用户名: 密码: 验证码:
构建基于纳米材料的电化学生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从微观特别是纳米尺度上材料诞生以来,对它们的研究及应用一直受到人们的高度关注,并且一直处在高速发展阶段,各种具有特殊功能的新型纳米材料层出不穷,而且对它们的研究和应用领域也在快速的扩展。电化学传感技术由于具有灵敏性好、仪器简单易于操作、可控性好、检测成本低及易于微型化等特点,同样受到广泛关注。如今,人们研究发现:将纳米技术引入到电化学传感领域后,在使得电化学传感技术得到了革命性发展的同时,也促进了纳米技术的变革。基于此,在本论文中,我们研究了具有较高电催化和生物相容性的碳材料和贵金属纳米材料的制备及其在电分析传感领域的应用。
     (1)在第2章中,我们研究发现双螺旋DNA的磷酸骨架可以作为多价金属离子或复合物的结合位点,并且在结合的过程中,这些多价离子会改变DNA的构象,形成压缩结构。利用这一性质,我们首先让氯金酸盐与双螺旋DNA通过静电力作用形成Au(Ⅲ)一DNA网状结构的复合物;然后,通过化学还原Au(Ⅲ)最终形成的Au.DNA网状结构的纳米复合物。该杂交材料有较高的生物相容性以及电子传导能力,有利于酶的固定。因此,我们将HRP固定在该复合材料上进行电化学研究,发现固载在该复合材料上的HRP表现出良好的直接电化学行为和电催化能力。
     (2)在第3章中,我们利用碳化技术,制备了具有生物形态的有序多孔碳(OPC),并且通过电沉积技术在OPC的表面和孔穴内沉积金属Pt,形成OPC-Pt复合材料。详细地研究了OPC及OPC-Pt的结构形貌等特征,并通过对其电化学行为的研究发现,该复合材料具有较高的电催化性能并对H202具有明显的电催化活性,因此该复合材料可用于构建非酶传感器。
     (3)在第4章中,同样以加工好的椴木块为原材料,通过碳化工艺,制备出了具有良好生物形态结构的椴木多孔碳(BBPC).我们利用XRD、红外光谱(FT-IR).扫描电镜(SEM)等研究手段对该材料的微观三维形态结构进行了详细的研究。同时在电化学实验中,我们意外的发现该多孔碳材料具有良好的酶促催化性能,并可以促进电子传递。另外,动力学研究发现该多孔碳材料对H202有良好的亲和性,这也就进一步证明了BBPC构建非酶传感器的可行性。因此,我们用BBPC代替HRP构建了一个检测H202的非酶电化学生物传感器。实验结果表明,该非酶传感器能够对H202进行快速灵敏的检测,同时具有较宽的线性范围和较低的检测限。
     (4)在第5章中,我们设计了利用电化学发光技术(ECL)来对蛋白激酶活性及其抑制剂进行高灵敏检测的生物传感器。在共反应剂巯基化三磷酸腺苷(ATP-γ-s)的共在下,激酶催化磷酸化反应,然后以金纳米粒子为标记,与磷酸化过程中巯基化的磷酸根特异结合。由于金纳米粒子具有高的电导性、大的比表面积以及对鲁米诺(luminol)氧化的高电催化活性,因此可以极大的催化鲁米诺的电化学发光(ECL)信号增强,实现对激酶活性的高灵敏检测。蛋白激酶A(PKA)在人体的诸多生理及新陈代谢过程中发挥着重要作用,因此该酶被作为本研究的模型激酶进行理论上的检测分析。实验结果表明,该ECL传感器对PKA有较低的检测限(0.07UmL-1),宽的线性检测范围(0.07-32U mL-1)及良好的检测稳定性。除此之外,该ECL传感器还可用于激酶抑制剂的量化分析检测。在本实验中,我们测定了PKA抑制剂鞣花酸的IC50,发现该值与用传统分析技术所获得的检测结果相符。同时我们利用酪氨酸激酶抑制剂(Tyrphostin AG1478)重复上述检测过程,发现ECL响应几乎没有变化,这些结果说明ECL传感器可以用于对激酶抑制剂的筛选。
     (5)在第6章中,通过研究我们首次发现,石墨烯(graphene)可以诱导鲁米诺在正电位(ca.0.05V vs.Ag/AgCl)产生较强而稳定的阴极ECL现象。同时,石墨烯修饰的玻碳电极是构建高性能生物传感器的优良平台。基于以上考虑,我们利用石墨烯修饰的玻碳电极构建了低电位下阴极ECL检测癌症标识物的夹心型ECL免疫传感器。葡萄糖氧化酶(GOx)和检测抗体(Ab2)修饰的金纳米棒(GNRs)作为该传感器的生物探针。功能化的石墨烯能够促进电极表面的电子转移;同时由于其大的比表面积,因此用于固载捕获抗体(Ab1);功能化的GNRs不仅作为酶和抗体的固定载体,其自身对鲁米诺的ECL也具有增强作用,另外固载其上的GOx在反应体系中含有葡萄糖和氧气时,通过催化底物反应又可以进一步增强ECL信号。在以前列腺抗原(PSA)作为研究模型的条件下,我们所构建的低电位ECL免疫传感器对PSA能够进行高灵敏、专一性的检测,获得的线性检测范围为10pgmL-1-8ng mL-1,最低检测限为8pg mL-1,同时具有较高的稳定性和重复性。而且该传感器还被用于对10种不同PSA浓度的临床血清样品进行检测,分析结果与标准试剂盒检测获得结果进行对比发现,所构建的ECL免疫传感器可直接用于临床诊断分析。
Since the birth of micro-scale especially for nanomaterials, they are a hotspot in research and applications field all the time, which are now in the stage of rapid development. A variety of new nanomaterials with special functions are emerging in an endless stream, which expands further research and applications of these materials. Electrochemical apparatus because of some advantages such as sensitive, simple and easy to operate, good controllability, low cost and easy to be minisized, has received extensive attention. Nowadays, people found that when combining nanotechnology with electrochemical sensing technology, it not only made sensors in a revolutionary development but also promoted the development of nanotechnology. For those reasons, we investigate the preparation of carbon materials and noble metal nanomaterials, with electrocatalytic activity and high biocompatibility, and their applications in electroanalysis and sensing field.
     (1) In chapter2, a novel DNA-templated Au nanoparticles (Au-DNA) nanoconjugate was prepared by using the combination of metallization and DNA compaction. The electrostatic interaction between Au(Ⅲ) and the phosphate backbone of DNA formed the netlike coordination compound of Au(Ⅲ)-DNA, and then the complex was chemically reduced to form Au nanoparticles in this network-like DNA conformation. The negatively charged nanoconjugate was used as the matrix for immobilization of horseradish peroxidase (HRP). A stable and well-defined redox peaks of HRP were observed on the Au-DNA nanoconjugate modified glassy carbon (GC) electrode, which indicated that the modified enzyme electrode displayed good direct electron transfer behavior and excellent reducing ability toward hydrogen peroxide (H2O2) with the apparent Michaelis-Menten constant (Km) estimated to be0.147mM.
     (2) In chapter3, a biomorphic carbon, retained its anatomical features, was prepared by carbonizing wood through controlled heated rates. Then Pt particles were electrodeposited onto the synthesized carbon materials. The OPC/Pt composite materials were modified onto the surface of GC electrode by means of chitosan. The modified electrode shows good response to H2O2due to the good electrochemical properties of the hybrid.
     (3) In chapter4, natural basswood biomorphic porous carbon (BBPC) materials with unidirectional ordered pores have been successfully prepared by carbonization in an inert atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) were employed to characterize the phase identification, microstructure and morphology analysis. The carbon materials were used to fabricate biosensor to detect hydrogen peroxide (H2O2) without any assistance of enzymes because of their satisfying electrocatalytic properties. It was immobilized on glassy carbon electrode (GCE) with chitosan (CHIT) to fabricate a new kind of biosensor, BBPC/CHIT/GCE, which showed excellent electrocatalytic activity to the reduction of H2O2. Meanwhile, BBPC also could promote electron transfer with the help of hydroquinone. The simple and low-cost biosensor exhibited high sensitivity, good operational and long-term stability.
     (4) In chapter5, a novel electrogenerated chemiluminescence (ECL) biosensor using gold nanoparticle as signal transduction probes was described for the detection of kinase activity. The gold nanoparticles were specifically conjugated to the thiophosphate group after phosphorylation process in the presence of adenosine59-[y-thio] triphosphate (ATP-y-s) co-substrate. Due to its good conductivity, large surface area and excellent electroactivity to luminol oxidization, the gold nanoparticles extremely amplified the ECL signal of luminol, offering a highly sensitive ECL biosensor for kinase activity detection. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar and lipid metabolism in human body, was used as a model to confirm the proof-of-concept strategy. The as-proposed biosensor presented high sensitivity, low detection limit of0.07U mL"1, wide linear rang (from0.07to32U mL"1) and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. Based on the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC50of ellagic acid, a PICA inhibitor, was estimated, which was in agreement with those characterized with conventional kinase assay. While nearly no ECL signal change can be observed in the presence of Tyrphostin AG1478, a tyrosine kinase inhibitor but not PKA inhibitor, showing its excellent performance in kinase inhibitor screening.
     (5) In chapter6, we reported a novel cathodic electrogenerated chemiluminescence (ECL) of luminol at a positive potential (ca.0.05V vs. Ag/AgCl) with a strong light emission on the graphene modified glass carbon electrode. The resulted graphene modified electrode offers an excellent platform for high performance biosensing applications. Based on the cathodic ECL signal of luminol on the graphene modified electrode, an ECL sandwich immunosensor for sensitive detection of cancer biomarkers at low potential was developed with a multiple signal amplification strategy from functionalized graphene and gold nanorods multilabeled with glucose oxidase (GOx) and secondary antibody (Ab2). The functionalized graphene improved the electron transfer on the electrode interface and was employed to attach the primary antibody (Abi) due to it large surface area. The gold nanorods was not only used as carrier of secondary antibody (Ab2) and GOx but also catalyzed the ECL reaction of luminol, which further amplified the ECL signal of luminol in the presence of glucose and oxygen. The as-proposed low potential ECL immunosensor exhibited high sensitivity and specificity on the detection of prostate protein antigen (PSA), a biomarker of prostate cancer that was used as a model. A linear relationship between ECL signals and the concentrations of PSA was obtained in the range from10pg mL-1to8ng mL-1. The detection limit of PSA was8pg mL-1(signal-to-noise ratio of3). Moreover, the as-proposed low potential ECL immunosensor exhibited excellent stability and reproducibility. The graphene based ECL immunosensors accurately detected PSA concentration in10human serum samples from patients demonstrated by excellent correlations with standard chemiluminescene immunoassay.
引文
[l]Moriarty P. Nanostructured materials. Reports on Progress in Physics,2001,64(3): 297-381
    [2]Buzea C, Pacheco I I, Robbie K. Nanomaterials and nanoparticles:Sources and toxicity. Biointerphases,2007,2(4):MR17-MR71
    [3]Bauer L A, Birenbaum N S, Meyer G J. Biological applications of high aspect ratio nanoparticles. Journal of Materials of Chemistry,2004,14(4):517-526
    [4]Watson K J, Zhu J, Nguyen S T, et al. Hybrid nanoparticles with block copolymer shell structures. Journal of the American Chemical Society,1999,121(2):462-463
    [5]Thomas K G, Kamat P V. Chromophore-functionalized gold nanoparticles. Accounts of Chemical Research,2003,36(12):888-898
    [6]Whetten R L, Shafigullin M N, Khoury J T, et al.Crystal structures of molecular gold nanocrystal arrays. Accounts of Chemical Research,1999,32(5):397-406
    [7]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346
    [8]Kim H S, Lee S J, Kim N H, et al. Adsorption characteristics of 1,4-phenylene diisocyanide on gold nanoparticles:Infrared and Raman spectroscopy study. Langmuir,2003,19(17):6701-6710
    [9]Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods:Electrochemical synthesis and optical properties. Journal of Physical Chemistry B,1997,101(34):6661-6664
    [10]Zande B M I, Bohmer M R, Fokkink L G J, et al. Colloidal dispersions of gold rods: Synthesis and optical properties. Langmuir,2000,16(2):451-458
    [11]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials,2003,15(10): 1957-1962
    [12]Liao H W, Hafner J H. Gold nanorod bioconjugates. Chemistry of Materials,2005, 17(18):4636-4641
    [13]Sau T K, Murphy C J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir,2004,20(15):6414-6420
    [14]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials,2002,14(1):80-82
    [15]Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods. Advanced Materials,2003,15(5):414-416
    [16]Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed. Chemistry of Materials,2004,16(19):3633-3640
    [17]Gole A, Murphy C J. Polyelectrolyte-coated gold nanorods:Synthesis, characterization and immobilization. Chemistry of Materials,2005,17(6):1325-1330
    [18]Canizal G, Ascencio J A, Gardea-Torresday J, et al. Multiple twinned gold nanorods grown by bio-reduction techniques. Journal of Nanoparticle Research,2001,3(5-6): 475-481
    [19]Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. Journal of Physics Chemistry B,1999,103(40):8410-8426
    [20]Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry,2000,19(3):409-453
    [21]Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology,2001, 19(4):316-317
    [22]Grisel J H, Kooyman P J, Nieuwenhuys B E. Influence of the preparation of AU/AI2O3 on CH4 oxidation activity. Journal of Catalysis,2000,191(2):430-437
    [23]Sinha A K, Seelan S, Tsubota S, et al. Catalysis by gold nanoparticles:epoxidation of propene. Topics in Catalysis,2004,29(3-4):95-102
    [24]Salama T M, Ohnishi R, Ichikawa M. Remarkable oxygen promotion of the selective reduction of nitric oxide by hydrogen over Au/NaY and Au/ZSM-5 zeolite catalysts. Chemical Communications,1997, (1):105-106
    [25]Sakurai H, Akita T, Tsubota S, et al. Low-temperature activity of Au/CeO2 for water gas shift reaction and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction. Applied Catalysis A:General,2005,291(1-2):179-187
    [26]Sakurai H, Tsubota S, Haruta M. Hydrogenation of CO2 over gold supported on metal oxides. Applied Catalysis A:General,1993,102(2):125-136
    [27]SakuraiH, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides. Catalysis Today,1996,29(1-4):361-365
    [28]Hutchings G J. Gold catalysis in chemical processing. Catalysis Today,2002,72(1-2): 11-17
    [29]Freund P L, Spiro M. Colloidal Catalysis-the effect of sol size and sol concentration. Journal of Physical Chemistry,1985,89(7):1074-1077
    [30]Tsunoyama H, Sakurai H, Ichikuni N, et al. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation:Application to aerobic homocoupling of phenylboronic acid in water. Langmuir,2004,20(26):11293-11296
    [31]Li Y, Hong X M, Collard D M, et al. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Organic Letters,2000,2(15):2385-2388
    [32]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382(6592): 607-609
    [33]Glynou K, Ioannou P C, Christopoulos T K, et al. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Analytical Chemistry,2003,75(16):55-4160
    [34]He P L, Shen L, Cao Y H, et al. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Analytical Chemistry,2007, 79(21):8024-8029
    [35]Moreno M, Rincon E, Perez J M, et al. Selective immobilization of oligonucleotide-modified gold nanoparticles by electrodeposition on screen-printed electrodes. Biosensors & Bioelectronics,2009,25(4):778-783
    [36]Willner I, Patolsky F, Weizmann Y, et al. Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta,2002,56(5):847-856
    [37]Ou L J, Jin P Y, Chu X, et al. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Analytical Chemistry,2010,82(14):6015-6024
    [38]Tanaka Y, Oda S, Yamaguchi H, et al. N-15-N-15 J-coupling across Hg-II:Direct observation of Hg-II-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,129(2):244-245
    [39]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition,2007,46(22):4093-4096
    [40]Lee J S, Mirkin C A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Analytical Chemistry,2008,80(17): 6805-6808
    [41]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [42]Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition,2006,45(1):90-94
    [43]Lang B. A LEED study of the deposition of carbon on platinum crystal surfaces. Surface Science,1975,53(1):317-329
    [44]Rokuta E, Hasegawa Y, Itoh A, et al. Vibrational spectra of the monolayer films of hexagonal boron nitride and graphite on faceted Ni(755). Surface Science,1999, 427-428(1):97-101
    [45]Shioyama H. Cleavage of graphite to graphene Journal of Materials Science Letters, 2001,20(6):499-500
    [46]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669
    [47]Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science, 2003,299(5611):1361-1361
    [48]Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry,2006,16(2): 155-158
    [49]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7):1558-1565
    [50]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3(9):563-568
    [51]Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD. Chemical Physics Letters,2006,430(1-3):56-59
    [52]Obraztsov A N, Obraztsova E A, Tyurnina A V, et al. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon,2007,45(10):2017-2021
    [53]Obraztsov A N. Chemical vapour deposition:Making graphene on a large scale. Nature Nanotechnology,2009,4(4):212-213
    [54]Horiuchi S, Gotou T, Fujiwara M, et al. Single graphene sheet detected in a carbon nanofilm. Applied Physics Letters,2004,84(13):2403-2405
    [55]Wang C B, Yang S R, Wang Q, et al. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure. Nanotechnology,2008,19(22):2257091-5
    [56]Cambaz Z G, Yushin G, Osswald S, et al. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon.2008,46(6):841-849
    [57]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008,7(5):406-411
    [58]de Parga A L V, Calleja F, Borca B, et al. Periodically rippled graphene:Growth and spatially resolved electronic structure. Physical Review Letters,2008,100(5):056807 1-4
    [59]Cano-Marquez A G, Rodriguez-Macias F J, Campos-Delgado J, et al. Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Letters,2009,9(4):1527-1533
    [60]Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321(5887):385-388
    [61]Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials,2007,6(9):652-655
    [62]Ratinac K R, Yang W R, Ringer S P, et al. Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Enviromental Science & Technalogy, 2010,44(4):1167-1176
    [63]Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230):706-710
    [64]Choi W B, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications:A review. Solid State and Materials Sciences,2010,35(1):52-71
    [65]Shao Y Y, Wang J, Wu H, et al. Graphene based electrochemical sensors and biosensors:A review. Electroanalysis,2010,22(10):1027-1036
    [66]Brownson D A C, Banks C E. Graphene electrochemistry:an overview of potential applications. Analyst,2010,135(11):2768-2778
    [67]Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry. Chemical Society Reviews,2010,39(8):3157-3180
    [68]Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters,2008,8(12):4469-4476
    [69]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6): 2341-2346
    [70]Lu J, Drzal L T, Worden R M, et al. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chemistry of Materials,2007,19(25):6240-6246
    [71]Lu J, Drzal L T, Drzal L T, et al. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast Response. ACS Nano,2008,2(9):1825-1832
    [72]Shan C S, Yang H F, Song J F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry,2009,81(6): 2378-2382
    [73]Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. Journal of Physical Chemistry C,2009,113(32):14071-14075
    [74]Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors & Bioelectronics,2009,25(4):901-905
    [75]Li J, Guo S J, Zhai Y M, et al. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochemistry Communications,2009,11(5):1085-1088
    [76]Li J, Guo S J, Zhai Y M, et al. High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film. Analytica Chimica Acta,2009,649(2): 196-201
    [77]Li H J, Chen J A, Han S, et al. Electrochemiluminescence from tris(2,2'-bipyridyl)ruthenium(Ⅱ)-graphene-Nafion modified electrode. Talanta,2009, 79(2):165-170
    [78]Wang Y, Lu J, Tang L H, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Analytical Chemistry,2009,81(23):9710-9715
    [79]Wang K, Liu Q, Wu X Y, et al. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta,2010,82(1):372-376
    [80]Shang N G, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials,2008,18(21):3506-3514
    [81]Kang X H, Wang J, Wu H, et al. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta,2010,81(3):754-759
    [82]Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials,2009, 19(9):2782-2789
    [83]Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochemistry Communications,2009, 11(4):846-849
    [84]Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction. Journal of the American Chemical Society,2009, 131(23):8262-8270
    [85]Seger B, Kama P V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. Journal of Physical Chemistry C,2009, 113(19):7990-7995
    [86]Yoo E J, Okata, TAkita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Letters,2009,9(6):2255-2259
    [87]Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites. Journal of Physical Chemistry C,2008,112(50):19841-19845
    [88]Hercules D M. Chemiluminescence resulting from electrochemically generated species. Science,1964,145(3634):808-809
    [89]Santhanam K S V, Bard A J. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. Journal of the American Chemical Society, 1965,87(1):139-140
    [90]Harvey N. Luminescence during electrolysis. Journal of Physical Chemistry,1929, 33(10):1456-1459
    [91]WroblewskaA, Reshetnyak O V, Koval'chuk E P, et al. Origin and features of the electrochemiluminescence of luminol-experimental and theoretical investigations. Journal of Electroanalytical Chemistry,2005,580(1):41-49
    [92]Richter M M. Electrochemiluminescence (ECL). Chemical Reviews,2004,104(6): 3003-3036
    [93]Shi M H, Cui H. Electrochemiluminescence of luminol in dimethyl sulfoxide at a polycrystalline gold electrode. Electrochimica Acta,2006,52(3):1390-1397
    [94]Zhang L, Zhou J M, Hao Y H, et al. Determination of Co2+based on the cobalt(Ⅱ)-catalyzed electrochemiluminescence of luminol in acidic solution. Electrochimica Acta,2005,50(16-17):3414-3419
    [95]Cui H, Dong Y P. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode. Journal of Electroanalytical Chemistry,2006,595(1):37-46
    [96]Wang C M, Cui H. Electrogenerated chemiluminescence of luminol in neutral and alkaline aqueous solutions on a silver nanoparticle self-assembled gold electrode. Luminescence,2007,22(1):35-45
    [97]Haapakka K E, Kankare J J. The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution. Analytica Chimica Acta, 1982,138(1):263-275
    [98]Cui H, Zhang Z F, Zou G Z, et al. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. Journal of Electroanalytical Chemistry,2004,566(2):305-313
    [99]Cui H, Xu Y, Zhang Z F. Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Analytical Chemistry,2004,76(14):4002-4010
    [100]Cui H, Zou G Z, Lin X Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Analytical Chemistry,2003,75(2): 324-331
    [101]Dong Y P, Cui H, Xu Y. Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes. Langmuir,2007,23(2):523-529
    [102]Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54(4):531-559
    [103]Kuwana T, SEO E T, EPSTEIN B. Electrochemical generation of solution luminescence. Journal of Physics of Chemistry,1963,67(10):2243-2244
    [104]Wilson R, Akhavan-Tafti H, DeSilva R, et al.Comparison between acridan ester, luminol, and ruthenium chelate electrochemiluminescence. Electroanalysis,2001, 13(13):1083-1092
    [105]Kulmala S, Ala-Kleme T, Kulmala A, et al. Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes. Analytical Chemistry,1998,70(6):1112-1118
    [106]Rypka M, Lasovsky J. Micellar halide and energy transfer effects in electrochemiluminescence. Journal of Electroanalytical Chemistry,1996,416(1-2): 41-45
    [107]Xu S J, Liu Y, Wang T H, et al. Highly Sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Analytical Chemistry,2010,82(22):9566-9572
    [108]Haapakka K E. Application of electrogenerated chemiluminescence of luminol to determination of traces of cobalt(Ⅱ) in aqueous alkaline solution. Analytica Chimica Acta,1982,139(6):229-236
    [109]Haapakka K E, Kankare J J. Application of the electrochemiluminescence of luminol to the determination of copper. Analytica Chimica Acta,1980,118(2):333-340
    [110]Haapakka K E. The mechanism of the cobalt(II)-catalyzed electro-generated chemiluminescence of luminol in aqueous alkaline solution. Analytica Chimica Acta, 1982,141(6):263-268
    [111]Zhang C X, Zhang S C, Zhang Z J. Determination of copper ions in waters by electrochemical stripping chemiluminescence analysis in situ. Analyst,1998,123(6): 1383-1386
    [112]Xiao C B, King W, Palmer D A, et al. Study of enhancement effects in the chemiluminescence method for Cr(III) in the ng 1(-1) range. Analytica Chimica Acta, 2000,415(1-2):209-219
    [113]Lin J M, Shan X Q, Hanaoka S, et al. Luminol chemiluminescence in unbuffered solutions with a cobalt(II)-ethanolamine complex immobilized on resin as catalyst and its application to analysis. Analytical Chemistry,2001,73(21):5043-505
    [114]Feng N, Lu J R, He Y H, et al. Post-chemiluminescence behaviour of Ni2+, Mg2+, Cd2+ and Zn2+ in the potassium ferricyanide-luminol reaction. Luminescence,2005,20(4-5): 266-270
    [115]Li G X, Zheng X W, Xiong H T, et al. Highly selective electrogenerated chemiluminescence method for determination of Ni(II) with the disposable micro-thin-layer chromatography electrode. Accta Chimica Sinica,2006,64(15): 553-1558
    [116]Wang X Y, Wang Q, Chen Y, et al. Determination of carbohydrates as their 3-aminophthalhydrazide derivatives by capillary zone electrophoresis with on-line chemiluminescence detection. Journal of Chromatogaphya,2003,992(1-2):181-191
    [117]Diaz A N, Sanchez F G, Garcia J A G. Aniline derivatives as enhancers and inhibitors of the luminol-H2O2-horseradish peroxidase chemiluminescence:Effects of the hammett constants of the substituents. Journal of Photochemistry and Photobiology A: Chemistry,1998,113(1):27-33
    [118]Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Analytica Chimica Acta,2001,426(1):57-64
    [119]Yang X Y, Guo Y S, Mei Z H. Chemiluminescent determination of H2O2 using 4-(1,2,4-triazol-1-yl)phenol as an enhancer based on the immobilization of horseradish peroxidase onto magnetic beads. Analytical Biochemistry,2009,393(1): 56-61
    [120]Claver J B, Miron M C V, Capitan-Vallvey L F. Disposable electrochemiluminescent biosensor for lactate determination in saliva. Analyst,2009,134(7):1423-1432
    [121]Li G X, Zheng X W, Zhang Z J. Electrogenerated chemiluminescence (ECL) determination of ephedrine with a self-assembly multilayer Ni(II)-poly luminol modified electrode. Microchimica Act a,2006,154(1-2):153-161
    [122]Ho W J, Chen J S, Ker M D, et al. Fabrication of a miniature CMOS-based optical biosensor. Biosensors & Bioeletronics,2007,22(12):3008-3013
    [123]Chen X P, Ye H Z, Wang W Z, et al. Electrochemiluminescence biosensor for glucose based on graphene/nafion/GOD film modified glassy carbon electrode. Electroanalysis,2010,22(20):2347-2352
    [124]Chu H H, Guo W Y, Di J W, et al. Study on sensitiz zation from reactive oxygen species for electrochemiluminescence of luminol in neutral medium. Electroanalysis, 2009,21(14):1630-1635
    [125]Jirka G P, Martin A F, Nieman T A. pH and concentration response surfaces for the luminol-H2O2 electrogenerated chemiluminescence reaction. Analytica Chimica Acta, 1993,284(2):345-349
    [126]Zhang L Y, Li D, Meng W L, et al. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosensors & Bioelectronics,2009,25(2):368-372
    [127]Laespada M E F, Pavon J L P, Cordero B M. Electroluminescent detection of enzymatically generated hydrogen peroxide. Analytica Chimica Acta,1996,327(3): 253-260
    [128]Marquette C A, Blum L J. Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Analytica Chimica Acta,1999,381(1):1-10
    [129]Zhang L L, Zheng X W, Guo Z H. A novel electrogene rated chemiluminescence reaction scheme using core-shell luminol-based SiO2 nanoparticies as a regulator and its analytical application. Chinese Journal of Chemistry,2007,25(3):351-355
    [130]Tian D, Duan C, Wang W, et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethyliso luminol labeling and gold nanoparticle amplification. Talanta,2009,78(2):399-404
    [131]Zhuang H S, Wang Q E, Chen G N, et al. Label of AFP antibody and electrochemiluminescence immunoassay. Chemical Journal of Chinaese Universities: Chinese,1999,20(8):1194-1199
    [132]Yang M L, Liu C Z, Qian K J, et al. Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. Analyst,2002,127(9): 1267-1271
    [133]Dong Y P, Cui H, Wang C M. Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode. Journal of Physical Chemistry B,2006, 110(37):18408-18414
    [134]Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 2003,75(9):2075-2079
    [135]Lu W, Jin Y, Wang G, et al. Enhanced photoelectrochemical method for linear DNA hybridization detection using Au-nanoparticle labeled DNA as probe onto titanium dioxide electrode. Biosensors & Bioelectronics,2008,23(10):1534-1539
    [136]Yang M H, Jiang J H, Lu Y H, et al. Functional hi stidine/nickel hexacyanoferrate nanotube assembly for biosensor applications. Biomaterials,2007,28(23):3408-3417
    [137]Niemeyer C M. Nanoparticles, proteins, and nucleic acids:Biotechnology meets materials science. Angewandte Chemie International Edition,2001,40(22): 4128-4158
    [138]Nassar A E F, Rusling J F, Nakashima N. Electron transfer between electrodes and heme proteins in protein-DNA films. Journal of the American Chemical Society,1996, 118(12):3043-3044
    [139]Monson C F, Woolley A T. DNA-templated construction of copper nanowires. Nano Letters,2003,3(3):359-363
    [140]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature,1998,391(6669):775-778
    [141]Richter J, Seidel R, Kirsch R, et al. Nanoscale palladium metallization of DNA. Advanced Materials,2000,12(7):507-510
    [142]Harnack O, Ford W E, Yasuda A, et al. Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Letters,2002,2(9): 919-923
    [143]Ongaro A, Griffin F, Beeeher P, et al. DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate. Chemistry of Materials,2005,17(8):1959-1964
    [144]Seidel R, Ciacchi L C, Weigel M, et al. Synthesis of platinum cluster chains on DNA templates:Conditions for a template-controlled cluster growth. Journal of Physical Chemistry B,2004,108(30):10801-10811
    [145]Onoa G B, Cervantes G, Moreno V, et al. Study of the interaction of DNA with cisplatin and other Pd(Ⅱ) and Pt(Ⅱ) complexes by atomic force microscopy. Nucleic Acids Research,1998,26(6):1473-1480
    [146]Zinchenko A A, Sergeyev V G, Yamabe K, et al. DNA compaction by divalent cations: Structural specificity revealed by the potentiality of designed quaternary diammonium salts. Chembiochem,2004,5(3):360-368
    [147]Yoshikawa Y, Suzuki M, Chen N, et al. Ascorbic acid induces a marked conformational change in long duplex DNA. European Journal of Biochemistry,2003,270(14):3101-3106
    [148]Wu F H, Xu J J, Tian Y, et al. Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis. Biosensors & Bioelectrinics,2008, 24(2):198-203
    [149]Zhang L, Zhang Q, Lu X B, et al. Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosensors & Bioelectronics,2007,23(1):102-106
    [150]Zong S Z, Cao Y, Zhou Y M, et al. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir,2006, 22(21):8915-8919
    [151]Xu J, Miao H Z, Wu H F, et al. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray. Biosensors & Bioelectronics, 2006,22(1):71-77
    [152]Qureshi A, Kang W P, Davidson J L, et al. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond and Related Materials,2009,18(12):1401-1420
    [153]Pividori M I, Alegret S. Electrochemical genosensing based on rigid carbon composites:A review. Analytical Letters,2005,38(15):2541-2565
    [154]Yang W R; Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angewandte Chemie International Edition, 2010,49(12):2114-2138
    [155]Lin Y H, Yantasee W, Wang J. Carbon nanotubes (CNTs) for the development of electrochemical biosensors. Frontiers in Bioscience,2005,10(1):492-505
    [156]Trojanowicz M. Analytical applications of carbon nanotubes:a review. Trac-Trends in Analytical Chemistry,2006,25(5):480-489
    [157]Jacobs C B, Peairs M J, Venton B J. Review:Carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta,2010,662(2):105-127
    [158]Vamvakaki V, Fouskaki M, Chaniotakis N. Electrochemical Biosensing systems based on carbon nanotubes and carbon nanofibers. Analytical Letters,2007,40(12): 2271-2287
    [159]Ndamanisha J C, Guo L P. Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrchemistry,2009,77(1):60-63
    [160]Qi B, Peng X J, Fang J, et al. Ordered mesoporous carbon functionalized with polythionine for electrocatalytic application. Electroanalysis,2009,21(7):875-880
    [161]Dong J P, Hu Y Y, Zhu S M, et al. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Analytical and Bioanalytical Chemistry,2010,396(5): 1755-1762
    [162]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B,1999, 103(37):7743-7746
    [163]Chang H, Joo S H, Pak C. Synthesis and characterization of mesoporous carbon for fuel cell applications. Journal of Materials Chemistry,2007,17(30):3078-3088
    [164]Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials,2009,8(6):500-506
    [165]Sieber H, Hoffmann C, Kaindl A, et al. Biomorphic cellular ceramics. Advanced Engineering Materials,2000,2(3):105-109
    [166]Ryoo R, Joo S H, Kruk M, et al. Ordered mesoporous carbons. Advanced Materials, 2001,13(9):677-681
    [167]Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Advanced Materials,2006,18(16):2073-2094
    [168]Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry,2005,15(12):1217-1231
    [169]Ambrosio E P, Francia C, Manzoli M, et al. Platinum catalyst supported on mesoporous carbon for PEMFC. International Journal of Hydrogen Energy,2008, 33(12):3142-3145
    [170]Lin M L, Lo M Y, Mou C Y. PtRu nanoparticles supported on ozone-treated mesoporous carbon thin film as highly active anode materials for direct methanol fuel cells. Journal of Physical Chemistry B,2009,113(36):16158-16168
    [171]Joo S H, Kwon K, You D J, et al. Preparation of high loading Pt nanoparticles on ordered mesoporous carbon with a controlled Pt size and its effects on oxygen reduction and methanol oxidation reactions. Electrochimica Acta,2009,54(24): 5746-5753
    [172]Bo X J, Ndamanisha J C, Bai J, et al. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta,2010,82(1):85-91
    [173]Su C, Zhang C, Lu G Q, et al. Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis,2010,22(16):1901-1905
    [174]Li J L, Han T, Wei N N, et al. Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor. Biosensors & Bioelectronics,2009,25(4): 773-777
    [175]Santucci R, Laurenti E, Sinibaldi F, et al. Effect of dimethyl sulfoxide on the structure and the functional properties of horseradish peroxidase as observed by spectroscopy and cyclic voltammetry. Biochimica Et Biophysica Acta:Protein Structured and Molecular Enzymology,2002,1596(2):225-233
    [176]Rosenzweig Z, Kopelman R. Analytical properties and sensor size effects of a micrometer-sized optical fiber glucose biosensor. Analytical Chemistry,1996,68(8): 1408-1413
    [177]Duarte A J, Rocha C, Silveira F, et al. Luminol-doped nanostructured composite materials for chemiluminescent sensing of hydrogen peroxide. Analytical Letters, 2010,43(17):2762-2772
    [178]Grieshaber D, MacKenzie R, Voros J, et al. Electrochemical biosensors-sensor principles and architectures. Sensors,2008,8(3):1400-1458
    [179]Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta,2007, 72(2):819-824
    [180]Shen Q M, Jiang L P, Zhang H, et al. Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. Journal of Physical Chemistry C,2008,112(42):16385-16392
    [181]Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroananlysis,2008,20(20): 2212-2216
    [182]Chen X M, Lin Z J, Chen D J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosensors & Bioelectronics,2010,25(7):1803-1808
    [183]Wang L X, Bo X J, Bai J, et al. Gold nanoparticles electrodeposited on ordered mesoporous carbon as an enhanced material for nonenzymatic hydrogen peroxide sensor. Electroananlysis,2010,22(21):2536-2542
    [184]Wang J N, Zhang L, Niu J J, et al. Synthesis of high surface area, water-dispersible graphitic carbon nanocages by an in situ template approach. Chemistry of Materials, 2007,19(3):453-459
    [185]Chou J, Jayaraman S, Ranasinghe A D, et al. Efficient electrocatalyst utilization: electrochemical deposition of Pt nanoparticles using nafion membrane as a template. Journal of Physical Chemistry B,2006,110(14):7119-7121
    [186]Sandanaraj B S, Vutukuri D R, Simard J M, et al. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold:Implications in modulating protein function. Journal of American Chemical Society,2005,127(30): 10693-10698
    [187]Sarma A K, Vatsyayan P, Goswami P, et al. Recent advances in material science for developing enzyme electrodes. Biosensors & Bioelectronics,2009,24(8):2313-2322
    [188]Xu K, Huang J R, Ye Z Z, et al. Recent development of nano-materials used in DNA biosensors. Sensors,2009,9(7):5534-5557
    [189]Mun K S, Alvarez S D, Choi W Y, et al. A Stable, Label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano,2010,4(4):2070-2076
    [190]Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosensors & Bioelectronics,2008,24(4):1063-1069
    [191]Li Y, Zhang J J, Xuan J, et al. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochemistry Communications,2010, 12(6):777-780
    [192]Zeng X D, Liu X Y, Kong B, et al. A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+complex electrodeposition onto glassy carbon electrode. Sensors and Actuators B:Chemical,2008,133(2):381-386
    [193]Mariwala R K, Acharya M, Foley H C. Adsorption of halocarbons on a carbon molecular sieve. Microporous and Mesoporous Materials,1998,22(1-3):281-288
    [194JLaviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28
    [195]Ruzgas T, Gorton L, Emneus J, et al. Kinetic models of horseradish peroxidase action on a graphite electrode. Journal of Electroanalytical Chemistry,1995,391(1-2):41-49
    [196]Dai Z H, Ju H X, Chen H Y. Mesoporous materials promoting direct electrochemistry and electrocatalysis of horseradish peroxidase. Electroanalysis,2005,17(10): 862-868
    [197]Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications,2006,8(5):874-878
    [198]Li L M, Huang J, Wang T H, et al. An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosensors & Bioelectronics,2010,25(11):2436-2441
    [199]You T Y, Niwa O, Tomita M, et al. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry,2003,75(9):2080-2085
    [200]Kamin R A, Wilson G S. Rotating-ring-disk enzyme electrode for biocatalysis kinetic-studies and characterization of the immobilized enzyme layer. Analytical Chemistry,1980,52(8):1198-1205
    [201]Tong Z Q, Yuan R, Chai Y Q, et al. A novel and simple biomolecules immobilization method:Electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor. Journal of Biotechnology,2007,128(3):567-575
    [202]Cai C X, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Analytical Biochemistry,2004,325(2):285-292
    [203]Manning G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome. Science,2002,298(5600):1912-1934
    [204]Kalume D, Molina H, Pandey A. Tackling the phosphoproteome:tools and strategies. Current Opinion in Chemical Biology,2003,7(1):64-69
    [205]Nicholson R I, Gee J M W, Harper M E. EGFR and cancer prognosis. European Journal of Cancer,2001,37(suppl 4):S9-S15
    [206]Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell,2000,103(2): 211-225
    [207]Flajolet M, He G, Heiman M, et al. Regulation of Alzheimer's disease amyloid-beta formation by casein kinase Ⅰ. Proceedings of the National Academy of Sciences of the United States of America,2007,104(10):4159-4164
    [208]Hanger D P, Byers H L, Wray S, et al. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. Journal of Biological Chemistry,2007,282(32):23645-23654
    [209]Houseman B T, Huh J H, Kron S J, et al. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnology,2002,20(3):270-274
    [210]Rothman D M, Shults M D, Imperiali B. Chemical approaches for investigating phosphorylation in signal transduction networks. Trends in Cell Biology,2005,15(9): 502-510
    [211]Rhee H W, Lee S H, Shin I S, et al. Detection of kinase activity using versatile fluorescence quencher probes. Angewandte Chemie International Edition,2010. 49(29):4919-4923
    [212]Stenlund P, Frostell-Karlsson A, Karlsson O P. Studies of small molecule interactions with protein phosphatases using biosensor technology. Analytical Biochemistry,2006, 353(2):217-225
    [213]Kerman K, Vestergaard M, Tamiya E. Label-free electrical sensing of small-molecule inhibition on tyrosine phosphorylation. Analytical Chemistry,2007,79(17): 6881-6885
    [214]Kerman K, Song H, Duncan J S, et al. Peptide biosensors for the electrochemical measurement of protein kinase activity. Analytical Chemistry,2008,80(24): 9395-9401
    [215]Kerman K, Kraatz H B. Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles. Biosensors & Bioelectronics,2009,24(5):1484-1489
    [216]Wieckowska A, Li D, Gill R, et al. Following protein kinase acivity by electrochemical means and contact angle measurements. Chemical Communications, 2008, (20):2376-2378
    [217]Kerman K, Chikae M, Yamamura S, et al. Gold nanoparticle-based electrochemical detection of protein phosphorylation. Analytica Chimica Acta,2007,588(1):26-33
    [218]Ji J, Yang H, Liu Y, et al. TiO2-assisted silver enhanced biosensor for kinase activity profiling. Chemical Communications,2009, (12):1508-1510
    [219]Xu X H, Nie Z, Chen J H, et al. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase. Chemical Communications, 2009, (45):6946-6948
    [220]Marquette C A, Thomas D, Degiuli A, et al. Design of luminescent biochips based on enzyme, antibody, or DNA composite layers. Analytical and Bioanalytical Chemistry, 2003,377(5):922-928
    [221]Marquette C A, Blum L J. Chemiluminescent enzyme immunoassays:a review of bioanalytical applications. Bioanalysis,2009,1(7):1259-1269
    [222]Bertoncello P, Forster R J. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods:Recent advances and future perspectives. Biosensors & Bioelectronics,2009,24(11):3191-3200
    [223]Ala-Kleme T, Makinen P, Ylinen T, et al. Rapid electrochemiluminoimmunoassay of human C-reactive protein at planar disposable oxide-coated silicon electrodes. Aanalytical Chemistry,2006,78(1):82-88
    [224]Jie G F, Zhang J J, Wang D C, et al. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Analytical Chemistry, 2008,80(11):4033-4039
    [225]Marschall A, Finke A, Raschmenges J. An automated electrochemiluminescence immunoassat for determination of estradi (E2). Clinical Chemistry,1995,41(6): S80-S80
    [226]Zhang L Y, Li D, Meng W L, et al. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosensors & Bioelectronics,2009,25(2):368-372
    [227]Li Y, Qi H L, Peng Y, et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochemistry Communications,2007, 9(10):2571-2575
    [228]Fahnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54(4):531-559
    [229]Lu Y M, Young J, Meng Y G. Electrochemiluminescence to detect surface proteins on live cells. Current Opinion in Pharmacology,2007,7(5):541-546
    [230]Xiao S H, Farrelly E, Anzola J, et al. An ultrasensitive high-throughput electrochemiluminescence immunoassay for the Cdc42-associated protein tyrosine kinase ACK1. Analytical Biochemistry,2007,367(2):179-189
    [231]Liu G D, Lin Y H. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta,2007,74(3):308-317
    [232]Rusling J F, Sotzing G, Papadimitrakopoulosa F. Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry, 2009,76(1-2):189-194
    [233]Jie G F, Liu P, Wang L, et al. Electrochemiluminescence immunosensor based on nanocomposite film of CdS quantum dots-carbon nanotubes combined with gold nanoparticles-chitosan. Electrochemistry Communications,2010,12(1):22-26
    [234]Duan R X, Zhou X M, Da X. Electrochemiluminescence biobarcode method based on cysteamine-gold nanoparticle conjugates. Analytical Chemistry,2010,82(8): 3099-3103
    [235]Pinijsuwan S, Rijiravanich P, Somasundrum M, et al. Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification. Analytical Chemistry,2008,80(17):6779-6784
    [236]Cozza G, Bonvini P, Zorzi E, et al. Identification of ellagic acid as potent inhibitor of protein kinase CK2:A successful example of a virtual screening application. Journal of Medicinal Chemistry,2006,49(8):2363-2366
    [237]Xiao Z, Prieto D, Conrads T P, et al. Proteomic patterns:their potential for disease diagnosis. Molecular and Cellular Endocrinology,2005,230(1-2):95-106
    [238]Weston A D, Hood L. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research,2004,3(2):179-196
    [239]Goldsmith S J. Radio Immunoassay review of basic principles. Seminars in Nuclear Medicine,1975,5(2):125-152
    [240]Matsuya T, Tashiro S, Hoshino N, et al. A core-shell-type fluorescent nanosphere possessing reactive poly(ethylene glycol) tethered chains on the surface for zeptomole detection of protein in time-resolved fluorometric immunoassay. Analytical Chemistry, 2003,75(22):6124-6132
    [241]Yates A M, Elvin S J, Williamson D E. The optimisation of a murine TNF-alpha ELISA and the application of the method to other murine cytokines. Journal of Immunoassay,1999,20(1-2):31-44
    [242]Fu Z F, Hao C, Fei X Q, et al. Flow-injection chemiluminescent immunoassay for alpha-fetoprotein based on epoxysilane modified glass microbeads. Journal of Immunological Methods,2006,312(1-2):61-67
    [243]Hu S H, Zhang S C, Hu Z C, et al. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Analytical Chemistry,2007, 79(3):923-929
    [244]Schmalzing D, Nashabeh W. Capillary electrophoresis based immunoassays:A critical review. Electrophoresis,1997,18(12-13):2184-2193
    [245]Saito K, Kobayashi D, Sasaki M, et al. Detection of human serum tumor necrosis factor-alpha in healthy donors, using a highly sensitive immuno-PCR assay. Clinical Chemistry,1999,45(5):665-669
    [246]Liu X, Ju H X. Coreactant enhanced anodic electrocherniluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Analytical Chemistry,2008,80(14):5377-5382
    [247]Miao W J, Bard A J. Electrogenerated chemiluminescence.80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Analytical Chemistry,2004,76(23):7109-7113
    [248]Zhou X M, Xing D, Zhu D B, et al. Magnetic bead and nanoparticle based electrochemiluminescence amplification assay for direct and sensitive measuring of telomerase activity. Analytical Chemistry,2009,81(1):255-261
    [249]Sardesai N, Pan S M, Rusling J. Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)(3)](2+)-doped silica nanoparticles. Chemical Communications, 2009, (33):4968-4970
    [250]Tian D Y, Duan C F, Wang W, et al. Ultrasensitive electrochemiluminescence immunosensor based on luminol functionalized gold nanoparticle labeling. Biosensors & Bioelectronics,2010,25(10):2290-2295
    [251]Wu X M, Hu Y J, Jin J, et al. Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Analytical Chemistry, 2010,82(9):3588-3596
    [252]Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6(3): 183-191
    [253]Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material:Graphene. Advanced Materials,2008,20(20):3924-3930
    [254]Tang L H, Feng H B, Cheng J S, et al. Uniform and rich-wrinkled electrophoretic deposited graphene film:a robust electrochemical platform for TNT sensing. Chemical Communications,2010,46(32):5882-5884
    [255]Du D, Wang L M, Shao Y Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Analytical Chemistry,2011,83(3): 746-752
    [256]Wan Y, Wang Y, Wu J J, et al. Graphene oxide sheet-mediated Silver enhancement for application to electrochemical biosensors. Analytical Chemistry,2011,83(3):648-653
    [257]Fan FRF, Park S, Zhu Y W, et al. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. Journal of the American Chemical Society,2009,131(3):937-939
    [258]Chen X M, Wu G H, Chen J M, et al. A novel electrochemiluminescence sensor based on bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide. Biosensors & Bioelectronics,2010,26(2):872-876
    [259]Lilja H, Ulmert D, Vickers A J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nature Reviews Cancer,2008,8(4):268-278
    [260]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80(6):1339-1339
    [261]Miao W J. Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews,2008,108(7):2506-2553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700