用户名: 密码: 验证码:
以应急机制建管为导向的规模养殖疫情防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球频发的应急事件凸显出当代社会对进一步推进应急管理的迫切需求。在深刻总结国内外历史经验、科学分析全球公共安全形势的基础上,中国共产党和政府审时度势,做出了全面深入加强中国应急管理工作的重大决策。其中,中国共产党十六届三中全会、四中全会、五中全会和六中全会相继提出要“建立健全分类管理、分级负责、条块结合、属地为主的应急管理体制;形成统一指挥、反应灵敏、协调有序、运转高效的应急管理机制”。中国共产党十七大报告中也对进一步建立健全应急管理机制提出了明确的要求。应急管理机制建设管理的重要性在许多重要会议、报告、文件和法规条律中,都得到了明确和强调。2002年后,受规模效益、养殖条件和政策导向等因素的激励,中国规模养殖量占地区畜禽总量的比例,已由1990年代末的15%左右发展到目前的25%左右,少数地区已达40%。2009年,在规模养殖中极具代表性的生猪规模养殖与农户散养的年出栏头数比例,发展为61.3%比38.7%。快速发展的规模养殖业,为养殖企业(农户)带来了比种植业更多更快的经济效益,但粗放式经营模式伴随而来的还有养殖疫病的大规模爆发。这类疫病的爆发规律由原来的周期性、季节性、阶段性、单一性发展成为随气候、温湿度变化而变化的无季节性和骤发性、疫病发作反复性、疫病交叉变异性。疫情规模由局部发展成区域,甚或侵及全球。这种发展趋势既严重损害了养殖企业(农户)的经济利益,也把食品安全问题挂在了公众的忧虑之中,而且通过市场供给的不良影响对我国市场经济的健康发展带来了不稳定因素。这一切都使得规模养殖疫情应急形势变得愈发严峻。
     如何从实际出发,充分借鉴吸收国内外应急管理机制先进理念和技术,以及相关理论和方法,全面有效地分析出规模养殖疫情产生的原因和路径,针对当前规模养殖的实际重点问题,采取切实有效手段,从疫病爆发和蔓延的源头进行防范和治理,这是摆在我们面前一个亟待解决的重要问题。
     本文以应急管理机制的基础工作建设管理为导向,采用应急管理理论、饱和流理论和混合遗传算法、系统动力学(System Dynamics,简称SD)反馈仿真理论和技术、以及企业社会责任理论,提出应急管理机制创新的五个薄弱环节,坚持“预防和治理相结合,预防为主”的疫情应急应对理念,落实到规模养殖疫情防治中消除食物链污染和环境污染这两个重要方向开展研究,并以江西银河杜仲绿色规模养殖区域为研究案例进行理论和实际相结合。
     本文主要研究成果如下:
     1.对规模养殖疫情应急管理机制的创新方向进行了研究。
     从应急管理机制内涵和体系框架的新认识、发达国家应急管理机制的特点和成功举措、我国规模养殖疫情应急现况及应急建管矛盾、以及我国应急管理机制薄弱环节建设这四个方面,对规模养殖疫情应急管理机制进行了研究。
     2.提出了求上下界网络中最小流的高效算法,在此基础上和原提出的求最大流算法相结合,提出了求紧急网络中最小饱和流的混合遗传算法。
     在建立有上下界网络的最大流与最小流的一一对应关系的基础上,基于有上下界网络最大流最小截算法,给出了求有上下界网络的最小流的高效算法;基于最大流与最大饱和流的等价关系,给出了求紧急网络的最大饱和流的高效算法;基于稳态遗传算法作框架、有上下界网络的最小流算法做解码器,给出了求紧急网络的最小饱和流的混合遗传算法。该混合遗传算法,利用了最小饱和流问题的特殊网络结构,在编程实现、计算时间、计算所需内存、以及全局寻优能力等方面有好的性能,是求解最小饱和流问题的稳健有效方法。
     3.利用最大流和最小饱和流混合遗传算法,从实际需求出发,对大规模沼液处理流程进行了三层目标轮换六级储存净化网络设计,为高效经济的解决大型沼气工程所形成的沼液二次污染问题提供了一种便利可行的方法。
     利用已提出的最大流和最小饱和流网络算法,结合生态系统管理的理念,以江西银河杜仲绿色规模养殖基地二次污染问题为实证研究对象,对该基地沼气工程所产沼液的沼液分流、延迟过滤、自然流好氧、储存输送工艺流程,依据实际地理地形,进行了三层目标轮换六级储存的网络设计。这个网络流程设计在治理大规模沼液二次污染问题上,对工艺流程设计决策的科学合理作出了重要保障,有利于高效经济地实现大型沼气工程区域内沼液零污染最小排放量的核定,为更好地解决大中型规模养殖的沼液二次污染问题提供了一个新的分析方法。
     4.提出了反馈调控参数入树逐步建模法,用此方法进行了SD动态反馈仿真分析,从定量角度对开发利用规模养殖液态生物质资源有利于污染防治和绿色食品原料供给进行了有效分析和论证。
     以银河杜仲公司规模养殖所产的猪尿与冲栏水共同构成的液态生物质资源开发利用为研究对象,采用了反馈调控参数入树逐步建模法,通过把调控参数设置为常数,逐步建立了液态生物质资源开发利用系统中的7个流位变量(日均存栏数、年猪尿量、场猪尿年产沼气量、场猪尿沼气可发电量、年开发猪尿沼液中的所含的氮、磷、钾量)的流率基本入树模型,并逐一进行初步仿真;然后通过反馈调控参数函数模型,建立这7棵入树的反馈结构仿真模型,继而再进行综合仿真;根据仿真结果和反馈结构图,提出了3条相应的管理对策。
     5.通过SD演化博弈分析框架,对有限理性条件下、人参与的环境污染防治系统进行了复杂系统主导结构、环境污染治理随机稳定状态和环境污染防治策略矩阵等的刻画和分析,并提出了实践环保责任的政策建议。
     在辨析农业企业社会责任涵义、特点和存在的问题的基础上,以银河杜仲公司及所在区域为研究对象,从我国农业企业当前和今后较长时期内的一个主要社会责任----环境污染防治角度入手,通过SD演化博弈分析框架对以政府、农业企业和公众为主体的疫情防治环境保护系统进行了系统主导结构刻画分析,定义了环境污染治理的随机稳定状态,并对环境污染防治进行了策略矩阵分析,从而提出了以政府、农企和公众为主要责任主体共同实践环保责任的政策建议。
     6.依托前述方法和研究结果,围绕规模养殖疫情预防治理的两个重要方向开展研究。
     为了夯实应急管理机制工作的基础,着重化解当前规模养殖疫情困境,从两个重要方向开展研究:(1)消除环境污染。以开发猪尿与冲栏水共同构成的液态生物质资源,建立多级储存净化网络,促进多渠道资源开发。并结合银河杜仲公司这个实际案例,进行了杜仲猪用饲料种植生产饲养的SWOT分析、银河杜仲沼气发电成功案例分析、以及沼液多级延迟净化输送网络的实证分析和阐述。(2)消除食物链源头污染。开发本地特色资源种植生产无污染饲料,消除食物链源头污染。
The frequent occurrence of emergency event in the world highlights that the modern society needs the emergency management urgently. Based on the summary of historical experience and the scientific analysis of the public security situation, Chinese government makes a major policy decision of comprehensively strengthen emergency management. The suggestion of "establish and improve the classification management, levels of responsibility, compartmentalized integration of territoriality based emergency management system, the formation of a unified command, responsive, coordinated, orderly and efficient operation of emergency management mechanism" were proposed in the report of the party's sixteen session of third, fourth, Fifth Plenary Session of Chinese Central Committee. The specific demand of further improving emergency management mechanism has also been put forward in the Seventeenth Party Congress report. Furthermore, the importance of the construction of emergency management mechanism is explicit and stressed repeatedly in the government meetings, reports and related regulations and documents. After2002, affected by factors such as economies of scale, farming conditions and policy-orientation, the proportion of the scale farming enlarged from15%in the late1990s to25%now, a few areas has even reached40%. In2009, the ratio of pig's production in the scale farms and in small farms was developed to61.3%to38.7%. The rapid development of large-scale breeding industry brought more and faster economic benefits than planting to farming enterprises (farmers). However, the extensive breeding model is always accompanied with widespread outbreaks of livestock disease. The livestock epidemic disease is always variability of seasonal, sudden, repeated occurrence, and epidemics cross. The epidemic spreads to the total area, even invaded the entire world. This situation is not only seriously damaged the economic interests of the farming enterprise (farmers), but also make the public have to worry about the issue of food safety. For any more, it causes the uncertainty of the healthy development of China's market economy. All of this makes the outbreak of large-scale breeding emergency situation to become increasingly severe.
     It is an important an urgent issue of how to proceed from reality, to fully draw on emergency management mechanisms, advanced concepts and technologies as well as the related theories and methods at home and abroad, the actual focus of the current large-scale breeding problems, take effective means, prevention and treatment, from the source of disease outbreaks and spread of this important issue before us an urgent situation, to take practical and effective means of prevention and governance and the source of the spread of outbreaks based on The actual focus of the current large-scale breeding situation.
     Guided by the basic construction and management work of emergency management mechanism, using the emergency management theory, saturated flow theory and hybrid genetic algorithm, Feedback simulation technology of System Dynamics, and the theory of corporate social responsibility, five weak links of the emergency management mechanism is identified in this paper. The study is conducted by the means of a combination of theory and Practice with the case of Jiangxi Yinhe Eucommia green scale breeding region. We have designed a three goals rotation of six storage processes biogas slurry planting network system by the proposed hybrid genetic algorithm, to realize the goal of the zero pollution of anaerobic liquid within the breeding region and solve the problem of the second pollution of anaerobic liquid. We simulate the development of the biomass in bio-liquid with the SD rate variable fundamentals in-tree modeling approach. We characterize and analyze the game behavior of the government, agricultural enterprises and the public in the process of prevention and control of pollution with System dynamics and Evolutionary game analysis approach, and put forward the corresponding policy recommendations.
     The main conclusions of this dissertation are as follows:
     1. Study on the innovation direction of large-scale breeding emergency management mechanism.
     Based on new analysis and definition of the implication and systematic framework constitution of emergency management mechanism, and combined with the current practical condition of emergency management work in china, innovation analysis focused on five critical weak points, such as risk management and insurance mechanism, information management mechanism, information publication and public opinion intervention mechanism, interest appeal mechanism, supervisory evaluation and accountability mechanism, which must be set up and improved urgently during the construction process of emergency management mechanism.
     2. Design an algorithm to find the minimum flow in the upper and lower bounds network, and give a hybrid genetic algorithm of finding the minimum saturated flow in the network of emergency.
     In emergency network, the saturated flow is the feasible flow whose flow amount cannot be enhanced any more by only increasing flows along the forward direction, and the minimum saturated flow is the saturated flow with minimal flow amount among all the saturated flows. Minimum saturated flow problem (MSFP) is to find the minimum saturated flow and its corresponding minimal flow amount in emergency network, which is a NP-hard problem. In this paper, MSFP is formulated using a combinatorial optimization model. Based on steady-state genetic algorithm as framework, and minimum flow algorithm as decoder, a hybrid genetic algorithm named MSFP-HGA is proposed as a solution method of the model. Taking advantage of special network structure of MSFP, the MSFP-HGA algorithm has good performance in the sense of being implemented on computer, computational time, required memory for computation, and ability to search global optimum. Numerical experiments demonstrate that the MSFP-HGA algorithm is an efficient and robust method to solve MSFP.
     3. Design a three goals rotation of six storage network for large-scale biogas slurry treatment process based on the maximum flow and minimum saturated flow mixed Genetic Algorithm, as well as the actual demands.
     Secondary environmental pollution of scale breeding aroused by the rural biogas projects is the key issue in current rural environmental pollution management, which also contains the agriculture industrialization development and affects the Chinese characteristics agricultural modernization process. A case, which is a six storages network system divided into three layers has been studied on resolving secondary environmental pollution from YHDZ scale breeding ranch with algorithm of Maximum Flow and Minimum Saturated Flow and an efficient method is presented to find the minimum amount of outflow per day for biogas slurry without pollution in scale breeding.
     4. Present a rate variable fundamental in-tree progressively modeling approach, and with which, we do a Simulation Analysis of Scale Pig Breeding Liquid Biomass Development to demonstrate that the development and utilization of liquid resources conducive to pollution prevention and green food raw material supply.
     Pig manure is waste biomass resources; it is rich in organics and fertilizer ingredients such as Nitrogen, phosphorus, potassium. Scale pig breeding liquid aquaculture biomass resources are the waste biomasses mainly in pig urine. The manure and urine of pigs breeding in YHDZ are separated, and the manures are processed into organic fertilizer for sale. The development and utilization of the large quantity of liquid waste is an issue to be investigated. We study the issue of Scale Pig Breeding Liquid Biomass Development of YHDZ corp. via simulation analysis. Based on the record and five-year,10-year development plan of YHDZ, by using the rate variable fundamental in-tree progressively modeling approach, we develop a simulation model with seven in-trees.
     5. Demonstrate Solutions close to the actual situation with the SD evolutionary game analysis framework.
     Environmental protection is one of the important contents in corporate social responsibility of agricultural enterprises. On the base of the discerning of meaning, characters and problems of agricultural enterprises social responsibility, a main feedback frame model of YHDZ ecosystem environmental pollution has been set up with System Dynamics. In the portrayal of the environmental pollution causes, the root causes of environmental pollution has been found by the definition of stochastic stable state and analysis of policy matrix of environmental pollution control. Policy suggestions have been proposed from the point of agricultural enterprises, government and society in order to help agricultural enterprises to practice their social responsibility.
     6. Study on the two important directions of the large-scale breeding epidemic prevention.
     (1) To eliminate the environmental pollution. Develop pig urine red bar water constitute the liquid biomass resources to establish a multi-level storage purify Internet to promote the development of multi-channel resources. Combined with the actual case of Yinhe Eucommia corp., conduct a SWOT analysis of The Eucommia pig feed plant production feeding, conduct a case analysis of biogas generation, as well as the empirical Analysis of the biogas slurry multi-stage delay purify the empirical analysis of the transport network and elaborated.(2) To eliminate the contamination of the supply of the food chain. Develop unique local resources cultivation producing clean feed to eliminate food chain source pollution.
引文
[1]闪淳昌等.对我国应急管理机制建设的总体思考[J].国家行政学院学报,2011,(1).
    [2]李宁等.中国养殖业可持续发展战略研究综合报告[J].中国家禽,2012,vol.34(11).
    [3]李卫生等.加强对规模养殖场的防疫监管工作刻不容缓[J].中国动物保健,2007,(6).
    [4]农业部科技教育司.中国农村能源年鉴[M].北京:中国农业出版社,2011年.
    [5]JosePh W. Pfeifer. Commanding in Time Incident Management Harvard university, 10\15\2009.
    [6]劳伦斯.巴顿,符彩霞译.组织危机管理[M].清华大学出版社2002.
    [7]诺曼.奥古斯丁等,危机管理[M].哈佛商学院出版社,2001.
    [8]罗伯特.希斯著.王成,宋炳辉,金瑛泽.危机管理[M].北京:中信出版社,2001
    [9]Krstine M.Gebbie; JoanValas; StePhen Morse. Roleof Exercises and Drills in the Evaluation of Publie Health in Emergeney Response[J]. Prehospital and Disaster Medieine.2006·(10) P91-93.
    [10]Mitroff. Crisis Management and Enviornpnentalism:A Natural Conflict. California Management Rewiew[M].1994,36,(2):101-113.
    [11]Stuart Batho, Gwyndaf Williams, Lynne Russell. Crisis Management to Controlled Recovery: The Emergency Planning Response to the Bombing of Manchester City Centre. Disasters,1999, 23(3):217-233
    [12]Ute J. Dymon.An Analysis of Emergency Map Symbology.International Journal of Emergency Management,2003,1(4):227-237
    [13]Ross Prizzia.Agency coordination and the role of the media in disaster management in Hawaii.International Journal of Emergency Management,2005,2(4):292-305
    [14]范维澄.国家突发公共事件应急管理中科学问题的思考和建议[J].中国科学基金,2007,2.
    [15]郭济.政府应急管理实务[M].北京:中共中央党校出版社,2004.
    [16]李杰.公共危机管理机制的构建[J].哈尔滨商业大学学报(社会科学版),2005,(1).
    [17]陈玮.公共危机管理机制建设的现实思考[J].公安学刊,2007,(10).
    [18]左威.公共危机管理机制的构建路径研究[D].成都:西南交通大学,2008.
    [19]张燕.我国社会建立公共危机管理机制浅议[J].中共杭州市委党校学报,2008,(3).
    [20]王革.公共危机管理运行机制整合框架构建[J].理论与现代化,2010,(5).
    [21]王宏伟.重大突发事件应急机制研究[M].北京:中国人民大学出版社,2010.
    [22]章先华等.论我国应急管理机制创新——从疫情应急角度分析[J].江西社会科学,2012,(2).
    [23]郭济,高小平,沈荣华.中央和大城市政府应急机制建设[M].北京:中国人民大学出版社,2005.
    [24]李志祥,刘铁忠,王梓薇.中美国家应急管理机制比较研究[J].北京理工大学学报(社会科学版).2006(05)
    [25]刘爱华等.中美日突发公共事件应急管理机制的比较研究[J].工业安全与环保,2010,(9).
    [26]程卫帅,黄薇,刘丹.中美水利突发公共事件应急管理机制比较分析[J].人民长江.2009(08)
    [27]郭欣.浅议外国突发性环境事件应急管理机制[J].法制与社会.2009(04)
    [28]刘亚娜,罗希.日本应急管理机制及对中国的启示——以“3.11地震”为例[J].北京航空航天大学学报(社会科学版).2011(05)
    [29]Bondy, J. A., Murty, U. S. R. (1976). Graph Theory with Applications. American Elsevier, New York
    [30]Bollobas, B. (1998). Modern Graph Theory. Springer-Verlag New York, Inc..
    [31]Ahuja, R. K., Magnanti, T. K., Orlin, J. B. (1993). Networks Flows:Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, N.J.
    [32]Calvete, H.I. (2003). Network simplex algorithm for the general equal flow problem. European Journal of Operational Research,150,585-600.
    [33]Ford, J.L., Fulkerson, D.R. (1962). Flows in Networks. Princeton University Press, Princeton, N.J.
    [34]Fujishige, S. (2003). A maximum Flow algorithm using MA ordering. Operations Research Letters,31,176-178.
    [35]Kamburowski, J. (1995). On the Minimum Cost Project Schedule. Omega,23 (4),463-465.
    [36]Russell, R. S., Taylor,Ⅲ B. W. (1998). Operations Management:Focusing on Quality and Competitiveness (2nd ed.). Prentice Hall, Inc..
    [37]Xie F., Jia Y., Jia R.(2012), Algorithm for Minimum Cost Maximum Flow in Transportation Network, Journal of Convergence Information Technology,7(7),165-173.
    [38]Xie F., Jia Y., Jia R.(2012), Duration & Cost Optimization for Transportation Problem, Advances in Information Sciences and Service Sciences,4(6),219-233,2012.
    [39]Ning Xuanxi, Shi Yongping, "The Minimum Flow Problem of a Network in the Emergency Situation", In Proceedings of ICSSSE'93, pp.550-558,1993.
    [40]Ning, X. (1994a). Research on the Local Blockage of a Transportation Network and its Minimum Flow Capacity. Transactions of Nanjing University of Aeronautics and Astronautics,11 (1),60-66.
    [41]Ning, X. (1994b). Research on the Blocking Flow in a Transportation Network (Ⅰ). Transactions of Nanjing University of Aeronautics and Astronautics,11(8),89-97.
    [42]Ning, X. (1995). Stochastic Flow in a Transportation Network and Blocking Flow Theory. In Proceedings of ICOTA'95, Chengdu (Vol.1, pp.407-414).
    [43]Ning, X. (1996). Research on the Blocking Flow in a Transportation Network (Ⅱ)-Blocking Cutset of a Network and its Determination. Transactions of Nanjing University of Aeronautics and Astronautics,13 (1),97-101.
    [44]宁宣熙,有向网络的最小流问题及其分枝定界解法,系统工程,14(5):61-66,1996.
    [45]宁宣熙,求解网络最小流的双向增流算法,系统工程,15(1):50-57,1997.
    [46]宁宣熙.求解网络最小流问题的图单纯形算法[J].南京航空航天大学学报,1997,29(5):477-482.
    [47]宁宣熙.堵塞流理论及其应用[M].北京:科学出版社,2004.
    [48]Ning Xuanxi, Ning Angelika, "Blocking Flow Theory-a new Research Field of Uncertainty and Multiple Values in Network Flow Programming", In Proceeding of the third annual conference on uncertainty system, pp.112-119,2005.
    [49]M. Iri, "Theory of uncontrollable flows—a new type of network-flow theory as a model for the 21th century of multiple values", Computers and Mathematics with Applications, vol.35, pp. 107-123,1998.
    [50]M. Shigeno, I. Takahashi, Y. Yamamoto, "Minimum Maximal Flow Problem:An Optimization over the Efficient Set", Journal of Global Optimization, vol.25, pp.425-443,2003.
    [51]Yamamoto, Y., Zenke, D. (2007). Outer approximation method for the minimum maximal flow problem. Journal of the Operations Research Society of Japan,50 (1),14-30.
    [52]Yixun Lin, Xianglu Li, Junqiang Deng, "The Minimum Saturated Flow Problem in Emergency Networks", OR Transactions, vol.5, no.2, pp.12-20,2001.
    [53]吴薇薇,宁宣熙,运输网络中最小饱和流的求解,数学的实践与认识,36(9):2119-224,2006.
    [54]吴薇薇,宁宣熙.有向网络中无环最小饱和流问题及其算法[J].南京航空航天大学学报,2007,39(5):685-690.
    [55]Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
    [56]De Jong, K. A. (1975). An analysis of the behaviour of a class of genetic adaptive systems. University of Michigan, Ann Arbor, MI, doctoral dissertation.
    [57]C. Reeves, "Genetic algorithms for the operation researcher", INFORMS Journal on Computing, vol.9, no.3, pp.231-250,1997.
    [58]P. Borisovsky, A. Dolgui, A. Eremeev, "Genetic algorithms for a supply management problem:MIP-recombination vs greedy decoder", European Journal of Operational Research, vol.195, pp.770-779,2009.
    [59]Fanrong Xie, Renan Jia, "Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm", Computers & Industrial Engineering (2012), http://dx.doi.org/10.1016/j.cie.2012.04.016
    [60]Xianhua Zhang, Fanrong Xie, Renan Jia, "Hybrid Genetic Algorithm for Minimum Saturated Flow in Emergency Network", International Journal of Advancements in Computing Technology (ISSN:2005-8039), accepted.
    [61]Fanrong Xie, Renan Jia, Guangxing Zeng, "On Minimum Duration Project Schedule", In 4th International Conference on New Trends in Information Science and Service Science, pp.436-444, 2010.
    [62]What is System Dynamics? System Dynamics Society. Available online at http://www.systemdynamics.org/
    [63]王其藩.系统动力学理论与方法的新进展[J].系统工程理论方法应用,1995,4(2):6-12
    [64]王其藩.高级系统动力学[M].北京:清华大学出版社,1995
    [65]贾仁安,丁荣华.系统动力学—反馈动态性复杂分析[M].北京:高等教育出版社,2002
    [66]胡玲,贾仁安.强简化流率基本入树模型及枝向量矩阵反馈环分析法[J].系统工程理论与实践,2001,21(11):83-88.
    [67]贾仁安涂国平邓群钊,贾晓菁,贾伟强.“公司+农户”规模经营系统的反馈基模生成集分析[J].系统工程理论与实践,2005,25(12):107-117.
    [68]王翠霞,贾仁安.中国中部规模养殖沼气工程系统顶点赋权图分析[J].南昌大学学报(理科版)2006.30(6):538-544
    [69]王翠霞,贾仁安.复杂系统顶点赋权因果关系图模型及其应用研究[J].安徽农业科学.2007,35(6):1574-1576,1596
    [70]Jia Renan, Wang Cuixia,et.al. Approaches of SD feedback dynamic complexity analysis to complex system [C].SS-MS-SD conference,2007, Oct.19-21.
    [71]贾仁安,伍福明,徐南孙.系统动力学流率基本入树建模法[J].系统工程理论与实践,1998,18(6):6-11.
    [72]贾仁安,徐南孙,伍福明等.作流率基本入树嵌运算建立主导结构反馈模型[J].系统工程理论与实践,1999,19(7):69-76.
    [73]贾仁安,胡玲,丁荣华等.系统动力学简化流率基本入树模型及应用[J].系统工程理论与实践,2001,21(10):137-144.
    [74]贾仁安.系统动力学流率基本入树建模法及应用[A].系统科学与工程研究2000年论文优选文集[C].上海:上海科学教育出版社,2000.
    [75]贾仁安,伍福明,徐南孙.系统动力学流率基本入树建模法[J].系统工程理论与实践,1998,18(6):6-11.
    [76]贾仁安,徐南孙,伍福明等.作流率基本入树嵌运算建立主导结构反馈模型[J].系统工程理论与实践,1999,19(7):69-76.
    [77]贾仁安,胡玲,丁荣华等.系统动力学简化流率基本入树模型及应用[J].系统工程理论与实践,2001,21(10):137-144.
    [78]贾仁安.系统动力学流率基本入树建模法及应用[A].系统科学与工程研究2000年论文优选文集[C].上海:上海科学教育出版社,2000.
    [79]M. Anjali Sastry, John D. Sterman. Desert Island Dynamics:An Annotated Survey of the Essential System Dynamics Literature System Dynamics Group, Sloan School of Management, MIT Cambridge, MA USA 01242,1992, http://web.mit.edu/jsterman /www/DID.html
    [80]Jay W.Forrester. The Beginning of System Dynamics.Banquet Talk at the international meeting of the System Dynamics Society Stuttgart, GermanyJuly 13,1989
    [81]Jay W. Forrester. Industrial Dynamics:A Breakthrough for Decision Makers[J]. Harvard Business Review,1958,36(4):37-66.
    [82]Jay W. Forrester. Industrial Dynamics[M]. Cambridge MA:Productivity Press,1961.
    [83]Jay W. Forrester. Principles of systems [M]. Cambridge MA:Productivity Press,1968.
    [84]Jay W. Forrester. Urban Dynamics[M]. Cambridge MA:Productivity Press,1969.
    [85]Mass N.J, ed. Readings in Urban Dynamics Vol 1[M]. Cambridge MA:Productivity Press,1974.
    [86]Schroeder W. W., Ⅲ, R.E.Sweeney,& L.E.Alfeld, eds. Readings in Urban Dynamics Vol. Ⅱ [M]. Cambridge MA:Productivity Press,1975
    [87]Alfeld L.E.& A. K. Graham. Introduction to Urban Dynamics [M]. Cambridge MA: Productivity Press,1976.
    [88]Jay W. Forrester. System dynamics—a personal view of the first fifty years [J]. Syst. Dyn. Rev.23 (2/3):345-358,(2007)
    [89]David C.Lane. The power of the bond between cause and effect:Jay Wright Forrester and the field of system dynamics[J] Syst. Dyn. Rev.23,95-118, (2007)
    [90]Jay W. Forrester. World Dynamics [M].2 ed.Cambridge MA:Productivity Press,1973.
    [91]Meadows Donella H., Meadows Dennis L., J. Randers,& W.W.Behrens Ⅲ. The Limits to Growth:A Report for the Club of Rome's Project on the Predicament of Mankind [M]. New York: Universe Books,1972.
    [92]Meadows Dennis L., Meadows Donella H., Toward Global Equilibrium:Collected Papers[M].Cambridge M.A.Productivity Press,1974.
    [93]Meadows D.L., W.W. Behrens Ⅲ, D.H.Meadows, R.F.Naill, J.Randers, E.K.O.Zahn. Dynamics of Growth in a Finite World[M]. Cambridge MA:Productivity Press,1974.
    [94]Meadows D., J. Richardson & G. Bruckmann. Groping in the Dark. New York:Wiley and Sons.1982.
    [95]Meadows Donella H, Meadows Dennis L, Randers J. Beyond the Limits:Confronting Global Collapse, Envisioning a Sustainable Future [M]. Post Mills, Vermont, USA,Chelsey Green Publishing Co.,1992.
    [96]John D.Sterman.1985. A Behavioral Model of the Economic Long Wave[J]. Journal of Economic Behavior and Organization 6 (1):17-53.
    [97]The Economic Long Wave:Theory and Evidence. System Dynamics Review 1986,2 (2): 87-125.
    [98]John D.Sterman. Deterministic Chaos in an Experimental Economic System[J]. Journal of Economic Behavior and Organization 1989,12:1-28.
    [99]SAEED K. The Dynamics of Economic Growth and Political Instability in the Developing Countries[J].System Dynamics Review,1986,2(1):20-35.
    [100]Jay W.Forrester. The System Dynamics National Model:Macrobehavior from Microstructure. In Computer-Based Management of Complex Systems:International System Dynamics Conference, ed. P. M. Milling & E. O. K. Zahn. Berlin:Springer-Verlag.
    [101]John D.Sterman. Business dynamics----Systems Thinking and Modeling for a Complex World[M].New York:Irwin McGraw-Hill,2000
    [102]Roger F.Naill. A system dynamics model for national energy policy planning[J].System Dynamics Review,1992,8 (1):1-19.
    [103]Kambiz Maani and Robert Cavana. Systems Thinking and Modeling----Understanding change and complexity [M]. Prentice Hall,2000
    [104]Robert Y. Cavana and Leslie V. Clifford. Demonstrating the utility of system dynamics for public policy analysis in New Zealand:the case of excise tax policy on tobacco[J]. Syst. Dyn. Rev. 22,321-348,(2006)
    [105]Cooper K.G. Naval ship production:A Claim Settled and a Framework Built [J]. Interfaces, 1980,10(6):20-36
    [106]Kim Warren.Competitive Strategy Dynamics[M]. John WILEY & Sons, Ltd, England.
    [107]Improving strategic management with the fundamental principles of system dynamics [J]. Syst. Dyn. Rev.21,329-350, (2005)
    [108]Peter M. Senge. The fifth discipline—the art and practice of the Learning Organization[M]. Century Business,1993.
    [109]John D.Sterman. Modeling Managerial Behavior:Misperceptions of Feedback in a Dynamic Decision Making Experiment [J]. Management Science,1989,35(3):321-339.
    [110]Disney S.M., Potter A T, Gardner B.M. The Impact of Vendor Managed Inventory on Transport Operation [J]. Transportation Research E,2003,39(5):363-380.
    [111]Rachel Croson, Karen Donohue. Upstream versus downstream information and its impact on the bullwhip effect[J]. Syst. Dyn. Rev.21,249-260, (2005)
    [112]Edward G.Anderson Jr, Douglas J. Morrice, and Gary Lundeen. The physics of capacity and backlog management in service and custom manufacturing supply chains[J]. Syst. Dyn. Rev.21, 217-247,(2005)
    [113]Henk Akkermans, Nico Dellaert. The rediscovery of industrial dynamics the contribution of system dynamics to supply chain management in a dynamic and fragmented world[J] Syst. Dyn. Rev.21,173-186,(2005)
    [114]Paulo Goncalves, Jim Hines, John Sterman. The impact of endogenous demand on push-pull production systems[J]. Syst. Dyn. Rev.21,187-216, (2005)
    [115]Hakan Yasarcan, Yaman Barlas.A generalized stock control formulation for stock management problems involving composite delays and secondary stocks[J]. Syst. Dyn. Rev.21, 33-68,(2005)
    [116]傅烨,郑绍濂.供应链中的牛鞭效应——成因及对策分析[J].管理工程学报,2002,16(1):82-83.
    [117]李稳安,赵林度.牛鞭效应的系统动力学分析[J].东南大学学报,2002,4(10):96-98.
    [118]黄丽珍,李旭,王其藩.超市配送中心订货策略优化研究[J].同济大学学报(自然科学版),2006,34(2):275-279
    [119]张力菠,韩玉启,陈杰.供应链管理的系统动力学研究综述[J].系统工程,2005,23(6):8-15
    [120]Richard GDudley. Modeling the effects of a log export ban in Indonesia[J] Syst. Dyn. Rev. 20,99-116,(2004)
    [121]Andrew Ford. Global Warming and System Dynamics [A]. In Proceedings of the 2007 International System Dynamics Conference[C], System Dynamics Society.
    [122]Ali Saysel, Firat Incioglu.CO2 Abatement and Trade with Economic Growth in the Long Term:Experimental Analysis[A].In Proceedings of the 2007 International System Dynamics Conference[C], System Dynamics Society.
    [123]Asmeret Bier, Andrew Ford. A Classroom Simulation of a Tradable Green Certificate Market and Implications for Model Development[A].In Proceedings of the 2007 International System Dynamics Conference[C], System Dynamics Society.
    [124]Isaac Dyner, Santiago Arango, Carlos Franco. Can a Reliability Charge Secure Electricity Supply? An SD-based assessment of the Colombian power market[A].In Proceedings of the 2007 International System Dynamics Conference[C], System Dynamics Society.
    [125]Julia Martinez Fernandez, Miguel Angel Esteve Selmat. The dynamics of water scarcity on irrigated landscapes:Mazarron and Aguilas in south-eastern Spain[J]. Syst. Dyn. Rev.20, 117-137,(2004)
    [126]Erling Moxnes. Misperceptions of basic dynamics:the case of renewable resource management[J] Syst. Dyn. Rev.20,139-162, (2004)
    [127]Lisa J.Faust, Rosemary Jackson, Andrew Ford, Joanne M.Earnhardt, Steven D.Thompson. Models for management of wildlife populations:lessons from spectacled bears in zoos and grizzly bears in Yellowstone[J]. Syst. Dyn. Rev.20,163-178, (2004)
    [128]Steve Arquitt Xu Honggang and Ron Johnstone. A system dynamics analysis of boom and bust in the shrimp aquaculture industry[J] System Dynamics Review Vol.21, No.4, (Winter 2005):305-324
    [129]Jorgen Randers. From limits to growth to sustainable development or SD (sustainable development) in a SD (system dynamics) perspective [J], System Dynamics Review,2000, 16(3):213-224
    [130]Steven Arquitt, Ron Johnstonet. A scoping and consensus building model of a toxic blue-green algae bloom[J]. Syst. Dyn. Rev.20,179-198, (2004)
    [131]黄振中,王艳,李思一,吴叶君.中国可持续发展系统动力学仿真模型[J].计算机仿真,1997,14(4):3-7
    [132]王艳,李思一,吴叶君,丁凡,黄振中.中国可持续发展系统动力学仿真模型——社会部分[J].计算机仿真,1998,15(1):5-7
    [133]丁凡,王艳,李思一,吴叶君,喻顺祥,黄振中.中国可持续发展系统动力学仿真模型——环境部分[J].计算机仿真,1998,15(1):8-10
    [134]吴叶君,王艳,黄振中,李思一,丁凡.中国可持续发展系统动力学仿真模型——能源部分[J].计算机仿真,1998,15(1):
    [135]程叶青,李同升,张平宇.SD模型在区域可持续发展规划中的应用[J].系统工程理论与实践,2004,12:13-18
    [136]刘波,顾培亮,陆海波.从系统动力学角度研究海洋的可持续发展[J].天津大学学报(社会科学版),2004,6(1):28-32
    [137]李娟.自然保护区生态经济社会协调发展的SD模型研究——以贵州草海自然保护区为例[J].贵州师范大学学报(自然科学版),1999,17(4):46-51.
    [138]林年丰,王娟,汤洁,孙平安.农业生态环境系统的优化研究——以吉林西部平原长岭县为例[J].吉林大学学报(地球科学版),2004,34(1):111-118
    [139]宋世涛,魏一鸣,范英.中国可持续发展问题的系统动力学研究进展[J].中国人口、资源与环境,2004,14(2):42-48.
    [140]徐南孙,贾仁安,王禾丘能源系统生态工程研究[M].南昌:江西科学技术出版社,1998.
    [141]Wang Cuixia. Using System Dynamics to Analyze Policy Options for Sustainable Development of Pig Farming in Rural Areas of Center China[J] Journal of Systems Science and Decision Science,2007, Vol.2, No.4, Published by Darwin &David Int'l Affairs Inc.,U.S.A:381-392
    [142]贾仁安,王翠霞,涂国平,邓群钊.规模养种生态能源工程反馈动态复杂性分析[M].科学出版社,2007
    [143]车越,张明成,杨凯基于SD模型的崇明岛水资源承载力评价与预测[J].华东师范大学学报(自然科学版),2006,6:67-74
    [144]王翠霞,贾仁安.中部农村规模养殖生态系统管理策略的系统动力学仿真分析[J].系统工程理论与实践2007,27(12):158-169.
    [145]王翠霞,规模养殖循环经济增长上限系统反馈分析[J].系统工程.2007,25(5):66-71
    [146]涂国平.基于系统动力学的江西省农业能源循环经济系统研究[D].南昌大学,2005
    [147]管春.互联网环境下农产品营销创新研究[D].南昌大学,2005
    [148]贾伟强.基于反馈动态复杂性分析的“公司+农户”组织模式的合作机制研究[D].南昌大学,2006
    [149]邓群钊.中部丘陵地区粮食安全和农民增收矛盾问题的系统分析——以兰坡矛盾问题为例[D].南昌大学,2006
    [150]黄志坚.农村致富带头人成长因素和作用分析[D].南昌大学,2007
    [151]刘宏杰.边疆民族地区突发事件应急机制研究[D].中央民族大学,2010.
    [152]钟开斌.应急管理”机制”辨析[J].中国减灾,2008,(4).
    [153]曹杰,杨晓光,汪寿阳.突发公共事件应急管理研究中的重要科学问题[J].公共管理学报,2007,(02).
    [154]陈为能.美国公共卫生管理经验的借鉴[J].中国卫生事业管理,2003,(7).
    [155]薛澜.危机管理的国际借鉴[J].中国行政管理,2003,(8).
    [156]闪淳昌,周玲,方曼.美国应急管理机制建设的发展过程及对我国的启示[J].中国行政管理.2010(08)
    [157]李卫生等.加强对规模养殖场的防疫监管工作刻不容缓[J].中国动物保健,2007,(6).
    [158]侯艳霞.浅析家禽饲养环境与禽病防制[J].中国畜牧兽医文摘.2011(01)
    [159]左晓磊,韩爱云.影响畜产品安全的饲料因素[A].农产品质量安全与现代农业发展专家论坛论文集[C].2011
    [160]于梅英.饲料生物性污染及其控制[J].现代农业科技.2010(04)
    [161]许新新.影响我国饲料安全的因素及解决措施[J].安徽农业科学.2007(19)
    [162]武金凤,张聚美,阴竹梅.影响饲料安全的主要因素及控制措施[J].饲料工业.2003(04)
    [163]张蕾,尹绪贵,季作善.饲料安全中的几个问题[J].兽药与饲料添加剂.2007(02)
    [164]贾树英,张忠远,单安山.饲料安全的影响因素及控制措施[J].黑龙江畜牧兽医.2005(07)
    [165]何小娥,牛国红.影响饲料安全的因素及对策[J].中国畜禽种业.2009(04)
    [166]侯小锋.2009年全球饲料业全景:中国领导全球饲料业复苏[J].中国畜牧杂志,2010,46(2):13-15.
    [167]单安山.饲料资源开发利用与节能减排[J].饲料与畜牧.2011(11)
    [168]杜红岩;赵戈;卢绪奎.论我国杜仲产业化与培育技术的发展[J].林业科学研究.2000(6)
    [169]郭宝林;刘金亮;孙福江等.杜仲的开发利用前景及规范化生产基地建设[J].河北林业科技.2006(S1)
    [170]孙菊英.畜禽规模养殖场污染治理现状及对策[J].畜禽业.2005(09)
    [171]江浩军,黄玉,刘永恒.畜禽规模养殖对环境的污染与对策[J].上海畜牧兽医通讯.2010(06)
    [172]苗长生.浅谈农村畜禽养殖业环境污染与防治对策[J].黑龙江环境通报.2007(02)[5]孙菊英.畜禽规模养殖场的污染治理[J].浙江畜牧兽医.2005(06)
    [173]刘旭霞.射阳县畜禽养殖污染现状及对策措施[J].污染防治技术.2010(06)
    [174]顾旭萍,许国平,陈刚,俞小红.苏州市环太湖畜禽养殖污染治理存在问题及建议[J].上海畜牧兽医通讯.2011(01)
    [175]杨翘强.畜禽养殖场污染治理状况分析与对策[J].中国动物检疫.2006(11)
    [176]崔秀丽.畜禽养殖业污染原因与防控对策探讨[J].农业环境与发展.2007(03)
    [177]王修川.吉林省畜禽粪便污染及其综合防治对策[J].环境科学与管理.2007(12)
    [178]叶安珊.我国农业废弃物资源化问题探讨.经济前沿,2008,(6):29-31
    [179]闫丽珍,石敏俊,王磊.太湖流域农业面源污染及控制研究进展[J].中国人口、资源与环境,2010,20(1):99—107.
    [180]宋涛,成杰民,李彦等.农业面源污染防控研究进展[J].环境科学与管理,2010,35(2):39—42.
    [181]曾国揆,谢建,尹芳.沼气发电技术及沼气燃料电池在我国的应用状况与前景[J].可再生能源,2005,(01):14-15.
    [182]MontserratZ, Jorge I P, IgnaeioA P, Angel R R. Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain[J]. Renewable and Sustainable Energy Reviews,2007,11(5):909-922.
    [183]冉国伟,张汝坤,冯爱国.沼气发电技术现状分析及发展方向的探讨[J].农机化研究,2006,(03):189-191.
    [184]沈剑山,颜晓英.中国沼气发电产业现状及其技术创新的对策分析[J].中国乡镇企业,2009,(10):46-48.
    [185]翟慧娟,刘金朋,于官庆.从低碳经济角度审视内蒙古规模化沼气发电工程潜力[J].农业工程技术(新能源产业),2011,(12):12-14.
    [186]王飞,蔡亚庆,仇焕广.中国沼气发展的现状、驱动及制约因素分析[J].农业工程学报,2012,28(1):184-188.
    [187]中国生物质能源开发利用现状及发展政策与未来趋势
    [188]郝先荣.中国沼气工程发展现状与展望[J].中国牧业通讯.2011(12)
    [189]李宝玉,毕于运,高春雨,聂华.我国农业大中型沼气工程发展现状、存在问题与对策措施[J].中国农业资源与区划.2010(02)
    [190]胡启春,祝其丽,潘科,何明雄,李谦.畜禽养殖场沼气工程产业发展探析[J].现代农业科技.2009(17)
    [191]田芯.大中型沼气工程的技术经济评价[D].北京化工大学,2008.
    [192]李萍.农村户用沼气池建设的能源、经济、环境效益研究[D].南京农业大学,2007.
    [193]Andrews J F. Dynamic modeling of anaerobic digestion process [J]. Journal ofSanitary Engineering,1969,5 (2):95-102.
    [194]Hill D T, Barth C L. A dynamic model for animal waste methodology [J]. Water Research, 1982,25 (5):1374-1379.
    [195]Mosey F E. Mathematical modeling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose [J].Water Science and Technology,1983,15 (2):209-232.
    [196]Costello D J, Greenfield P F and Lee P L. Dynamic modeling of a single-stage high-rate anaerobic rector-Ⅰ model derivation [J]. Water Research,1991,25 (7):77-81.
    [197]Huang G H, Baetz B W and Party G G. A grey chance constrained programming approach for waste management planning under uncertainty [A].In:K.W. Hipel, L. Fang.Effective Environmental Management for stainable development, Kluwer Academic Publishers, Dordrecht, The Netherlands,1994:267-280
    [199]王翠霞,贾仁安.猪场废水厌氧消化液的污染治理工程研究[J].江西农业大学学报.理科版.2007,29(3):437-442
    [200]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2005:271.550
    [201]林伟华,蔡昌达,CSTR-SBR:工艺在畜禽废水处理中的应用[J].环境工程,2003,21(3):13-15
    [202]高增月,杨仁全等.规模化养猪场粪污综合处理的试验研究[J].农业工程学报,2006,22(2):198-200
    [203]林伟华,蔡昌达.CSTR-SBR工艺在畜禽废水处理中的应用[J].环境工程,2003,21(3):13-15
    [204]邓良伟,蔡昌达,陈铭铭等.猪场废水厌氧消化液后处理技术研究及工程应用[J].农业工程学报,2002,18(3):92-94.
    [205]梁顺文,王伟,陈建湘等.复合厌氧反应器-SBR工艺处理废渣废水[J].中国给水排水,2003,19(5):16—19.
    [206]Arora M.L, Barth E.F, Umphres M.B Technology evaluation of sequencing batch reactors[J] Journal WPCF 1985,57(8):867-875.
    [207]Takashi Osada,Kiyyonri Haga,Yasuo Harada. Removal of nitrogen and phoshorus from swine wastewater by the activated sludge units with intermittent aeration process. Wat.Res.,1992,25(11):1377-1388
    [208]寿亦丰,蔡昌达,林伟华等.杭州灯塔养殖总场沼气与废水处理工程的技术特点[J]..农 业环境保护,2002,21(1):29—32
    [209]Rongjun Chen. Livestock-biogas-fruit systems in South China[J]. Ecological Engineering 8(1997):19-29.
    [210]张维迎,《博弈论与信息经济学》[M],上海人民出版社,2000,第一版.
    [211]Nash, Jr. John F., Noncooperative games [J]. Annals Mathematics, (1951):54.
    [212]Maynard Smith, J. And Price, B. R., The Logic of Animal Conflict, Nature, (1973):246, 15-18.
    [213]Young, P. and Foster, D., Stochstic evolutionary game dynamics. Journal of theoretical biology.38,1990:219-232.
    [214]Menasche. D. S. et.al., An evolutionary game-theoretic approach to congestion control. Performance evaluation. (2005):62,295-312.
    [215]张良桥,《进化稳定均衡与纳什均衡:兼谈进化博弈理论的发展》[J],《经济科学》3,103-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700