基于金纳米材料的藻毒素检测新方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以金纳米粒子在食品安全中藻毒素的分析检测和生物检测领域的应用为主线,研究中将具有特异的物理、化学性质的金纳米材料作为探针,与其他传统以及先进的检测技术相结合,建立了针对痕量藻毒素的新颖、快速、超灵敏的分析检测新方法。
     首先,通过化学和物理方法将藻毒素抗体和藻毒素-OVA抗原定向的修饰在金纳米棒的端面或侧面,制备的抗体通过竞争免疫反应,形成端面对端面,侧面靠侧面的金纳米棒组装体,通过紫外可见吸收光谱和透射电镜来表征组装体的形貌和性质,通过紫外或动态散射仪的信号和藻毒素浓度之间的关系,建立了检测藻毒素的标准曲线。结果发现端面对端面组装模式的检测结果优于侧面靠侧面的组装模式。这种可控免疫组装方法同样适用于食品中其他相关毒素的检测
     其次,金纳米棒通过修饰抗体和抗原制备高灵敏探针,运用金纳米棒-抗体,金纳米棒-抗原探针的生物识别反应,金纳米棒组装成端面对端面的链状结构。修饰在金纳米棒两端的信号分子的表面增强拉曼信号由于金纳米棒的组装而被增强。目标分子藻毒素的浓度的增度会影响金纳米棒的组装进而影响信号分子的拉曼散射强度。通过透射电镜、紫外吸收光谱和拉曼光谱来表征组装体的变化。最后根据拉曼信号和藻毒素的浓度关系建立标准曲线,实现对藻毒素的超灵敏检测,检测限为0.01ng/mL,高于传统ELISA检测的5倍。
     第三,利用G-四链体DNA酶建立免疫检测方法来对藻毒素进行检测。通过G-四链体-血晶素高效的类过氧化物酶活性和金纳米粒子的增强作用,此方法用于检测目标物具有简单、高灵敏和高选择性的特点。包被抗原MC-LR-OVA包被至酶标板孔里,通过和MC-LR抗体和目标分子竞争形成抗原抗体免疫复合物。紧接着,免疫复合物与G-四链体标记的二抗反应,通过比色法测定目标物的含量。该方法对于藻毒素的检测范围与检测限分别是0.1-10ng/mL和0.05ng/mL。该方法可以作为传统ELISA方法的备选方法。
     最后,制备了新型的用于输送反义核酸来诱导癌细胞凋亡的碳纳米管和金纳米粒子的复合载体。反义核酸和金纳米粒子共价偶联,然后通过静电作用吸附到碳纳米管侧面上。相比于单独的反义核酸,这个载体系统能够更加有效的转运反义核酸进入细胞,进而发挥促进癌细胞凋亡的效果。金纳米粒子在载体系统中的作用是一方面可以增强转染效果,另外可以提高细胞内的拉曼增强信号,达到追踪癌细胞的效果。
Due to the unique physical and chemical properties of gold nanomaterial, the goldnanomaterials are widely applied for various analytical and biological fields. This dissertationdiscuess with the issues of developing series novel, rapid and sensitive toxin detection methoscombine the gold nanomaterials with the traditional and advanced detection methos.
     Firstly, MC-LR detection was successfully achieved with controllable assembly of goldnanorods (GNRs), which are modified either on the sides or ends, using covalent or electrostaticroutes of protein attachment. The side-by-side and end-to-end assembly of the gold NR wererealized using complementary Ab and antigen. Both sensitivity and detection ranges using UV-visand DLS are markedly better for the end-to-end motif. The controllable immunoassembly methodsfollowing the described approach can be applied to a large variety of environmental toxins bysimple modification of the preparation procedure.
     Secondly, gold nanorods (GNRs) probes were prepared by modification of GNRs withantibody (Ab) and antigen (Ag, MC-LR-OVA) respective. Using the GNR-Ab and GNR-Ag as theprobes, GNRs were assembled into nanorod chains (end-to-end) through the bio-recognition ofantibody and antigen. The SERS signal of the probe molecule modified to the end of the NRscould be enhanced due to the hot spot between the NRs. The SERS signal could be tuned bychanging the degree of the assembly structure of the NRs. With increased MC-LR concentration inthe solution, the toxin molecules competed with the MC-LR-OVA antigen immobilized on theNRs. We characterized the changes in the degree of nanorod chains by TEM UV-vis and SERS.The limit of detection of MC-LR was0.01ng/mL, and the time necessary for the analysis usingour method (about35min) was decreased by approximately5-fold as compared with traditionalELISA.
     Thirdly, we demonstrate the application of versatile G-quadruplex-hemin DNAzymes in animmunoassay for detecting a toxin. Taking advantage of the high peroxidase activity ofG-quadruplex hemin complexes and the enhancement effect of gold nanoparticles (AuNPs), themethod showed simple, high sensitive and selectivity detection of target toxin residues in watersamples. The coated antigen, microcystin-LR (MC-LR)-ovalbumin (OVA), when coated on a plate,competed for MC-LR antibody with added target analyte to form antibody-antigen immunecomplexes. Subsequently, the immune complex reacted with G-quadruplex-labeled secondaryantibodies for colorimetric detection of MC-LR. This assay specifically determined MC-LR in thelinear range of0.1-10ng/mL, with a limit of detection (LOD) for MC-LR of0.05ng/mL. Theresults indicated that the novel immunoassay is an alternative to traditional plate-basedimmunoassays.
     Lastly, a novel transfection vector was designed to deliver the antisense oligodeoxynucleotideinto the cancer cells (HL-60). Antisense oligodeoxynucleotides (ASODNs) were conjugated to thegold nanoparticles (GNPs) through a chemical reaction. The conjugates were then bound to thesingle-walled carbon nanotubes (SWNTs). This vector system can effectively for inducedapoptosis of the cancer cells. The gold nanoparticles helped to improve both transfection andRaman signal. This vector system can effectively for induced apoptosis of the cancer cells, andthus has the potential to be used as a cancer therapy.
引文
1.王旭东,赖伟华,王绪明.高效液相色谱-质谱技术在食品检测中的应用[J].光谱仪器与分析,2009,11(3):94-99.
    2.梁丽丽,弓爱君,李红梅等.高效液相色谱法检测水体中微囊藻毒素[J].分析化学研究简报,2010,38(4):740-742.
    3.袁建,杜娟.小麦中杂色曲霉毒素的硅镁吸附柱层析分离纯化及HPLC的定量分析[J].粮食储藏,2010,12(6):40-43.
    4.唐英章.现代食品安全检测技术[M].北京:科学出版社,2004.
    5.徐春祥,王超,舒婷等.串联四级杆液质联用测定粮食中8种真菌毒素[J].江苏农业科学,2010,5(6):494-496.
    6.何海波,时肖宁,刘敏.水体中微囊藻毒素和节球藻毒素的UPLC-MS-n分析方法研究[J].环境与职业医学,2010,27(4):626-629.
    7.马立功,张匀华,季宏平等.立枯丝核菌毒素相对浓度测定方法的研究[J].黑龙江农业科学,2010,7(6):65-66.
    8.陈伟珠,易瑞灶,谢全灵等.河豚毒素标准样品的研制[J].化学分析计量,2010,19(1):7-11.
    9.李晶晶,谢冰.拉曼光谱在微囊藻毒素检测中的应用[J].给水排水,2009,35(2):18-20.
    10. Engvall E, P P Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G [J]. Immunochemistry1971,8(2):871-874.
    11. Van Weeman B K, FEBS Letters [J].1971.35(1):232-234.
    12.鸭乔,万庆家,王朝军等.酶联免疫吸附法检测雨生红球藻粉中微囊藻毒素含量[J].云南师范大学学报(自然科学版),2010,30(3):62-67.
    13.王雄,王艳斐,果旗等.黄曲霉毒素直接竞争法ELISA试剂盒的研制及其在花生和花生制品中的应用[J].中国饲料,2010,16(2):37-39.
    14.邱云青,王伟,李凤琴.化学发光酶免疫分析法检测食品中赭曲霉毒素[J].食品科学,2010,31(5):432-435.
    15. Wang L, Chen W, Ma W, et al. Fluorescent strip sensor for rapid determination of toxins [J]. Chem Commun2011,47(5):1574-1576
    16. Wang L, Ma W, Xu L, et al. Nanoparticle-based environmental sensor [J]. Materials Science and Engineering:R:Reports,2010,70(2):265-274..
    17. Polman A. Plasmonics Applied [J]. Science,2008,322:868-869.
    18. Higby G, Gold in Medicine [J]. Gold Bull.1982,15,130-140.
    19. Wagner F, Haslbeck S, Stievano L, et al. Striking Gold in Gold-Ruby Glass [J]. Nature2000,407,691-692.
    20. Edwards P, Thomas J, Gold in a Metallic Divided State-From Faraday to Present-Day Nanoscience [J]. Angewandte Chemie International Edition,2007,46,5480-5486.
    21. Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucl eotides based on the distance-dependent optical properties of gold nanoparticles [J]. Scienc e,1997,277,1078-1081.
    22. Liu D, Chen W, Sun K, et al. Multi-Readout Logic Gates Based on Controllably Re versible Aggregation of Gold Nanoparticles [J]. Angewandte Chemie International Edition,2011,50,5499-5503
    23. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. Journal of the American Chemical Society2004,126,8648-8649.
    24. Shan CS, Li FH, Yuan FY, et al. Size-controlled synthesis of monodispersed gold nanoparticles stabilized by polyelectrolyte-functionalized ionic liquid [J]. Nanotechnology,2008,19,325607-325613.
    25. Liao H, Hafner J, Monitoring Gold Nanorod Synthesis on Surfaces [J]. J. Phys.Chem. B.2004,108,19276-19280.
    26. Zhang J, Liu H, Wang Z, et al. Shape-Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances [J]. Adv. Funct. Mater.2007,17,3295-3303.
    27. Jiang X, Pileni M, Gold Nanorods:Influence of Various Parameters as Seeds, Solvent, Surfactant on Shape Control [J]. Colloids Surf. A.2007,295,228-232.
    28. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs)using seed-mediated growth method [J]. Chemistry of Materials,2003,15,1957-1962.
    29. DeVries G, Brunnbauer M, Hu Y, et al. Divalent Metal Nanoparticles [J]. Science,2007,315-358.
    30. Tang Z, Zhang Z, Wang Y, et al. Self-Assembly of CdTe Nanocrystals into Free-FloatingSheets [J]. Science,2006,314-274.
    31. Alivisatos AP, Johnsson KP, Peng XG, et al. Organization of 'nanocrystal molecules' usingDNA [J]. Nature,1996,382,609-611.
    32. Mastroianni AJ, Claridge SA, Alivisatos AP. Pyramidal and Chiral Groupings of GoldNanocrystals Assembled Using DNA Scaffolds [J]. Journal of the American Chemical Society,2009,131,8455-8459.
    33. Park HS, Agarwal A, Kotov NA, et al. Controllable Side-by-Side and End-to-End Assembly ofAu Nanorods by Lyotropic Chromonic Materials [J]. Langmuir,2008,24,13833-13837.
    34. Nie ZH, Fava D, Kumacheva E, et al. Self-assembly of metal-polymer analogues ofamphiphilic triblock copolymers [J]. Nature Materials,2007,6,609-614.
    35. Tang ZY, Zhang ZL, Wang Y, et al. Self-assembly of CdTe nanocrystals into free-floatingsheets [J]. Science,2006,314,274-278.
    36. Berven C A, Clarke L, Mooster J L, Defect-Tolerant Single-Electron Charging at RoomTemperature in Metal Nanoparticle Decorated Biopolymers [J]. Adv. Mater.,2001,13,109.
    37. Harnack O, Ford W E, Yasuda A, et al. Tris(hydroxymethyl)phosphine-Capped Gold ParticlesTemplated by DNA as Nanowire Precursors [J]. Nano Lett.,2002,2,919.
    38. Warner MG, Hutchison JE, Linear assemblies of nanoparticles electrostatically organized onDNA scaffolds [J]. Nature Mater.,2003,2,272.
    39. YguerabideJ, Yguerabide EE, Defect-Tolerant Single-Electron Charging at Room Temperaturein Metal Nanoparticle Decorated Biopolymers [J]. Anal. Biochem.,1998,262,137-156.
    40. Wang H, Brandl D, Nordlander, P, et al. Linear assemblies of nanoparticles electrostaticallyorganized on DNA scaffolds [J]. Acc. Chem. Res.,2006,40,53-62.
    41. Luk’yanchuk B, Zheludev NI, Maier SA, et al.The Fano resonance in plasmonicnanostructures and metamaterials [J]. Nat. Mater.,2010,9,707-715.
    42. Halas NJ, Lal S, Chang W, et al. Plasmons in Strongly Coupled Metallic Nanostructures [J].Chem. Rev.,2011,111,3913-3963.
    43. Jones MR, Osberg KD, Macfarlane RJ, et al. Templated techniques for the Synthesis andAssembly of Plasmonic Nanostructures [J]. Chem. Rev.,2011,111,3736-3827.
    44. Sepulveda B, Angelome PC, Lechuga LM, et al. From individual to collective chirality inmetal nanoparticles [J]. Nano Today,2009,4,244-251.
    45. Englebienne P, Van Hoonacker A, Verhas M, The Fano resonance in plasmonic nanostructuresand metamaterials [J]. Spectroscopy,2003,17,255-273.
    46. Aslan K, Lakowicz JR, Geddes CD, Plasmons in Strongly Coupled Metallic Nanostructures [J].Curr. Opin. Chem. Biol.,2005,9,538-544.
    47. Willets K A, Van Duyne RP, Gold in Medicine [J]. Annu. Rev. Phys. Chem.,2007,4,267-297.
    48. Mirkin CA, Letsinger RL, Mucic R.C, et al. A DNA-based method for rationally assemblingnanoparticles into macroscopic materials [J]. Nature,1996,382,607-609.
    49. Storhoff JJ, Lucas AD, Garimella V, et al. Homogeneous detection of unamplified genomicDNA sequences based on colorimetric scatter of gold nanoparticle probes, Nature Biotechnology[J].2004,22,883-887.
    50. Nam JM, Thaxton CS, Mirkin CA, Nanoparticle-Based Bio-Bar Codes for the UltrasensitiveDetection of Proteins [J]. Science,2003,301,1884-1886.
    51. Sokolov K, Follen M, Aaron J, et al. Nanoparticle-Based Bio-Bar Codes for the UltrasensitiveDetection of Proteins [J]. Cancer Res.2003,63,1999-2004.
    52. Wang CG, Chen Y, Wang TT, et al. Monodispersed gold nanorod-embedded silica particles asnovel Raman labels for biosensing [J]. Advanced Functional Materials,2008,18,355-361.
    1. Robinson RD, Sadtler B, Demchenko DO, et al. Spontaneous Superlattice Formation inNanorods Through Partial Cation Exchange [J]. Science2007,317,355-358.
    2. Park SY, Lytton-Jean AKR, Lee B, et al. DNA-Programmable Nanoparticle Crystallization [J].Nature,2008,451,553-556.
    3. Nykypanchuk D, Maye MM, vander Lelie D, et al. DNA-Guided Crystallization of ColloidalNanoparticles [J]. Nature,2008,451,549-552.
    4. Chen W, Bian A, Agarwal A, et al. Nanoparticle Superstructures Made by Polymerase ChainReaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials[J]. Nano Letters,2009,9,2153-2159.
    5. Sharma J, Chhabra R, Cheng A, et al. Control of Self-Assembly of DNA Tubules ThroughIntegration of Gold Nanoparticles [J]. Science,2009,323,112-116.
    6. Shi W L H, Sahoo Y, Ohulchanskyy TY, et al. A General Approach to Binary and TernaryHybrid Nanocrystals [J]. Nano Lett.2006,6,875-881.
    7. Fu Y, Zhang J, Lakowicz JR. Plasmon-Enhanced Fluorescence from Single FluorophoresEnd-Linked to Gold Nanorods [J]. Journal of the American Chemical Society,2010,132,5540-5541.
    8. Lee J, Govorov AO, Kotov NA. Nanoparticle assemblies with molecular springs: A nanoscalethermometer [J]. Angewandte Chemie-International Edition,2005,44,7439-7442.
    9. Min YJ, Akbulut M, Kristiansen K, et al. The role of interparticle and external forces innanoparticle assembly [J]. Nat. Mater.2008,7,527-538.
    10. Zhao N, Liu K, Greener J, et al. Close-Packed Superlattices of Side-by-Side AssembledAu-CdSe Nanorods [J]. Nano Lett.2009,9,3077-3081.
    11. Srivastava S, Santos A, Critchley K, et al. Light-Controlled Self-Assembly of SemiconductorNanoparticles into Twisted Ribbons [J]. Science2010,327,1355-1359
    12. Xiang MH, Xu X, Li DX, et al. Selective Enhancement of Resonance Light-Scattering ofGold Nanoparticles by Glycogen [J]. Talanta,2008,76,1207-1211.
    13. Podsiadlo P, Kaushik AK, Arruda EM, et al. Ultrastrong and Stiff Layered PolymerNanocomposites [J]. Science2007,318,80-83.
    14. Murphy CJ, Spatial Control of Chemistry on the Inside and Outside of InorganicNanocrystals [J]. ACS Nano2009,3,770-774.
    15. Iglesias S, Grzelczak A, Gonzalez MR, et al. Gold Colloids with Unconventional AngledShapes [J]. Langmuir2009,25,11431-11435.
    16. Polman A, Plasmonics Applied [J]. Science,2008,322,868-869
    17..Kim F, Song JH, Yang PD, Photochemical Synthesis of Gold Nanorods [J]. J. Am. Chem. Soc.2002,124,14316-14317.
    18. Wang Y, Tang T, Liang X, et al. SiO2-Coated CdTe Nanowires:×Bristled Nano Centipedes [J].Nano Lett.2004,4,225-231.
    19. DeVries GA, Brunnbauer M, Hu YJ, et al. Divalent Metal Nanoparticles [J]. Science2007,315,358-361.
    20. Johannsen S, Megger N, Bohme D, et al. Solution Structure of a DNA Double Helix withConsecutive Metal-Mediated Base Pairs [J]. Nature Chemistry,2010,2,229-234.
    21. Marek PJ, Mulvaney J, Paul LM, et al. Shape control in gold nanoparticle synthesis [J]. Chem.Soc. Rev.2008,37,1783-1791.
    22. Kathryn MM, Lee SY, Liao HW, et al. A Label-Free Immunoassay Based Upon LocalizedSurface Plasmon Resonance of Gold Nanorods [J]. ACS Nano2008,2,687-692.
    23. Chen W, Bian A, Agarwal A, et al. Nanoparticle Superstructures Made by Polymerase ChainReaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials[J]. Nano Letters,2009,9,2153-2159.
    24. Sharma J, Chhabra R, Cheng A, et al. Control of Self-Assembly of DNA Tubules ThroughIntegration of Gold Nanoparticles [J]. Science,2009,323,112-116.
    25. Grubbs RB, Nanoparticle assembly: Solvent-tuned structures[J]. Nat. Mater.2007,6,553-555.
    26. Sun ZH, Ni WH, Yang Z, et al. pH-Controlled Reversible Assembly and Disassembly of GoldNanorods [J]. Small2008,4,1287-1292.
    27. Chang JY, Wu HM, Chen H, et al. Oriented assembly of Au nanorods using biorecognitionsystem [J]. Chem. Commun.2005.1092-1094.
    28. Park H, Agarwal A, Kotov NA, et al. Controllable Side-by-Side and End-to-End Assembly ofAu Nanorods by Lyotropic Chromonic Materials [J]. Langmuir2008,24,13833-13837.
    29. Park SY, Lytton-Jean AKR, Lee B, et al. DNA-Programmable Nanoparticle Crystallization [J].Nature,2008,451,553-556..
    30. Maltzahn GV, Centrone A, Park JH, et al. Immobilization: Reversible Immobilization ontoPEG-based Emulsion-templated Porous Polymers by Co-assembly of Stimuli Responsive [J].Advan. Mater.2009,21,1-6.
    31. Ferry JL, Craig PH, Cole S, et al. Transfer of gold nanoparticles from the water column to theestuarine food web [J]. Nature Nanotech.2009,4,441-444.
    32. Singh AK, Senapati D, Wang SG, et al. Gold Nanorod Based Selective Identification ofEscherichia coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy [J]. ACS Nano2009,3,1906-1912.
    33. Francis G, Heroes of South African Discovery. The Countries of the World. The Life of SirMartin Frobisher [J]. Nature1878,18,11-12.
    34. Ding BQ, Deng ZT, Yan H, et al. Gold Nanoparticle Self-Similar Chain Structure Organizedby DNA Origami [J]. Journal of the American Chemical Society,2010,132,3248-3249.
    35. Wang LB, Chen W, Xu DH, et al. Simple, Rapid, Sensitive, and Versatile SWNT íPaperSensor for Environmental Toxin Detection Competitive with ELISA [J]. Nano Lett.2009,9,4147-4152.
    36. Shim SB, Chen W, Doty C, et al. Smart Electronic Yarns and Wearable Fabrics for HumanBiomonitoring made by Carbon Nanotube Coating with Polyelectrolytes [J]. Nano Lett.2008,8,4151-4157.
    37. Chen W, Peng CF, Jin ZY, et al. Ultrasensitive immunoassay of7-aminoclonazepam in humanurine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip [J]. Biosens.Bioelectron.2009,24,2051-2056.
    38. Ma W, Chen W, Qiao RR, et al. Rapid and sensitive detection of microcystin byimmunosensor based on nuclear magnetic resonance [J]. Biosens. Bioelectron.2009,25,240-243.
    39. Zhao NN, Liu K, Greener J, et al. Close-Packed Superlattices of Side-by-Side AssembledAu-CdSe Nanorods [J]. Nano Lett.2009,9,3077-3081.
    40. Khanal P, Zubarev ER, Rings of Nanorods [J]. Angew. Chem. Int. Ed.2007,46,2195-2198.
    41. Humphrey JM, Aggen JB, Chamberlin AR, Total Synthesis of the Serine-ThreoninePhosphatase Inhibitor Microcystin-LA [J]. J. Am. Chem. Soc.1996,118,11759-11770.
    42. Wei W, Li S, Qin LD, et al. Surface Plasmon-Mediated Energy Transfer in Heterogap Au íAgNanowires [J]. Nano Lett.2008,8,3446-3449.
    43. Prashant KJ, Susie EM, El-Sayed A, Plasmon Coupling in Nanorod Assemblies:×OpticalAbsorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model [J]. J.Phys. Chem. B2006,110,18243-18253.
    44. Liu X, Dai Q, Austin L, et al. A One-Step Homogeneous Immunoassay for Cancer BiomarkerDetection Using Gold Nanoparticle Probes Coupled with Dynamic Light Scattering [J]. J. Am.Chem. Soc.2008,130,2780-2782.
    1. Puerto M, Pichardo S, Jos A, et al. Comparison of the toxicity induced by microcystin-RRand microcystin-YR in differentiated and undifferentiated Caco-2cells [J]. Toxicon.2009,54,161-169.
    2. Boaru DA, Dragos N, Schirmer K, Microcystin-LR induced cellular effects in mammalianand fish primary hepatocyte cultures and cell lines: a comparative study [J]. Toxicon.2006,218,134-148.
    3. Humphrey JM, Aggen JB, Chamberlin AR, Total Synthesis of the Serine-ThreoninePhosphatase Inhibitor Microcystin-LA [J]. J. Am. Chem. Soc.1996,118,11759-11770.
    4. McElhiney J, Lawton LA,[J]. Toxicol. Appl. Pharmacol.2005,203,219-230.
    5. Draper WM, Xu DD, Perera SK, Electrolyte-Induced Ionization Suppression andMicrocystin Toxins: Ammonium Formate Suppresses Sodium Replacement Ions andEnhances Protiated and Ammoniated Ions for Improved Specificity in QuantitativeLC-MS-MS [J]. Anal. Chem.2009,81,4153-4160.
    6. Sheng JW, He M, Shi HC, et al. Nanoparticle-Based Bio-Bar Codes for the UltrasensitiveDetection of Proteins [J]. Anal. Chim. Acta.2006,572,309-315.
    7. Ma W, Chen W, Qiao RR.,et al. Rapid and sensitive detection of microcystin byimmunosensor based on nuclear magnetic resonance [J]. Biosens Bioelectron.2009,25,240-243.
    8. Hao XL, Kuang H, Li YL, et al., Development of an Enzyme-Linked Immunosorbent Assayfor the.-Cyano Pyrethroids Multiresidue in Tai Lake Water [J]. J. Agric. Food. Chem.2009,57,3033-3039.
    9. Chen W, Jiang Y, Ji BQ, et al. Automated and ultrasensitive detection ofmethyl-3-quinoxaline-2-carboxylic acid by using gold nanoparticles probes SIA-rt-PCR [J].Biosens Bioelectron.2009,24,2858-2863.
    10. Liu X, Dai Q, Austin L, et al. A One-Step Homogeneous Immunoassay for CancerBiomarker Detection Using Gold Nanoparticle Probes Coupled with Dynamic LightScattering [J]. J. Am. Chem. Soc.2008,130,2780-2783.
    11. Dai Q, Liu X, Coutts J, et al. A One-Step Highly Sensitive Method for DNA Detection UsingDynamic Light Scattering [J]. J. Am. Chem. Soc.2008,130,8138-8139.
    12. Wang LB, Zhu YY, Xu LG, et al. Side-by-Side and End-to-End Gold Nanorod Assembliesfor Environmental Toxin Sensing,[J]. Angew.Chem.,Int.Ed.2010,49,5472-5475.
    13. Pappas D, Smith BW, Winefordner JD, Homogeneous detection of unamplified genomicDNA sequences based on colorimetric scatter of gold nanoparticle probes [J]. Talanta,2000,51,131-144.
    14. Alvarez-Puebla RA, Liz-Marzaan LM, SERS-Based Diagnosis and Biodetection [J]. Small,2010,6,604-610
    15. Theiss J, Pavaskar P, Echternach PM, et al. Plasmonic Nanoparticle Arrays with NanometerSeparation for High-Performance SERS Substrates [J]. Nano Lett.2010,10,2749-2754.
    16. Wustholz KL, Henry AI, McMahon JM, et al. Structure í Activity Relationships in GoldNanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy [J]. J. Am.Chem. Soc.2010,132,10903-10910.
    17. Park WH, Kim ZH, Charge Transfer Enhancement in the SERS of a Single Molecule [J].Nano Lett.2010,10,4040-4048.
    18. Lim DK, Jeon KS, Kim HM, et al. Nanogap-engineerable Raman-active nanodumbbells forsingle-molecule detection [J]. Nature Materials,2009,9,60-67
    19. Kin NH, Lee SJ, Moskovits MR, Aptamer-Mediated Surface-Enhanced Raman SpectroscopyIntensity Amplification [J]. Nano Lett.2010,10,4181-4185.
    20. Li H, Rothberg L. Colorimetric Detection of DNA Sequences Based on ElectrostaticInteractions with Unmodified Gold Nanoparticles [J]. Proceedings of the National Academyof Sciences of the United States of America,2004,101,14036-14039..
    21. Bonham AJ, Braun G, Pavel L, et al. Detection of Sequence-Specific Protein-DNAInteractions via Surface Enhanced Resonance Raman Scattering [J]. J.Am.Chem.Soc.2007,129,14572-14573.
    22. Tang HW, Yang XB, Kirkham J, et al. Probing Intrinsic and Extrinsic Components in SingleOsteosarcoma Cells by Near-Infrared Surface-Enhanced Raman Scattering [J]. Anal.Chem.2007,79,3646-3653.
    23. Murphy CJ, Gole AM, Stone JW, et al. Gold Nanoparticles in Biology: Beyond Toxicity toCellular Imaging [J]. Acc. Chem. Res.2008,41,1721-1730.
    24. Wang CG, Chen J, Talavage T, et al. Gold Nanorod/Fe3O4Nanoparticle“Nano-Pearl-Necklaces” for Simultaneous Targeting, Dual-Mode Imaging, and PhotothermalAblation [J]. Angew Chem Int Edit.2009,48,2759-2763.
    25. Maltzahn GV, Centrone A, Park JH, et al. Immobilization: Reversible Immobilization ontoPEG-based Emulsion-templated Porous Polymers by Co-assembly of Stimuli Responsive [J].Advan. Mater.2009,21,1-6
    26. Grubbs RB, Nanoparticle assembly: Solvent-tuned structures [J]. Nat Mater2007,6,553-555.
    27. Sun ZH, Ni WH, Yang Z, et al. pH-Controlled Reversible Assembly and Disassembly ofGold Nanorods [J]. Small.2008,4,1287-1292.
    28. Kuga S, Yang JH, Takahashi H, et al. Detection of Mismatched DNA on Partially NegativelyCharged Diamond Surfaces by Optical and Potentiometric Methods [J]. J.Am.Chem.Soc.2008,130,13251-13263.
    29. Tian ZQ, Ren B, Wu DY, Surface-Enhanced Raman Scattering:×From Noble to TransitionMetals and from Rough Surfaces to Ordered Nanostructures [J]. J.Phys.Chem.B2002,106,9463-9483.
    30. Zheng J, Li X, Gu R, et al. Comparison of the Surface Properties of the Assembled SilverNanoparticle Electrode and Roughened Silver Electrode [J]. J. Phys. Chem. B2002,106,1019-1023.
    31. Griffith WP, Koh TY, Geddes CD, Plasmons in Strongly Coupled Metallic Nanostructures[J]. Spectrochim.Acta1995,51,253-267.
    32. Sun ZH, Ni WH, Yang Z, et al. pH-Controlled Reversible Assembly and Disassembly ofGold Nanorods [J]. Small.2008,4,1287-1292.
    1. Burge S, Parkinson G.N, Hazel P, et al. Quadruplex DNA: sequence, topology and structure[J]. Nucleic. Acids. Res.2006,34,5402-5415.
    2. Huppert JL, Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes[J]. Chem. Soc. Rev.2008,37,1375-1384.
    3. Phan AT, Kuryavyi V, Patel DJ èDNA architecture: from G to Z [J]. Curr. Opin. Struc.Biol.2006,16,288-298.
    4. Qin Y, Hurley LH èStructures, folding patterns, and functions of intramolecular DNAG-quadruplexes found in eukaryotic promoter regions [J]. Biochimie2008,90,1149-1171.
    5. Huppert J L èHunting G-quadruplexes [J]. Biochimie2008,90,1140-1148.
    6. Seenisamy J, Rezler EM., Powell TJ, et al. The Dynamic Character of the G-QuadruplexElement in the c-MYC Promoter and Modification by TMPyP4[J]. J.Am. Chem. Soc.2004,126,8702-8709.
    7. Neidle S èNucleic Acid Aptamers Based on the G-Quadruplex Structure: Therapeutic andDiagnostic Potential [J]. Curr.Opin.Struct.Biol.2009,1248-1265.
    8. Gatto B, Palumbo M, Sissi C èNucleic Acid Aptamers Based on the G-Quadruplex Structure:Therapeutic and Diagnostic Potential [J]. Curr.Opin.Struct.Biol.2009,1248-1265.
    9. Travascio P, Li Y, Sen DC èDNA-enhanced peroxidase activity of a DNA aptamer-hemincomplex [J]. Chemistry&Biology è1998,505-517.
    10. Travascio P, Bennet AJ, WangDY, et al.A ribozyme and a catalytic DNA with peroxidaseactivity: active sites versus cofactor-binding sites [J]. Chemistry&Biology è1999,779-787.
    11. Li T, Dong SJ, Wang EK, Enhanced catalytic DNAzyme for label-free colorimetric detectionof DNA [J]. Chem. Commun.2007,4209-4211.
    12. Li T, Wang EK, Dong SJ, G-quadruplex-based DNAzyme for facile colorimetric detection ofthrombin [J]. Chem. Commun.2008,3654-3656.
    13. Pavlov V, Xiao Y, Gill R, et al. DNA-enhanced peroxidase activity of a DNA aptamerAnalytical Chemistry è.2004,76,2152-2156.
    14. Willner, I.; Cheglakov, Z.; Weizmann, Y.; Sharon, E. Enhanced catalytic DNAzyme forlabel-free colorimetric detection of Hg ion [J]. Analyst2008,133,923-927.
    15. Nakayama S, Sintim HO, Colorimetric Split G-Quadruplex Probes for Nucleic Acid Sensing:Improving Reconstituted DNAzyme’s Catalytic Efficiency via Probe Remodeling [J]. J. Am.Chem. Soc.2009,131,10320-10333.
    16. Shlyahovsky B, Li D, Katz E, et al.A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites [J]. Biosens. Bioelectron.2007,22,2570-2576.
    17. Li T, Wang EK, Dong SJ, G-quadruplex-based DNAzyme for facile colorimetric detection ofthrombin [J]. Chem-Eur. J.2009,15,2059-2063.
    18. Li T, Dong SJ, Wang EK, Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+)Using Hg2+-Modulated G-Quadruplex-Based DNAzymes [J]. Anal. Chem.2009,81,2144-2149.
    19. Li T, Wang EK, Dong SJ, Lead(II)-Induced Allosteric G-Quadruplex DNAzyme as aColorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+Detection [J]. Anal. Chem.2010,82,1515-1520.
    20. Zhou XH, Kong DM, Shen HX, Ag+and Cysteine Quantitation Based onG-Quadruplex íHemin DNAzymes Disruption by Ag+[J]. Anal. Chem.2010,82,789-793.
    21. Kong D M, Wu J. Wang N, Yang, W, et al.[J]. Talanta2009,80,459-65.
    22. Li D, Shlyahovsky B, Elbaz J, et al. Amplified Analysis of Low-Molecular-Weight Substratesor Proteins by the Self-Assembly of DNAzyme í Aptamer Conjugates [J]. J.Am.Chem.Soc.2007,129,5804-5805.
    23. Elbaz J, Shlyahovsky B, Li D, et al. Plasmons in Strongly Coupled Metallic Nanostructures[J]. Chembiochem2008,9,232-239.
    24. Li T, Li B, Dong S, Organization of 'nanocrystal molecules' using DNA [J].Anal.Bioanal.Chem.2007,887-893.
    25. Liu BH, Wang J J, Yu FY, Development of a Monoclonal Antibody against Ochratoxin A andIts Application in Enzyme-Linked Immunosorbent Assay and Gold NanoparticleImmunochromatographic Strip [J]. Anal. Chem.2008,80,7029-7035.
    26. Gao L Z, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagneticnanoparticles [J]. Nature Nanotechnology2007,2,577-583.
    27. Zhou LH, Chen K, Room temperature, high-yield synthesis of multiple shapes of goldnanoparticles in aqueous solution [J]. Biomed.En iron.Sci.2002,166-171.
    28. Wang L, Zhu Y., Xu L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Angew. Chem. Int. Ed. Engl.2010,49,5472–5475.
    29. Wang L B, Chen W, Xu D H, et al. Simple, Rapid, Sensitive, and Versatile SWNT í PaperSensor for Environmental Toxin Detection Competitive with ELISA [J]. Nano Lett.2009,9,4147-4152.
    30. Ma W, Chen W, Qiao R R, et al. Rapid and sensitive detection of microcystin byimmunosensor based on nuclear magnetic resonance [J]. Biosens. Bioelectron.2009,25,240-243.
    31. Yu FY, Liu BH, Chou HN, et al. Development of a Sensitive ELISA for the Determination ofMicrocystins in Algae [J]. J.Agric.Food Chem.2002,50,4176-4182
    32. Frens G., Controlled nucleation for the regulation of the particle size in monodisperse goldsuspensions [J]. Nat.Phys.Sci.1973,241,20-22.
    33. Mirkin CA, Letsinger R L, Mucic RC, et al. a DNA-based method for rationally assemblingnanoparticles into macroscopic materials [J]. Nature1996,382,607-609.
    34. Zhang J, Song SP, Zhang LY, Wang LHet al. Pyramidal and Chiral Groupings of GoldNanocrystals Assembled Using DNA Scaffolds [J]. J.Am.Chem.Soc.,2007,129,8575-8580.
    35. Kong DM, Cai LL, Guo JH, et al. Shape-Selective Synthesis of Gold Nanoparticles withControlled Sizes, Shapes, and Plasmon Resonances [J]. biopolymers2009,331-339.
    36. Paramasivan S, Rujan I, Bolton PH Monitoring Gold Nanorod Synthesis on Surfaces [J].methods2007,324-331.
    37. Shizuka N, Herman OS. Gold in Medicine [J]. Mol. BioSyst.2010,6,95-97
    38. Shizuka N, Herman OS, Colorimetric Split G-Quadruplex Probes for Nucleic Acid Sensing:Improving Reconstituted DNAzyme’s Catalytic Efficiency via Probe Remodeling [J].J.Am.Chem.Soc.2009,131,10320-10333
    39. Zhang SS, Xia JP, Li XM, Electrochemical Biosensor for Detection of Adenosine Based onStructure-Switching Aptamer and Amplification with Reporter Probe DNA Modified AuNanoparticles [J]. Anal. Chem.2008,80,8382-8388.
    1. Hodes, Molecular targeting of cancer:telomeres as targets [J]. R. Proc. Natl. Acad. Sci. è2001,98,7649.
    2. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase [J]. Science,1995,269,1236-1241.
    3. Troiani HE, Miki-Yoshida M, Camacho-Bragado, GA, et al. Direct observation of themechanical properties of single-walled carbon nanotubes and their junctions at the atomiclevel [J]. Nano Lett.2003,3,751-755.
    4. Wan X, Dong J, Xing DY, Optical Properties of carbon nanotubes [J]. Phys. Rev. B,1998,58,6756-6759.
    5. Krishnan A, Dujardin E, Ebbesen TW, et al. Young’s modulus of carbon nanotubes [J]. J. Phys.Rev. B,1998,58,14013-14019.
    6. Shim BS, Chen W, Doty C, et al. Smart Electronic Yarns and Wearable Fabrics for HumanBiomonitoring made by Carbon Nanotube Coating with Polyelectrolytes [J]. Nano Lett.2008,8,.4151-4157
    7. Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes [J]. J.Mater. Sci.2004,14,527-541.
    8. Bianco A, Prato M, Can carbon nanotubes be considered useful tools for biologicalapplocations?[J]. Adv. Mater.2003,15,1765-1768.
    9. Shi-Kam NW, Jessop TC, Wender PA, et al. Nanotube molecular transporters: internalizationof carbon nanotube-protein conjugates into mammalian cells [J]. J. Am. Chem. Soc.2009,126,6850-6851.
    10. Pantarotto D, Partidos CD, Graff R, et al.Synthesis, structural characterization, andimmunological properties of carbon nanotubes functionalized with peptides [J]. J. Am. Chem.Soc.2003,125,6160-6164.
    11. Pantarotto D, Partidos, CD, Hoebeke J, et al. Immunization with peptide-functionalizedcarbon nanotubes enhances virus-specific neutralizing antibody responses [J]. Chem. Biol.2003,10,961-966.
    12. Fu AH, Micheel CM, Cha J, et al. Discrete nanostructures of quantum dots/Au with DNA [J].Journal of the American Chemical Society,2004,126,10832-10833.
    13. Xu XY, Rosi NL, Wang YH, et al. Asymmetric functionalization of gold nanoparticles witholigonucleotides [J]. Journal of the American Chemical Society,2006,128,9286-9287.
    14. Bianco A, Hoebeke J, Godefroy S, et al. Cationic carbon nanotubes bind to cpgoligodeoxynucleotides and enhance their immunostimulatory properties [J]. J. Am. Chem. Soc.2005,127,.58-59.
    15. Li Q, Moore JM, Huang G, et al. RNA polymer translocation with single-walled carbonnanotubes [J]. Nano Lett.2004,4,2473-2477.
    16. Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by usingfunctionalized carbon nanotubes [J]. Angew. Chem. Int. Ed.2005,44,6358-6362.
    17. Pantarotto D, Briand JP, Prato M, et al. Translocation of bioactive peptides across cellmembranes by carbon nanotubes [J]. Chem. Commun.2004,16-17.
    18. Qian X, Peng X, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection withsurface-enhanced Raman nanoparticle tags [J]. Nature Biotechnology,2008,26,83-90.
    19. Cheng Y, Samia AC, Meyers JD, et al. Highly efficient drug delivery with gold nanoparticlevectors for in vivo photodynamic therapy of cancer [J]. J. Am. Chem. Soc.2008,130,10643-10647.
    20. Lee JS, Ulmann PA, Han MS, et al. A DNA gold nanoparticle-based colorimetric competitionassay for the detection of cysteine [J]. Nano Lett.2008, l8,529-533.
    21. Thomas M, Klibanov AM, Conjugation to gold nanoparticles enhances polyethylenimine’stransfer of plasmid DNA into mammalian cells [J]. Proc. Natl. Acad. Sci. USA,2003,100,9138-9143.
    22. Giljohann DA, Seferos DS, Patel PC, et al. Oligonucleotide loading determines cellularuptake of dna-modified gold nanoparticles [J]. Nano Lett.2007,7,3818-3821.
    23. Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles forintracellular gene regulation [J]. Science,2006,312,1027-1030
    24. Jia NQ, Lian Q, Shen HB, et al. Intracellular delivery of quantum dots tagged antisenseoligonucleotide-modified gold nanoparticles for intracellular gene regulation [J]. Nano Lett.2007,7,2976-2980
    25. Zanchet D, Micheel C, Parak, W, et al. Electrophoretic isolation of discrete au nanocrystal/dnaconjugates [J]. Nano Lett.2001,1,32-35.