenstorf, R. Larsson. Polymerization of ethylene by chromium surface compounds on silica gel. J. Catal.1983,84 (1):240-243
    [63]L. K. Przhevalskaya, V. A. Shvets, V. B. Kazansky. The study of active centers of ethylene polymerization over chromium catalysts prepared from tri-and bivalent chromium compounds. J. Catal.1975,39 (3):363-368
    [64]R. Merryfield, M. McDaniel, G. Parks. An XPS study of the Philips chromium/silica polymerization catalyst. J. Catal.1982,77 (2):348-359
    [65]M. P. McDaniel. The state of chromium(VI) on the chromium/silica polymerization catalyst. J. Catal.1981,67 (1):71-76
    [66]R. L. Burwell, Jr., G. L. Haller, K. C. Taylor, J. F. Read. Chemisorptive and catalytic behavior of chromia. Adv. Catal.1969,201-96
    [67]L. M. Baker, W. L. Carrick. Oxidation of olefins by supported chromium oxide. J. Org. Chem.1968,33 (2):616-618
    [68]B. Liu, H. Nakatani, M. Terano. New aspects of the induction period of ethene polymerization using Phillips CrOx/SiO2 catalyst probed by XPS, TPD and EPMA. J. Mol. Catal. A:Chem.2002,184 (1-2):387-398
    [69]H. L. Krauss, H. Stach. Surface compounds of transition metals.3. Reactions of reduced Philips contact catalysts. Z. Anorg. Allg. Chem.1969,366 (1-2):34-42
    [70]H. L. Krauss, H. Stach. Chromium(Ⅱ) as the active constituent in the Phillips catalyst in ethylene polymerization. Inorg. Nucl. Chem. Lett.1968,4 (7):393-397
    [71]B. Rebenstorf. The Phillips catalyst (chromium(VI)/silica gel) modified by (NH4)2SiF6: its influence on the chromium surface species. J. Mol. Catal.1991,66 (1):59-71
    [72]G. Ghiotti, E. Garrone, A. Zecchina. An infrared study of carbon monoxide/ethylene coadsorption and reaction on silica-supported chromium(II) ions. J. Mol. Catal.1991,65 (1-2):73-83
    [73]B. Rebenstorf. On the catalytic activity of mononuclear and dinuclear chromium(II)-A surface species on silica gel. Acta Chem. Scand.1989,43 (5):413-416
    [74]B. Rebenstorf. The Phillips catalyst site with high catalytic activity. J. Mol. Catal.1989, 56(1-3):170-182
    [75]G. Ghiotti, E. Garrone, A. Zecchina. IR investigation of polymerization centers of the Phillips catalyst. J. Mol. Catal.1988,46 (1-3):61-77
    [76]G. Ghiotti, E. Garrone, G. Della Gatta, B. Fubini, E. Giamello. The chemistry of silica-supported chromium ions:calorimetric and spectroscopic study of nitric oxide adsorption. J. Catal.1983,80 (2):249-262
    [77]B. Rebenstorf, R. Larsson. Why do homogeneous analogs of Phillips (chromium(VI) oxide/silica) and Union Carbide (chromocene/silica) polyethylene catalysts fail? Some answers from IR investigations. J. Mol. Catal.1981,11 (2-3):247-256
    [78]B. Fubini, G. Ghiotti, L. Stradella, E. Garrone, C. Morterra. The chemistry of silica-supported chromium ions:a characterization of the reduced and oxidized forms of chromia/silica catalyst by calorimetry and ultraviolet-visible spectroscopy. J. Catal.1980, 66(1):200-213
    [79]A. Zecchina, E. Garrone, G. Ghiotti, C. Morterra, E. Borello. Chemistry of silica supported chromium ions. I. Characterization of the samples. J. Phys. Chem.1975,79 (10):966-972
    [80]E. Schwerdtfeger, R. Buck, M. McDaniel. Reduction of Cr(VI) polymerization catalysts by non-olefinic hydrocarbons. Appl. Catal., A:Gen.2012,42391-99
    [81]Y. Kissin. Synthesis, Chemical composition, and structure of transition metal components and cocatalysts in catalyst systems for alkene polymerization. Stud. Surf. Sci. Catal. 2007,173:207-290
    [82]D. C. Smith. Molecular structure of Marlex polymers. Ind. Eng. Chem.1956,48 1161-1164
    [83]M. P. McDaniel, M. M. Johnson. A comparison of Cr/SiO2 and Cr/AlPO4 polymerization catalysts.2. Chain transfer. Macromolecules.1987,20 (4):773-778
    [84]L. L. v. Reijen, P. Cossee. Electron spin resonance study of rearrangements in the co-ordination of Cr5+ and V4+ complexes due to chemisorption. Discuss. Faraday Soc. 1966,41277-289
    [85]P. Cossee. Ziegler-Natta catalysis I. Mechanism of polymerization of [alpha]-olefins with Ziegler-Natta catalysts. J. Catal.1964,3 (1):80-88
    [86]M. Nishimura, J. M. Thomas. Probing the early stages of polymerization of ethylene on a model chromium/silica catalyst by Fourier transform infrared spectroscopy. Catal. Lett. 1993,19(1):33-41
    [87]K. J. Ivin, J. J. Rooney, C. D. Stewart, M. L. H. Green, R. Mahtab. Mechanism for the stereospecific polymerization of olefins by Ziegler-Natta catalysts. J. Chem. Soc. Chem. Comm.1978, (14):604-606
    [88]P. Zielinski, I. G. D. Lana. An FTIR spectroscopic view of the initiation of ethylene polymerization on chromium/silica catalyst. J. Catal.1992,137 (2):368-376
    [89]M. P. McDaniel, D. M. Cantor. Hydrogen transfer during propagation of the phillips catalyst. J. Polym. Sci.:Polym. Chem. Ed.1983,21 (4):1217-1221
    [90]S. Bordiga, S. Bertarione, A. Damin, C. Prestipino, G. Spoto, C. Lamberti, A. Zecchina. On the first stages of the ethylene polymerization on Cr2+/Si02 Phillips catalyst:time and temperature resolved IR studies. J. Mol. Catal. A:Chem.2003,204:527-534
    [91]A. Zecchina, G. Spoto, G. Ghiotti, E. Garrone. Cr2+ions grafted to silica and silicalite surfaces:FTIR characterization and ethylene polymerization activity. J. Mol. Catal.1994, 86 (1-3):423-446
    [92]E. Groppo, C. Lamberti, S. Bordiga, G. Spoto, A. Damin, A. Zecchina. FTIR investigation of the H2, N2, and C2H4 molecular complexes formed on the Cr(II) sites in the Phillips catalyst:a preliminary step in the understanding of a complex system. J. Phys. Chem. B.2005,109 (31):15024-15031
    [93]E. Groppo, A. Damin, F. Bonino, A. Zecchina, S. Bordiga, C. Lamberti. New strategies in the Raman study of the Cr/SiO2 Phillips catalyst:observation of molecular adducts on Cr(Ⅱ) sites. Chem. Mater.2005,17 (8):2019-2027
    [94]D. S. McGuinness, N. W. Davies, J. Horne, I. Ivanov. Unraveling the mechanism of polymerization with the Phillips catalyst. Organometallics.2010,29 (22):6111-6116
    [95]C. Groeneveld, P. P. M. M. Wittgen, A. M. van Kersbergen, P. L. M. Mestrom, C. E. Nuijten, G. C. A. Schuit. Hydrogenation of olefins and polymerization of ethene over chromium oxide/silica catalysts:I. Preparation and structure of the catalyst. J. Catal. 1979,59(2):153-167
    [96]S. L. Scott, A. Fu, L. A. MacAdams. Effect of silica type and grafting method on the reactivity of tetraneopentylchromium(IV) towards and on silica. Inorg. Chim. Acta.2008, 361 (11):3315-3321
    [97]M. P. McDaniel. The state of chromium(VI) on the Phillips polymerization catalyst. Ⅲ. The reaction between chromia/silica and hydrogen chloride. J. Catal.1982,76 (1):29-36
    [98]M. P. McDaniel. The state of chromium(VI) on the Phillips polymerization catalyst. Ⅱ. The reaction between silica and chromyl chloride. J. Catal.1982,76 (1):17-28
    [99]P. C. Thune, C. P. J. Verhagen, M. J. G. van den Boer, J. W. Niemantsverdriet. Working surface science model for the Phillips ethylene polymerization catalyst:Preparation and testing. J. Phys. Chem. B.1997,101 (42):8559-8563
    [100]H. Ikeda, T. Monoi, K. Ogata, H. Yasuda. Ethylene polymerizations with alkyl-, disilylamino-and cyclopentadienylchromium/MMAO initiators. Macromol. Chem. Phys.2001,202 (9):1806-1811
    [101]T. Monoi, H. Ikeda, Y. Sasaki, Y. Matsumoto. Ethyl ene polymerization with silica-supported Cr[CH(SiMe3)2]3 catalyst. Effect of silica calcination temperature and Cr content. Polym. J.2003,35 (7):608-611
    [102]K. Tonosaki, T. Taniike, M. Terano. Comprehensive investigation of catalyst structure and polymerization conditions for chain branching in ethylene polymerization with Phillips-type catalysts. Macromol. React. Eng.2011,5 (9-10):332-339
    [103]Y. Iwasawa, T. Chiba, N. Ito. Preparation and characterization of Al2O3-attached Cr(II) dimer and Cr(II) monolayer catalysts. J. Catal.1986,99 (1):95-103
    [104]Y. Iwasawa, Y. Sasaki, S. Ogasawara. Active fixed chromium catalysis for CO oxidation. Preparation and active structure of fixed Cr and Cr2 catalysts. J. Mol. Catal.1982,16 (1):27-41
    [105]Y. Iwasawa, Y. Sasaki, S. Ogasawara. New design of highly active, paired chromium structures on solid surfaces for propene hydrogenation. J. Chem. Soc. Chem. Comm. 1981,(3):140-142
    [106]L. M. Baker, W. L. Carrick. Bistriphenylsilyl chromate. Oxidation of olefins and use in ethylene polymerization. J. Org. Chem.1970,35 (3):774-776
    [107]P. Qiu, R. Cheng, Z. Liu, B. Liu, B. Tumanskii, M. S. Eisen. Switching from ethylene polymerization to nonselective oligomerization over a homogeneous model catalyst:a triphenylsiloxy complex of chromium(VI). J. Organomet. Chem.2012,699 (0):48-55
    [108]F. J. Feher, R. L. Blanski. Polyhedral oligometallasilasesquioxanes as models for silica-supported catalysts:chromium attached to two vicinal siloxy groups. J. Chem. Soc. Chem. Comm.1990, (22):1614-1616
    [109]H. C. L. Abbenhuis, M. L. W. Vorstenbosch, R. A. van Santen, W. J. J. Smeets, A. L. Spek. A 12-membered inorganic heterocycle:synthesis and structural characterization of a bimetallic chromium(VI) siloxane complex. Inorg. Chem.1997,36 (27): 6431-6433
    [110]R. D. Kohn, M. Haufe, S. Mihan, D. Lilge. Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chem. Commun. 2000, (19):1927-1928
    [111]M. Motevalli, M. Sanganee, P. D. Savage, S. Shah, A. C. Sullivan. Synthesis, crystal structure and homogeneous catalytic activity towards ethylene polymerisation of the spirocyclic chromium(II) siloxane [Cr{(OSiPh2OSiPh2O)-μ-Na(thf)2}2] (thf= tetrahydrofuran). J. Chem. Soc. Chem. Comm.1993, (14):1132-1133
    [112]L. A. MacAdams, G. P. Buffone, C. D. Incarvito, A. L. Rheingold, K. H. Theopold. A chromium catalyst for the polymerization of ethylene as a homogeneous model for the Phillips catalyst. J. Am. Chem. Soc.2005,127 (4):1082-1083
    [113]P. Qiu, R. Cheng, B. Liu, B. Tumanskii, R. J. Batrice, M. Botoshansky, M. S. Eisen. A triphenylsiloxy complex of chromium(II) as a switchable catalyst for ethylene polymerization and nonselective oligomerization. Organometallics.2011,30 (8): 2144-2148
    [114]L. T. Zhuravlev. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf., A.2000,173 (1-3):1-38
    [115]J. Sauer, P. Ugliengo, E. Garrone, V. R. Saunders. Theoretical study of van der Waals complexes at surface sites in comparison with the experiment. Chem. Rev.1994,94 (7): 2095-2160
    [116]P. Sautet, F. Delbecq. Catalysis and surface organometallic chemistry:a view from theory and simulations. Chem. Rev.2010,110 (3):1788-1806
    [117]K. Tonosaki, T. Taniike, M. Terano. Origin of broad molecular weight distribution of polyethylene produced by Phillips-type silica-supported chromium catalyst. J. Mol. Catal. A:Chem.2011,340 (1-2):33-38
    [118]Z. Liu, R. H. Cheng, X. L. He, X. J. Wu, B. P. Liu. DFT functional benchmarking on the energy splitting of chromium spin states and mechanistic study of acetylene cyclotrimerization over the Phillips Cr(Ⅱ)/silica catalyst. J. Phys. Chem. A.2012,116 (28):7538-7549
    [119]B. Liu, H. Nakatani, M. Terano. Mechanistic implications of the unprecedented transformations of ethene into propene and butene over Phillips CrOx/SiO2 catalyst during induction period. J. Mol. Catal. A:Chem.2003,201 (1-2):189-197
    [120]M. Terano, B. Liu, Y. Fang. New proposal on the branching mechanism of Phillips CrOx/SiO2 catalyst for ethylene homo-polymerization. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.).2003,44 (2):22-23
    [121]J. Estephane, E. Groppo, J. G. Vitillo, A. Damin, D. Gianolio, C. Lamberti, S. Bordiga, E. A. Quadrelli, J. M. Basset, G. Kervern, L. Emsley, G. Pintacuda, A. Zecchina. A multitechnique approach to spin-flips for Cp2Cr(Ⅱ) chemistry in confined state. J. Phys. Chem. C.2010,114 (10):4451-4458
    [122]J. S. Hess, S. Leelasubcharoen, A. L. Rheingold, D. J. Doren, K. H. Theopold. Spin surface crossing in chromium-mediated olefin epoxidation with O2. J. Am. Chem. Soc. 2002,124 (11):2454-2455
    [123]R. D. Kohn. Reactivity of chromium complexes under spin control. Angew. Chem. Int. Ed.2008,47 (2):245-247
    [124]A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.1993,98 (7):5648-5652
    [125]C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B.1988,37 (2):785-789
    [126]P. J. Hay, W. R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms scandium to mercury. J. Chem. Phys.1985,82 (1):270-283
    [127]D. Schroder, S. Shaik, H. Schwarz. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res.2000,33 (3):139-145
    [128]J. N. Harvey, M. Aschi, H. Schwarz, W. Koch. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chim. Acta.1998,99 (2):95-99
    [129]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. V. Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople.2004. Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford CT.
    [130]E. Groppo, C. Lamberti, S. Bordiga, G. Spoto, A. Zecchina. In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO2 Phillips catalyst:solving the puzzle of the initiation mechanism? J. Catal.2006,240 (2): 172-181
    [131]Y. Qi, Q. Dong, L. Zhong, Z. Liu, P. Qiu, R. Cheng, X. He, J. Vanderbilt, B. Liu. Role of L2-dimethoxyethane in the transformation from ethylene polymerization to trimerization using chromium tris(2-ethylhexanoate)-based catalyst system:a DFT study. Organometallics.2010,29 (7):1588-1602
    [132]J. L. Herisson, Y. Chauvin. Catalysis of olefin transformations by tungsten complexes. Ⅱ. Telomerization of cyclic olefins in the presence of acyclic olefins. Makromol. Chem. 1971,141161-176
    [133]K. P. Kepp. Consistent descriptions of metal-ligand bonds and spin-crossover in inorganic chemistry. Coord. Chem. Rev.2013,257 (1):196-209
    [134]Private communications with Prof. Luigi Cavallo from University of Salerno, Italy
    [135]T. K. Woo, P. E. Blochl, T. Ziegler. Monomer capture in Brookhart's Ni(II) diimine olefin polymerization catalyst:static and dynamic quantum mechanics/molecular mechanics study. J. Phys. Chem. A.1999,104 (1):121-129
    [136]R. R. Schrock, A. J. Jiang, S. C. Marinescu, J. H. Simpson, P. Muller. Fundamental studies of molybdenum and tungsten methylidene and metallacyclobutane complexes. Organometallics.2010,29 (21):5241-5251
    [137]M. Iwamoto, Y. Kosugi. Highly selective conversion of ethene to propene and butenes on nickel ion-loaded mesoporous silica catalysts. J. Phys. Chem. C.2007,111 (1): 13-15
    [138]Y. Chauvin, D. Commereuc. Chemical counting and characterization of the active sites in the rhenium oxide/alumina metathesis catalyst. J. Chem. Soc. Chem. Comm.1992, (6):462-464
    [139]R. Poli. Open shell organometallics:a general analysis of their electronic structure and reactivity. J. Organomet. Chem.2004,689 4291-4304
    [140]B. M. Weckhuysen, I. E. Wachs, R. A. Schoonheydt. In Studies in Surface Science and Catalysis, Vol Volume 91 (Eds.:J. M. B. D. P. A. J. G. Poncelet and P. Grange), Elsevier, 1995; pp.151-158.
    [141]F. D. Hardcastle, I. E. Wachs. Raman spectroscopy of chromium oxide supported on alumina, titania, and silica:a comparative study. J. Mol. Catal.1988,46 (1-3):173-186
    [142]M. P. McDaniel, M. B. Welch, M. J. Dreiling. The activation of the Phillips polymerization catalyst. III. Promotion by titania. J. Catal.1983,82 (1):118-126
    [143]P. J. Deslauriers, M. P. McDaniel. Short chain branching profiles in polyethylene from the Phillips Cr/silica catalyst. J. Polym. Sci.,Part A:Polym. Chem.2007,45 (15): 3135-3149
    [144]A. Zecchina, E. Groppo, A. Damin, C. Prestipino. Anatomy of catalytic centers in Phillips ethylene polymerization catalyst. Top. Organomet. Chem.2005,16:1-35
    [145]H. L. Krauss, B. Rebenstorf, U. Westphal. Surface compounds of transition metals.9. Influence of activation and reduction temperature on the quality of coordinatively unsaturated surface chromium(Ⅱ) on silica gel. Z. Anorg. Allg. Chem.1975,414 (2): 97-108
    [146]H. L. Krauss, B. Weisser. Surface compounds of transition metals.8. Complex formation of a coordinatively unsaturated chromium(Ⅱ) surface compound with nitrogen oxides. Z. Anorg. Allg. Chem.1975,412 (1):82-96
    [147]V. J. Ruddick, J. P. S. Badyal. CO Reduction of Calcined CrOx/SiO2 Ethene Polymerization Catalysts. Langmuir.1997,13 (3):469-472
    [148]A. Zecchina, E. Garrone, G. Ghiotti, S. Coluccia. Chemistry of silica supported chromium ions. Ⅱ. One-ligand complexes. Adsorption of carbon monoxide, carbon dioxide, and pyridine. J. Phys. Chem.1975,79 (10):972-978
    [149]H. L. Krauss. Reactions on coordinatively unsaturated chromium(Ⅱ) surface compounds. Angew. Chem. Int. Ed.1973,12 (10):861
    [150]A. B. Gaspar, R. L. Martins, M. Schmal, L. C. Dieguez. Characterization of Cr2+and ethylene polymerization on Cr/SiO2 catalysts. J. Mol. Catal. A:Chem.2001,169 (1-2): 105-112
    [151]E. Groppo, C. Lamberti, G. Spoto, S. Bordiga, G. Magnacca, A. Zecchina. Tuning the structure, distribution and reactivity of polymerization centres of Cr(Ⅱ)/SiO2 Phillips catalyst by controlled annealing. J. Catal.2005,236 (2):233-244
    [152]C. Moisii, E. W. Deguns, A. Lita, S. D. Callahan, L. J. van de Burgt, D. Magana, A. E. Stiegman. Coordination environment and vibrational spectroscopy of Cr(Ⅵ) sites supported on amorphous silica. Chem. Mater.2006,18 (17):3965-3975
    [153]B. Ravel, M. Newville. Athena, Artemis, Hephaestus:data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat.2005,12537-541
    [154]A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B. 1998,58(12):7565
    [155]A. Pantelouris, H. Modrow, M. Pantelouris, J. Hormes, D. Reinen. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chem. Phys.2004,300 (1-3):13-22
    [156]I. S. Chuang, G. E. Maciel. A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. J. Phys. Chem. B.1997,101 (16):3052-3064
    [157]D. W. Sindorf, G. E. Maciel.29Si NMR study of dehydrated/rehydrated silica gel using cross polarization and magic-angle spinning. J. Am. Chem. Soc.1983,105 (6): 1487-1493
    [158]J. Handzlik. Application of the ONIOM (QW/QM) method in the study of molybdena-silica system active in olefin metathesis. Int. J. Quantum Chem.2007,107 (11):2111-2119
    [159]F. Vigne-Maeder, P. Sautet. Theoretical study of hydroxylated and dehydroxylated surfaces of a cristobalite model of silica. J. Phys. Chem. B.1997,101 (41):8197-8203
    [160]M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. Morokuma. ONIOM:A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2+H2 oxidative addition. J. Phys. Chem.1996,100 (50):19357-19363
    [161]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi. J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam. M. Klene. J. E. Knox. J. B. Cross, V. Bakken. C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox.2009. Gaussian, Inc., Wallingford CT.
    [162]A. D. Becke. Density-functional exchange-energy approximation with corrected asymptotic-behavior. Phys. Rev. A.1988,38 (6):3098-3100
    [163]J. P. Perdew, K. Burke, Y. Wang. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B.1996,54 (23): 16533-16539
    [164]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B.1992,46 (11): 6671-6687
    [165]A. Damin, J. G. Vitillo, G. Ricchiardi, S. Bordiga, C. Lamberti, E. Groppo, A. Zecchina. Modeling CO and N2 adsorption at Cr surface species of Phillips catalyst by hybrid density functionals:effect of Hartree-Fock exchange percentage. J. Phys. Chem. A. 2009,113(52):14261-14269
    [166]J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople. Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys.1976,64 (12):5142-5151
    [167]W. J. Hehre, R. F. Stewart, J. A. Pople. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys.1969,51 (6): 2657-2664
    [168]A. Schafer, C. Huber, R. Ahlrichs. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys.1994,100 (8):5829-5835
    [169]M. J. Frisch, J. A. Pople, J. S. Binkley. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys.1984,80 (7): 3265-3269
    [170]T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. Schleyer. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem.1983,4 (3):294-301
    [171]W. E. Hobbs. Infrared absorption spectra of chromyl fluoride and chromyl chloride. J. Chem. Phys.1958,281220-1222
    [172]S. D. Fleischman, S. L. Scott. Evidence for the pairwise disposition of grafting sites on highly dehydroxylated silicas via their reactions with Ga(CH3)3. J. Am. Chem. Soc. 2011,133 (13):4847-4855
    [173]Z. A. Taha, E. W. Deguns, S. Chattopadhyay. S. L. Scott. Formation of digallium sites in the reaction of trimethylgallium with silica. Organometallics.2006,25 (8):1891-1899
    [174]S. H. Strauss. Copper(I) and silver(I) carbonyls. To be or not to be nonclassical. J. Chem. Soc, Dalton Trans.2000, (1):1-6
    [175]A. J. Lupinetti, G. Frenking, S. H. Strauss. Nonclassical metal carbonyls:appropriate definitions with a theoretical justification. Angew. Chem. Int. Ed.1998,37 (15): 2113-2116
    [176]C. J. Brinker, R. K. Brow, D. R. Tallant, R. J. Kirkpatrick. Surface structure and chemistry of high surface area silica gels. J. Non-Cryst. Solids.1990,120 (1-3):26-33
    [177]A. Whitaker, J. W. Jeffery. The crystal structure of chromium hexacarbonyl. Acta Cryst. 1967,23 (6):977-984
    [178]Y. Wang, Y. Ohishi, T. Shishido, Q. Zhang, W. Yang, Q. Guo, H. Wan, K. Takehira. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange. J. Catal.2003,220 (2):347-357
    [179]C. Pak, G. L. Haller. Reversible coordination change of chromium in Cr-MCM-41 and Cr-MCM-48 studied by X-ray absorption near edge structure. Microporous Mesoporous Mater.2001,48(1-3):165-170
    [180]C. Engemann, J. Hormes, A. Longen, K. H. Dotz. An X-ray absorption near edge spectroscopy (XANES) study on organochromium complexes at the Cr K-edge. Chem. Phys.1998,237 (3):471-481
    [181]K.I. Pandya. Multiple-scattering effects in x-ray-absorption fine structure:chromium in a tetrahedral configuration. Phys. Rev. B.1994,50 (21):15509
    [182]F. A. Cotton, L. R. Falvello, E. L. Ohlhausen, C. A. Murillo, J. F. Quesada. Solid solutions of a Jahn-Teller compound in an undistorted host.2. High-Spin, Six-Coordinate Cr2+without Jahn-Teller distortion. Z. Anorg. Allg. Chem.1991,598 (1):53-70