用户名: 密码: 验证码:
附壁式射流元件内部流动研究及结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家高技术研究发展计划(863计划)“精确喷灌技术与产品”(编号2011AA100506)、国家农业科技成果转化基金(863计划)“变量喷洒轻小型喷灌机组完善与中试”(编号2011GB2C100015)。
     全射流喷头是我国具有自主知识产权的一种新型节水灌溉产品,应用水流附壁效应完成喷头直射、步进和反向的功能,具有结构简单、造价低、喷洒性能等优点。从全射流喷头现阶段的研究来看,附壁射流元件的内部流动理论研究是全射流喷头结构优化的关键。因此,本文采用理论分析、试验研究与数值计算相结合的方法,通过研究全射流喷头射流元件中的附壁流动特性,掌握小位差比率射流元件水流附壁规律,为全射流喷头的优化设计提供理论依据,同时为其它新型射流控制元件的开发奠定理论基础,促进水射流技术在工农业生产的更广泛应用。本文主要研究工作和创新点有:
     (1)从自由紊动射流理论及附壁射流理论出发,推导射流元件内附壁流场关键参数的计算公式。对附壁点距离进行了编程计算。对全射流喷头射流元件的切换性能进行分析和研究,并提出将切换响应时间tq、间隙补气速度uj、附壁力Fj、最大附壁力点距离xf作为衡量射流元件性能的重要参数。
     (2)首次采用PIV设备对位差比率小于1的附壁式射流元件内部流动进行研究。搭建射流元件内部流动PIV试验台,设计和加工透明观测样机,对不同结构尺寸的样机在不同流量下的附壁射流流场进行了PIV测量。研究结果表明:位差比率D/b不变,附壁点距离xr随着流量的变化很小;相同流量下,附壁点距离随着位差比率的增大而增大;相同位差比率的样机,在补气孔距离h为3mmm时附壁点距离最短;在Q=3m3/h,作用区长度L为60mm时,位差比率大于0.5的样机无法实现附壁,因此将研究范围缩小到位差比率小于0.5的样机。通过PIV试验研究结果,初步得出了盖板间隙取值范围,即:左间隙值gp<2mm,右间隙值g2<1.5mmm。
     (3)建立全射流喷头射流附壁力模型,对射流元件内水流附壁冲击力进行了分析和计算。搭建通用喷头力测量试验台,通过测量喷头运转驱动力和转体摩擦力初步得到射流元件水流附壁冲击力Fj的间接试验值,并与理论计算和数值模拟结果进行了比较,其变化趋势相同。
     (4)结合CATIA知识工程顾问模块建立了一套包括三维几何模板、网格划分和数值计算在内的附壁射流元件模型参数化设计流程。
     建立了适合于小位差比率附壁式射流元件两相流数值计算模型。通过与PIV内部流场测量结果对比,选择SST湍流模型及表面自由两相流模型进行模拟,其附壁点距离的结果与PIV试验误差在5%以内,位差比率和补气孔距离对附壁射流流场的影响规律与PIV试验完全一致。
     (5)数值模拟分析了关键几何参数对于附壁射流性能的影响。保持其他结构参数相同,随着位差比率的增大,附壁点距离增大。但当位差比率大于0.5时,需要将作用区加长到70mmm水流才能实现附壁,不宜应用于射流喷头中。将射流元件的位差比率选择范围缩小到0.15-0.4范围内,并根据数值模拟计算得到的附壁点距离值对理论计算值进行了修正,得到了不同位差比率下附壁点距离的理论值和模拟值之间的函数关系式。附壁点距离随着补气孔位置的升高先减小随后增大,当h=3mm时,射流模型完全附壁所需要的长度最短。盖板间隙尺寸直接决定间隙补气速度uj,对附壁流场影响较大。通过模拟将盖板间隙的取值范围进一步缩小:盖板左间隙g1控制在0.5-1.5mm,盖板右间隙g2控制在0.25-1.25mm。
     (6)通过正交化数值模拟对结构参数进行优化,并设计开发出外取水射流元件及喷头。以切换响应时间tq、附壁力Fj、最大附壁力点距离xf作为正交模拟中衡量射流元件性能的指标,通过正交数值模拟得到了各位差比率所对应的最佳结构参数组合。在射流元件内部流动特性研究的基础上,对全射流喷头进行了结构优化和改进,设计出外取水射流元件及PXSBW40双向步进外取水全射流喷头。介绍了PXSBW40双向步进式全射流喷头的工作原理,分析了正向步进和反向步进的工作过程,并与PXH40喷头和PY40喷头进行了水力性能对比,结果表明PXSBW40双向步进式全射流喷头水力性能和运转稳定性优于另外两种喷头。
The research on the inner flow of the offset fluidic component and its structural optimization is one of the contents of China National Key Technology R&D Program (No.2011AA100506)"Precise sprinkling irrigation technology and products". National Agriculture Science and Technology Achievements Transformation Fund (No.2011GB2C100015)"Perfection and Pilot Test on Variable Light-duty Irrigation Equipment"
     The fluidic sprinkler controlled by clearance was an original invention of China. The offset effect in the fluidic component drove the sprinkler and controlled its rotating direction, so the fluidic sprinkler was characterized with simple structure, low cost and good hydraulic performance. Based on the current research status of the fluidic sprinkler, the study on the inner flow theory of the fluidic component was the key of the structural optimization of the fluidic sprinkler. The theoretical analysis, experiments and numerical simulations were combined to study the inner flow characteristic of the fluidic component of the fluidic sprinkler and the offset flow law of the fluidic component with small offset ratio. The research results would be adapted into the structural optimization of the fluidic sprinkler and the development of new fluidic component to extend the application range of the fluidic technology.
     The main research contents and results were as follows:
     (1) Based on the theories of free turbulence jet and wall attachment jet, the key parameters of the offset flow were analyzed and the source program was written and applied to calculate the offset distance under different offset ratios. The switching performance of the fluidic component of the fluidic sprinkler was analyzed and studied, the switching response time tq, the air velocity of the clearance uj, the offset force Fj and the distance of the max offset force point xf were brought out as parameters of the switching performance.
     (2) The inner flow of the offset fluidic component with small offset ratio (D/b<1) was investigated with PIV for the first time. The fluidic component inner flow PIV test rig was set up and the visualized prototypes with different structural sizes were designed and processed to measure the offset flow under different flow rates. The test results indicated that:the offset distance rarely change with increasing flow rates, in a certain flow rate, the offset distance increased with the offset ratio; in a certain offset ratio, the value of the offset distance reaches the minimum while the air supplement hole distance is3mm; when Q=3m3/h, the length of the component L=40mm, the jet in prototypes with offset ratio bigger than0.5cannot attach to the wall, so the following research focused on prototypes with offset ratio smaller than0.5. The range of the clearance was achieved by the PIV test:left clearance g1<2mm, right clearance g2<1.5mm.
     (3) The wall-attachment driving force model was established. Formulas for wall-attachment driving force were deduced. The general sprinkler force test rig was set up, and the jet offset force was indirectly obtained by the testing of the sprinkler driving force and the sliding friction. The test results were compared with the theoretical values and the simulation results.
     (4) The parameterized design of the offset fluidic component model was brought forward, which including three-dimensional geometric template, mesh generation and numerical simulation, by using the knowledge engineering function of CATIA.
     Based on the results of the PIV tests, the small offset ratio fluidic two-phase flow numerical model was established. By comparing with the results of the PIV tests, the numerical model with SST model and free surface model has a minimum error of5%on offset distance, the effect of offset ratio and air supplement hole distance on the offset flow simulated by the numerical model agree with that of the PIV test. Which means the numerical model could replace the PIV test to take further research.
     (5) The impact of key structural parameters of the fluidic sprinkler on the wall-attaching performance was simulated and analyzed numerically. With no changes in other parameters including the air supplement hole distance and the cover clearance, the offset distance increased as the offset ratio rose. But if it was higher than0.5, the working area in the spray body had to be lengthened to70mm in order to achieve the wall attachment in the flow, which was not practical in the sprinklers. In this respect, the offset ratio of the fluidic component was ranged from0.15to0.4. Then the relations between the theoretical and numerical results of the offset distance calculated toward different offset ratios were obtained after the theoretical offset distance was modified in reference to the numerical one. The offset distance first declined, then increased as the air supplement hole distance rose; at the value h=3mm, the length required for a complete water attachment of the jet model was the shortest. The influence of the cover clearance on the wall attaching flow field was significant. The size on the left clearance is within0.5-1.5mm, and that on the right is within0.25-1.25mm.
     (6) The structural parameter optimization based on orthogonal simulation were carried out and a new fluidic component and sprinkler were developed. The switching response time, offset force and distance of max offset force point were taken as the main factors in the orthogonal evaluation of the performance of fluidic sprinkler, and the premium combination under different offset ratios was figured out. The structure of the fluidic sprinkler was optimized based on the study of the inner flow characteristic of the fluidic component. The PXSBW40two-way stepping fluidic sprinkler with extermination fetching tubes was designed. The characteristics and working principle of the PXSBW40sprinkler were introduced, both working processes of the forward-stepping and the backward-stepping were analyzed. Also, the hydraulic performance was compared with those of the sprinklers typed PXH40and PY40. The results indicated that the new sprinkler PXSBW40outperformed the other two sprinklers in hydraulic performance and operation stability.
引文
[1]黎惠霖,阮伯如.射流技术及其应用[M].北京:机械工业出版社,1977
    [2]射流技术编译组.射流系统设计手册[M].北京:国防工业出版社,1971
    [3]中国科学技术情报所重庆分所.射流技术参考资料[M].重庆:科学技术文献出版社,1974
    [4]陈志恺.21世纪中国水资源持续开发利用问题[J].中国工程科学,2000,2(3):7-11
    [5]冯广志.我国节水灌溉发展的总体思路[J].中国农村水利水电,1998,(11):1-6
    [6]中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国可持续发展水资源战略研究综合报告[J].中国工程科学,2000,2(8):1-17
    [7]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001
    [8]许迪.现代节水农业技术研究进展与发展趋[EB/OL].[2006-11-09]. http://www.66wen.com /06gx/shuili/shuiwen/20061109/50120.html
    [9]钱正英.中国水资源战略研究中几个问题的认识[J].河海大学学报,2001,29(3):1-7
    [10]王占忠,郑美文.生命之水:纵谈水资源[M].北京:中国环境科学出版社,2004
    [11]李岚清.行走式节水灌溉-节水新理念[M].北京:中国农业出版社,2004
    [12]苏德风,李世英.我国节水灌溉设备现状与展望[J].排灌机械,1997,15(3):22-26
    [13]李英能.我国现阶段发展节水灌溉应注意的几个问题[M].水利部农村水利司等.农业节水探索,北京:中国水利水电出版社,2001,159-163
    [14]康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,3(4):1-7
    [15]张志新.滴灌工程规划设计原理与应用[M].北京:中国水利水电出版社,2007
    [16]陈大雕,林中卉.喷灌技术[M].北京:科学技术出版社,1992
    [17]韩小扬.PSH-40型步进互控全射流喷头[J].节水灌溉,1980,(2):11-14
    [18]十浙民,陈苏.PSBZ型水流自控步进式全射流喷头[P].中国,87203621,1987
    [19]黄志斌.PSZ型自反馈式射流喷头的研究[J].镇江农业机械学院学报,1981,2(2):28-31
    [20]黄志斌,张世芳.自反馈式射流喷头的设计[J].江苏工学院学报,1985,6(2):35-38
    [21]王振海.喷灌喷头喷水范围限制器[P].中国,96212526,1996
    [22]韩小扬.一种全射流喷头[P].中国,86209507,1986
    [23]谢福祺,张世芳,顾子良等.PSF-50型反馈式流控喷头的原理与分析[J].江苏工学院学报,1983,4(2):13-20
    [24]杨诗通,谢福祺.PSF-50型喷头步进稳定性的研讨[J].排灌机械,1984,2(2):16-18
    [25]十浙民PSBZ型自控式全射流喷头的研究[J].节水灌溉,1982,(3):5-8,17
    [26]韩小杨.双击同步全射流喷头的研制[J].节水灌溉,1991(2):38-40
    [27]王浙民,谢福祺.对PSZ型全射流喷头元件的分析[J].农业机械学报,1985,16(6):87-91
    [28]韩小杨,孙才华,沈方兴等.双击同步全射流喷头[P].中国,90200784,1990
    [29]Hong Li, Shou-qi Yuan, Qing-jiang Xiang, etcl. Theoretical and experimental study on water offset flow in fluidic component of fluidic sprinklers[J]. Journal of Irrigation and Drainage Engineering,2011,137 (4):234-243
    [30]李红,谢福祺,郎涛等.全射流喷头的研究现状及发展趋势[J].中国农村水利水电,2004,(5):80-92
    [31]李红.隙控式全射流喷头理论及试验研究[D].江苏大学博士学位论文,2007
    [32]Coanda Henri. Device for deflecting a stream of elastic fluid projected into an elastic fluid[P]. United Stated Patent Office:US2052869,1936-09-1
    [33]平浚.射流理论基础及应用[M].北京:宇航出版社.1995
    [34]BourQue C, Newman B G. Reattachment of a Two-dimensional Incompressible Jet to Adjacent Flat Plate[J], The Aeronautical Quarterly,1960, Vol.11
    [35]周瑞章,俞丽和.控制道下移双稳元件中的射流附壁点位置的研究[J],力学季刊,1982,(1):28-33
    [36]Hoch J, Jiji L M. Two-dimensional turbulent offset jet boundary interaction[J]. Journal of Fluids Engineering,1981,103.154-161
    [37]Pelfray J R R, Liburdy J A. Mean flow characteristics of a turbulent offset jet[J].Journal of Fluids Engineering,1986,108:82-88
    [38]Holland J T, Liburdy J A. Measurements of the thermal characteristics of heated offset jets[J]. International Journal of Heat and Mass Transfer[J].1990,33 (1):69-78
    [39]Dae Seong Kim. Soon Hyun Yoon. Flow and heat transfer measurements of a wall attaching offset jet[J]. International Journal of Heat and Mass Transfer,1996,39 (14):2907-2913
    [40]Heung Bok Song, Soon Hyun Yoon, Dae Hee Lee. Flow and heat transfer characteristics of atwo-dimensional oblique wall attaching offset jet [J]. International Journal of Heat and MassTransfer.2000, Vol.43:2395-2404
    [41]Alain Triboix, Daniel Marchal. Stability analysis of the mechanism of jet attachment to walls[J]. International Journal of Heat and Mass Transfer.2002. Vol.45. No.14:2769-2775
    [42]Nan Gao. Dan Ewing. Experimental investigation of planar offset attaching jets with small offset distances[J]. Experiments in Fluids.2007, Vol.42:941-954
    [43]Gu Ruochuan. Modeling two-dimensional turbulent offset jets[J]. Journal of Hydraulic Engineering,1996, Vol.122. No.11:617-623
    [44]Nasr A, Lal J C S. A turbulent plane offset jet with small offset ratio[J]. Experiments in Fluids.1998, Vol.24:47-57
    [45]Koo Hyeong-Mo. Prediction of turbulent offset jet flows with an assessment of QUICKER scheme[J]. International Journal for Numerical Methods in Fluids.1992. Vol.15. No.3: 355-372
    [46]Yoon S H. Effect of surface roughness on a turbulent wall-attaching offset jet[J]. Experiments in Fluids,1995. Vol.19. No.1:38-42
    [47]Gebhardy U, Hein H, Sehmidt U. Numerical investigation of fuidic miero-oscillators[J]. Journal of Micromechanics and Microengineering.1996:6:115-117
    [48]廖振方,邓晓刚,李军.涡腔式自激振荡射流喷洒装置[J].重庆大学学报,2002,25(12):1-3
    [49]Kanna, Rajesh P. Numerical simulation of two-dimensional laminar incompressible offset jet flows. nternational Journal for Numerical Methods in Fluids,2005,49 (4):439-464
    [50]熊青山,彭振斌.喷嘴宽度对射流元件切换性能影响的模拟试验研究[J].凿岩机械气动工具,2005(1):35-39
    [51]熊青山,王小建.深宽比、控制道对射流切换性能影响的试验研究[J].凿岩机械气动工具,2005(4):20-25
    [52]熊青山,殷琨.自由切换射流元件模拟试验研究[J].液压与气动,2009(7):50-52
    [53]熊青山,安传奇.槽式自由切换射流元件模拟试验[J].化工进展,2009.Vol28:552-554
    [54]杨军.正反馈式射流振荡器性能研究及应用[D].大连理工大学,2008
    [55]白亚磊.康达效应在流量测量中的研究与应用[D].南京航空航天大学,2007
    [56]Ciro Cerretelli, Emad Gharaibah. An Experimental and Numerical Investigation on Fluidic oscillators for Flow Control. In:37th AIAA Fluid Dynajuies Confereneeand Exhibit. PaPer AIAA 2007-3854
    [57]傅新,王池宇,谢海波,杨华勇.射流流量计的仿真与实验研究[J].机械工程学报,2006,Vol.42(7):24-28
    [58]Ayukawa K, Shakouchi T. Analysis of a jet attaching to an offset parallel plate[J]. Bulletin of Japan Society of Mechanical Engineers.1976,19:395-401
    [59]Lund T S. Augmented thrust and mass flow associated with two-dimensional jet reattachment[J]. American Institute of Aeronautics and Astronautics.1986,24:1964-1970
    [60]McRee DL Moses HL. The effect of aspect ratio and offset ratio on nozzle flow and jet reattachment[M]. New York:ASME Press,1967
    [61]Rajaratnam N, Subramanya N. Plane turbulent reattachment wall jets[J]. Journal of the Hydraulics Division.1968,94:95-112
    [62]Raman. G., Hailye. M., Rice. E. Flip-flop jet nozzle extended to super sonic flow[J]. AIAA Journal.1993,31:1028-1035
    [63]Raman. G., Rice. E. J., Cornelius. D. Evaluation of flip-flop jet nozzles for use as praetieal exeitation devices[J]. Journal of FluidEngineering.116:508-515
    [64]Eliphas Wagner Simoes, Rogerio Furlan, Roberto Eduardo Bruzetti Leminski. Microfluidic oscillator for gas flow control and measurement[J]. Flow Measurement and Instrumentation 16 (2005) 7-12
    [65]彭见曙.利用激光多普勒测速仪(LDV)测量科安达流的附壁点位置[J].北京工业大学学报,1984(2):53-59
    [66]Nan Gao. Dan Ewing. Experimental investigation of planar offset attaching jets with small offset distances[J]. Experiments in Fluids,2007,42:941-954
    [67]X. K. Wang, S. K. Tan. Experimental investigation of the interaction between a plane wall jet and a parallel offset jet[J]. Experiments in Fluids,2007,42:551-562
    [68]陈耀星,卡尔,冯德伟.IKN悬摆式冷却机[J].水泥技术,2000,(1),26-28
    [69]郭殿东,李学舜,谢兵.附壁效应在稀土抛光粉工艺精密气流分级的应用和推广[J].稀土,2001,12(22):54-59
    [70]周长灵,郑少华,薄涛等.新型超细粉射流分级机的应用研究[J].硅酸盐通报,2004,(4):117-120
    [71]郑少华,陶珍东,刘福田,吕红星.超细粉射流分级机的流场分析[J].山东建材学院学报,1999,13(3):189-192
    [72]胥海伦,陈海焱,毕海权.基于康达效应的超微粉气流分级数值模拟研究[J].西南科技大学学报,2005,20(1):42-46
    [73]张丽娜,王恒.射流理论在水环境保护中的应用[J].水资源保护,2006,22(6):71-77
    [74]冀晓辉,刘伟.静止式气波制冷机流场的数值模拟[J].流体机械,2005,33(2):62-65
    [75]李静,吕开强,曹飞.油气润滑技术及在高速线材机组上的应用[J].河南冶金,2006,14(1):39-40
    [76]王培珠.固体电路射流技术混合控制式燃油喷射系统[J].小型内燃机,1994,23(2):41-45
    [77]王金明.SC-150型射流式液动冲击器[J].石油机械,1991,(9):61-62
    [78]胡国清.液动冲击器射流元件优化设计及其特性研究[D].中国石油大学(北京).2001
    [79]石坚.射流元件结构设计及性能测试方法的研究[D].吉林大学.2003
    [80]张文华,汪志明,王小秋,辛秀琴.射流式井下增压装置的设计[J].石油机械,2005,33(11):32-33
    [81]蒋荣庆,庞友同,栾桂林.液动射流式冲击器应用于超深井的模拟试验[J].长春地质学 院学报,1990,20(3):251-258
    [82]秦红祥,曾义金,陶兴华等.射流式冲击器研制与应用[J].钻采工艺,1999,22(3):61-63.
    [83]吴伟,秦彦斌,高纪念.井下液压激振器的设计与仿真[J].石油矿场机械,2002,31(4):6-9
    [84]陈晶晶.液动射流式冲击器射流元件流场PIV试验研究[D].吉林大学,2007
    [85]赵汉臣.用途广泛的射流流量计[J].自动化仪表,2001,22(9):14-15
    [86]王力勇,王兴才.射流流量计的原理与应用[J].工业计量,2002,(3):19-20
    [87]于晓洋,王雁,郭华,工海涛.射流流量传感器原理与设计[J].哈尔滨理工大学学报,1997,2(4):26-28
    [88]袁寿其,朱兴业,李红等.全射流喷头内部流场计算流体动力学数值模拟[J].农业机械学报,2005,(10):46-49
    [89]向清江,朱兴业.全射流喷头内部附壁点距离的计算[J].排灌机械,2008,26(3):55-58
    [90]李世英.喷灌喷头理论与设计[M].北京:兵器工业出版社,1995
    [91]原田正一,尾崎省太郎.射流工程学[M].陆润林,郭荣,译.北京:科学出版社,1977
    [92]罗惕乾.流体力学[M].(第二版)北京:机械工业出版社.2003
    [93]罗善明,诸世敏.提高射流效率充分利用其能量的几种方法[J].中国安全科学学报,1995,5(5):184-187
    [94]王琪,卢颖.确定附壁射流主要参数的理论依据[J].吉林农业大学学报,1996,18(1):68-71
    [95]Yao Xiao-xian, Mo Bo, Li Heng-biao. Design of the testing system for jet elements[J]. Journal of Beijing Institute of Technology,2002,11 (3):225-228
    [96]王广智,罗金耀,燕在华.喷微灌灌水技术特性参数研究[J].节水灌溉.1994,(4):20-22.
    [97]J. G. Christiansen, Irrigation by sprinkling. Agr. Expt. Sta. Bulletin 670. Univ. of Calif. Berkeley,1942.
    [98]W. E. Hart, Over head irrigation pattern parameters. Agricultural Engineering, July,1961.
    [99]W. E. Hart and W. N. Reynolds, Analytical design of sprinkler systems[J]. ASAE, vol.8, No.1,1965.
    [100]Chairatana Seniwongse, I-Pai Wu et al., Skewness and kurtosis influence on uniformity coefficient and application to sprinkler irrigation design. Transactions of the ASAE,15,1972.
    [101]樊桂林,梁芝兰.摇臂式喷头摇臂应力分布的试验研究[J].排灌机械,1995,(2):34-36.
    [102]曲延鹏,陈颂英,李春峰等.低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J].山东大学学报,2006,36(4):16-25
    [103]董志勇编著.射流力学[M].北京:科学出版社.2005
    [104]朱兴.全射流喷头理论及精确喷灌关键技术研究[D].江苏大学博士学位论文,2009
    [105]薜胜雄.高压水射流技术与应用[M].北京:机械工业出版社.1998
    [106]王超.全射流喷头射流元件水力特性性研究[D].江苏大学硕士学位论文,2010
    [107]Athavale M M, Tiang Y, Przekwas A J. Application of an unstructured grid solution methodology to turbo machinery Flows[J]. American Institute of Aeronautics and Astronautics.1995,95-0174
    [108]R A Novak. Streamline curvature computing procedures for fluid flow [J]. ASME Trans, Ser. A,1967,89 (4):478
    [109]R A Novak, R M Hearsey. A nearly three-dimensional introblade computing system for turbo machinery[J]. ASME Trans, Ser. I,1977,99 (1):67-74
    [110]B E Launder. CFD for aerodynamic turbulent flows:progress and problems [J]. Aeronautical Journal,2000,104 (1038):337-345
    [111]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [112]White F M. Viscous Fluid Flow. McGraw-Hill 1979
    [113]CFX User's Guide. Ansys Inc,2003.
    [114]史忠植.知识工程[M].北京:清华大学出版社,1988
    [115]顾晓华,仲梁维.基于知识工程的参数化设计[J].设计与研究,17-18
    [116]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003
    [117]栾军编著.现代试验设计优化方法[M].上海:上海交通大学出版社,1995
    [118]项可风,吴启光编著.试验设计与数据分析[M].上海:上海科学技术出版社,1989
    [119]吴翊编著.应用数理统计[M].北京:国防科技大学出版,1998
    [120]李红,陈超,任志远等.全射流喷头水力尺寸对运转可靠性的影响[J].中国农村水利水电,2007(1):22-24
    [121]袁寿其,朱兴业,李红等.全射流喷头重要结构参数对水力性能的影响[J].农业工程学报2006(10):113-116
    [122]任志远.隙控式全射流喷头设计及试验研究[D].江苏大学硕士学位论文,2005
    [123]朱兴业,袁寿其,李红等.全射流喷头的原理及实验研究[J],排灌机械2005,(2):23-26
    [124]李红,袁寿其,谢福琪等.隙控式全射流喷头性能特点及与摇臂式喷头的比较研究[J],农业工程学报2006(5):82-85
    [125]袁寿其,李红,汤跃等.PXH隙控式全射流喷头理论、设计方法及产品研制[R].江苏省科技厅鉴定材料,2005
    [126]袁寿其,王庆安,蓝新民等.新型喷滴灌系统的研制及产业化开发[R].国家高技术研究(863)项目鉴定资料,2005
    [127]李红,袁寿其,谢福琪等.自吸式射流喷头反向装置[P].中国发明专利:200410066136.9,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700