薄膜材料热物性及其测试新装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,随着纳米技术、微电子技术和微电子机械系统(MEMS)等许多新兴技术的迅速发展,材料研发的低维化发展趋势方兴未艾,取得了突破性进展,并已在众多高新技术和传统工业领域获得了越来越广泛的应用。低维材料包括二维材料微/纳米薄膜、一维材料纳米管/线和零维材料纳米颗粒,已涵盖了金属、无机非金属和有机高分子三大材料领域。作为二维材料的薄膜的热物理性质与三维体材料特异性更加明显,不同材质的薄膜,因方法和工艺的不同,薄膜的微结构、杂质和缺陷等不同导致热物理性质出现较大差异。薄膜材料研究和应用的快速发展,以及微纳尺度传热学的不断深入,极大地促进了薄膜材料热物理性质的行为和理论以及测试新装置的研究,其中薄膜材料热物理性质的特异性及其与材料组分、微观结构之间的关系研究也成为前沿和热点课题。
     本论文基于激光闪光法,采用纳秒宽度激光器提供加热脉冲,纳秒响应碲镉汞红外探测器作为非接触温度探测器并辅以精密红外聚焦系统,高速示波器作为数据采集设备,研制了测量薄膜材料热扩散率的新装置,并集成了热膨胀测量组件,构成多功能热物性测量装置。经校验,该装置实现了在-50~300℃温区、测试厚度1~500μm、包括金属、非金属、有机高分子三类薄膜材料的快速测量。以该装置为平台,结合扫描电镜、透射电镜等微观表征手段,选择目前国内微电子和国防领域有广泛应用且迫切需要热物性数据的聚酰亚胺复合薄膜、铝阳极氧化薄膜和聚乙烯纳米阵列,开展了薄膜热物性行为及其与微观结构之间关系和规律的研究。
     聚酰亚胺(PI)应用广泛,PI的低维化以及采用纳米材料进行杂化制备纳米复合薄膜材料来改善PI的性能,已成为近年来材料科学领域的研究热点。本工作采用新的半透明材料测试模型,简化了激光闪光法测试半透明材料的实验镀膜工艺,并通过半透明氧化铝陶瓷和PI薄膜的测试进行了验证。对聚酰亚胺(PI)复合薄膜的测试研究表明,PI/SiO_2和PI/C复合薄膜的比热随着添加物的增多而下降,符合复合材料比热加和原理;纳米颗粒的加入,限制了聚合物分子链的自由膨胀,导致复合薄膜的热膨胀系数随着添加物的增多而下降;热导率随添加物含量增加而增大,PI薄膜从0.17W/(m·K)上升到添加20wt%纳米颗粒后的0.64W/(m·K),但并没有改变热导率随温度而增大的非晶态材料的固有规律。复合薄膜的热导率随由于纳米颗粒局部聚集,导致添加物含量较高时,复合薄膜热导率增加较大。通过对复合材料热导率预测模型的研究表明,复合薄膜热导率由于纳米颗粒添加物团聚更加明显,三维体材料热导率预测模型不适合此类复合薄膜热导率的预测。
     采用恒压阳极氧化法制备了0.9~5μm亚微米到微米量级4种不同厚度的的广泛应用的热控阳极氧化铝膜,实验研究了氧化铝膜在220~480K导热性能及其随温度变化的规律。结果显示,氧化铝膜在厚度较薄时,结构较为疏松,随厚度变厚,气孔率变小,从而导致热扩散率随着厚度增大。2.5μm厚度的阳极氧化铝膜220K时热导率为1.22W/(m·K),室温热导率为1.4W/(m·K),480K时为1.71W/(m·K),大大低于氧化铝体材料的热导率值。由于氧化铝膜的微观结构为无定形非晶态结构,测试结果显示的非晶态导热行为特征与最小热导率模型计算得到的热导率温度趋势一致;不同测量方法的结果比较表明非稳态方法更适合在室温附近的热导率测量。
     对纳米孔模板润湿技术制备的低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)纳米线阵列的实验研究证实聚合物纳米线阵列具有较高的热导率,室温热导率达到2.2W/(m·K)和10W/(m·K),大约比聚乙烯体材料的热导率高二个量级,并且纳米线阵列的热导率随温度的升高略有增大。估算得到室温下单根LDPE纳米线的热导率高于5W/(m·K),室温下直径100nm和200nm的单根HDPE纳米线的热导率分别为26.5W/(m·K)和20.5W/(m·K)。纳米线阵列的分子链拉伸之后定向排列能大大提高热导率,对基于低维效应强化聚合物纳米结构的导热性质具有重要的意义。
In recent decades, with the rapid development of nanotechnology, microelectronics and mechanical systems (mems) and many new technologies, materials'low-dimensional development trend is catching on and has obtained wide applications in traditional industrial sectors and high-tech areas. Thermophysical properties of two dimensional thin films are different from buck materials, which are caused by size effects, fabrication process, microstructure, impurities and defects. The rapid progress of thin films'research and application, plus research of micro/nano-size heat transfer, deepens the research of thermophysical properties and its measuring apparatus of thin films materials, in which the characteristics of thin films and its relationship to chemical component and microstructure have become focus topics.
     By using a nanosecond laser, nanosecond response MCT infrared detector and high speed oscilloscope, laser flash method is utilized to construct an apparatus to measure the thermal diffusivity of thin films. Integreating thermal expansion component, a multifunctional apparatus measuring thermphysical properties of thin films is developed. The apparatus can measure three different kinds of thin films with thickness1-500microns in the temperature range-50~300℃. By utilizing this apparatus, SEM, TEM and other charactrizaion method, the thermophysical properties of polyimide composite films, anodic alumina films and polyethelene nanowire arrays films related to its microstructure and other influencial effects are researched.
     Polyimide (PI) films has got wide spread applications due to its excellent properties and PI based composite films using ceramic nanoparticles to modify its properties have become a hot subject. A new test model has been developed to simplify the pretreatment procedure and improve the precision of semi-transparent sample such as PI films tested by laser flash method. Thermophysical properties of Pi/Silica composite films with different silica content and PI/C films are investigated. Specific heat of composite films comply with addition principle of composite materials. Thermal expansion decreases with the addition of silica nanoparticles to suppress the extension of polyer molecular chains. The thermal conductivity of composite films increases with temperature increasing, which means the thermal conductivity behavior of PI films does not change with the addition of silica nanoparticles. Themal conductivity of PI increases from0.17W/(m-K) to0.64W/(m-K) after20wt%silica is added. Thermal conductivity of PI composite films increases with increase of silica content and is much higher than values predicted by composite materials prediction models, which indicates the prediction models for bulk composite materials may not apply to thin films'thermal conductivity prediction because of the aggregation of nanoparticles.
     Anodic alumina films are widely used as bio-sensors, fabrication templates and thermal control coatings in aeroplanes. Anodic alumina films with thickness of900nm-5μm are grown from aluminum foil by anodic oxidation. Thermal properties of anodic films in temperature range220~480K are researched. The film with thiner thickness has more porosity, which explains thermal diffusivity increases with thickness increasing. Thermal conductivity of film with2.5μm thickness is1.22W/(m-K) at220K,1.4W/(m-K) at RT and1.71W/(m-K) at480K which is much lower than bulk alumina material. This temperature dependence is coherent with calculated results of minimum thermal conductivity model. The comparison results show that non-steady method is more suitable for measurement of thermal conductivity around room temperature range.
     Polymers can have larger thermal conductivity by stretching polymer's moleculars. High-density polyethylene (HDPE) nanowire arrays with diameter of100nm and200nm and low-density polyethylene (LDPE) nanowire arrays with diameter of200nm are fabricated by using a nanoporous template wetting technique, which have a room thermal conductivity of10and2.2W/(m-K) respectively, which are about2orders of magnitude higher than their bulk counterparts. Estimated thermal conductivity of a single HDPE nanowire and LDPE nanowire is as high as26.5W/(m-K) and5W/(m-K) respectively at room temperature. This enhancement may be attributed to transformation from ramdom orientation to high chain orientation of the nanowire arrays.
引文
[1]Y. S. Touloukian. Thermal Properties of Matter[M], The TPRC Data Series, Vol.2, Thermal Conductivity, Nonmetallic Solids, New York:Plenum Press,1970.
    [2]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    [3]谢华清,奚同庚.低维材料热物理[M].上海:上海科学技术文献出版社,2008.
    [4]奚同庚,谢华清.热物理性质测试技术研究现状和发展趋势[J].上海计量测试,2002,29(5):7-12.
    [5]陈桂生,廖艳,曾亚光,等.材料热物性测试的研究现状及发展需求[J].中国测试,2010,36(5):5-8.
    [6]张金涛,邱萍,段宇宁.建立国家材料热物性测量标准装置的意义[J].中国计量,2005(11):53-55.
    [7]谢华清,王锦昌,奚同庚.薄膜材料导热行为及其测试和预测[J].材料科学与工艺,2001,9(1):104-112.
    [8]王伟伟,张敏,李凌智,等.薄膜导热系数的测量方法及技术[J].功能材料,2010,5(41):870-874.
    [9]张建生,杨君友,朱文,等.薄膜热导率测试方法研究进展[J].材料导报,2010,24(4):103-107.
    [10]D. G. Cahill, H. E. Fischer, and T. Klister, Thermal Conductivity of Thin Films: Measurements and Understanding[J]. J. Vac. Sci. Technol.1989, A7:1259-1266.
    [11]D. G. Cahill. Thermal Conductivity Measurement from30to750K:the3ω Method[J]. Rev. Sci. Instru.,1990,61(2):802-808.
    [12]陈震,杨决宽,庄苹,等.InGaAs/InGaAsP超晶格薄膜导热系数测试[J].科学通报,2006,51(13):1601-1605.
    [13]A. Irace, P. M. Sarro. Measurement of Thermal Conductivity and Diffusivity of Single and Multiplayer Membranes[J]. Sensors and Actuators,1999,76(1-3):323-328.
    [14]X. Zhang, H. Q. Xie, M. Fujii, et al. Thermal and Electrical Conductivity of a Suspended Platinum Nanofilm[J]. Appl. Phys. Lett.,2005,86(17):171912,.
    [15]X. Zhang and M. Fujii. Studies on Thermophysical Properties of Nanostructrued Materials[C]. Proc.13th Int. Heat Transfer Conf., Sydney, Australia,13-18, Aug.,2006.
    [16]A. Rosencwaig. Theretical Aspects of Photoacoustic Spectroscopy[J]. J. Appl. Phys.,1978,49(5):2905-2910.
    [17]吴晓,殷庆瑞,李明华,等.应用光声技术测定薄型材料导温系数的研究[J].无机材料学报,1986,1(1):89-94.
    [18]M. Rohde. Photoacoustic Characterization of Thermal Transport Properties in Thin Films and Microstructure[J]. Thin Solid Films,1994,238(2):199-206.
    [19]唐大伟,荒木信幸.应用激光闪光法测量薄膜材料的热扩散率[J].锦州师范学院学报(自然科学版),2002,23(1):1-7.
    [20]Y. Shimizu, J. Ishii, K. Shinzato, et al. A Novel Method for Determination of the Thermal Diffusivity of Thin Films Using a Modulated CO2Laser[J]. International Journal of Thermophysics,2005,26(1):203-211.
    [21]C. A. Paddock and G. L. Eesley. Transient Thermoreflectance from Thin Metal Films[J]. J. Appl. Phys.,1986,60(1):285-290.
    [22]N. Taketoshi, T. Baba and A. Ono. Development of a Thermal Diffusivity Measurement System for Metal Thin Films Using a Picosecond Thermo Reflectance Technique[J]. Meas. Sci. Tech.,2001,12(12):2064-2073.
    [23]T. Miyagawa, T. Fukushima, T. Oyama, et al. Photosensitive Fluorinated Polyimides with a Low Dielectric Constant Based on Reaction Development Patterning [J]. J. Polymer Sci. Part A:Polymer Chemistry,2003,41(6):861-871.
    [24]S. X. Lu, P. Cebe, M. Capel. Thermal Stability and Thermal Expansion Studies of PEEK and Relative Polyimides[J]. Polymer,1996,37(14):2999-3009.
    [25]H. M. Tong, H. K. Hsuen, K. L. Saenger, et al. Thickness-Direction Coefficient of Thermal Expansion Measurement of Thin Polymer Films[J]. Rev. Sci. Instrum,1991,62(2):422-430.
    [26]H. Wang, G. H. He, B. L. Zhou, et al. Noncontact Flash Method for Measuring Thermal Expansion of Foil Specimens[J]. Rev. Sci. Instru.,1993,64(12):3617-3619.
    [27]王海东,马维刚,张兴,等.飞秒激光热反射系统测量金属薄膜中的热波[J].物理学报,59(6):3856-3862.
    [28]麻蒔立男,陈国荣,刘晓萌,等.薄膜制备技术基础[M].北京:化学工业出版社,2009.
    [29]X. Zhang and C. P. Grigoropoulos. Thermal Conductivity and Diffusivity of Free Standing Silicon Nitride Thin Films[J]. Review of Scientific Instruments.1995,66(2):1115-1120.
    [30]M. Okuda and S. Ohkubo. A Novel Method for Measuring the Thermal Conductivity of Submicrometre Thick Dielectric Films[J]. Thin Solid Films,1992,213(2):176-181.
    [31]W. Kading, H. Skurk, and K. E. Goodson. Thermal Conduction in Metalized Silicon Dioxide Layers on Silicon[J]. Appl. Phys. Lett.,1994,65(13):1629-1631.
    [32]J. C. Lambropoulos, R. Jollym, and C. A. Amsden. Thermal Conductivity of Dielectric Thin Film[J]. J. Appl. Phys.,1989,66(9):4230-4242.
    [33]F. R. Brotzen, P. J. Loos, and D. P. Brady. Thermal Conductivity of Thin SiO2Films[J]. Thin Solid Films,1992,207(1-2):197-201.
    [34]K. E. Goodson, M. I. Filk, and L. T. Su. Prediction and Measurement of the Thermal Conductivity of Amorphous Dielectric Layers[J]. ASME Journal of Heat Transfer,1994,116(2):317-328.
    [35]S. Kumar and G. C. Vradis. Thermal Conductivity of Thin Metallic Films[J]. Journal of Heat Transfer,1994,116(1):28-33.
    [36]H. J. Goldsmid, M. M. Kaila, and G. L. Paul. Thermal Conductivity of Amorphous Silicon[J]. Physica Status Solidi A,1983,76(1):31-33.
    [37]J. W. C. De Vries. Temperature and Thickness Dependence of the Resistivity of Thin Poly crystalline Aluminum, Cobalt, Nickel, Palladium, Silver and Gold Films[J]. Thin Solid Films,1988,167(1-2):25-32.
    [38]J. E. Graebner, S. Jin, G. W. Kammlott, et al. Unusually High Thermal Conductivity in Diamond film[J]. Applied Physics Letters,1992,60(13):1576-1578.
    [39]S. M. Lee and D G. Cahill. Thermal Conductivity of Sputtered Oxide Films[J]. Phys. Rev. B,1995,52(1):253-258.
    [40]H. Schafft, J. S. Suehle, and P. G. A.Mirel. Thermal Conductivity Measurements of Thin Film Silicon Dioxide[C], Proceedings of the IEEE International Conference on Microelectronic Test Structures,1989.
    [41]J. E. Graebner, S. Lin, G. W. Kammlott, et al. Anisotropic Thermal Conductivity in Chemical Vapor Deposition Diamond[J]. Journal of Applied Physics,1992,71(11):5353-5356.
    [42]Y. S. Touloukian. Thermal Properties of Matter[M]. The TPRC Data Series, Vol.1, Thermal Conductivity, Nonmetallic Solids, New York:Plenum Press,1970.
    [43]G. Chen BallisticDiffusive Heat-conduction Equations[J], Phys. Rev. Lett.,2001,86(11):2297-2300.
    [44]V. Bogush, A. Inberg, N. Croitoru, et al. Material Properties of Very Thin Electroless Silver-Tungsten Films[J]. Thin Solid Films,2003,426(1-2):288-295.
    [45]E. T. Swartz and R. O. Phol. Thermal Resistance at Interface[J]. Applied Physics Letters,1987,51(26):2200-2202.
    [46]R. W. Powell. Experiments Using a Simple Thermal Comparator for Measurement of Thermal Conductivity, Surface Roughness and Thickness of Foils or Surface Deposits[J]. Journal of Scientific Instruments,1957,34(12):545-551.
    [47]W. J. Parker, R. J. Jenkins, C. P. Butler, et al. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity[J]. Journal of Applied Physics,1961,32(9):1679-1684.
    [48]I. Hatta, R. Sagsuga, and R. Kazo. Thermal Diffusivity Measurement of Thin Films by Means of an AC Calorimetric Method[J], Review of Scientific Instruments,1985,56(8):1643-1646.
    [49]E. P. Visser, E. H. Versteengen, and P. Enckevortj. Measurement of Thermal Diffusion in Thin Films Using a Modulated Laser Technique:Application to Chemical Vapor Deposited Diamond Films[J]. Journal of Applied Physics,1992,71(7):3238-3248.
    [50]G. Chen, C. L. Tien, and X. Wu. Thermal Diffusivity Measurement of GaAs/AlGaAs Thin Film Structures[J]. ASME Journal of Heat Transfer,1994,116(2):325-331.
    [51]D. G. Cahill and R. O.Phol. Thermal Conductivity of Amorphous Solids above the Plateau[J]. Physical Review B:Solid State,1987,35(8):4067-4073.
    [52]Z. X. Zhao, Z. J. Qiu, S. L. Zhang, et al. A Generalized3ω Method for Extraction of Thermal Conductivity in Thin Films[J]. Journal of Applied Physics,2011,109(6):063502-063502-8.
    [53]S. W. Lee, H. Yu, C. H. Kang, et al. Thermal Conductivity of Chalcogenide As2S3Thin Film[J]. International J. of Thermophysics,2004,25(5):1505-1517.
    [54]P. M. Norris, A. P. Caffrey, R J. Stevens, et al. Femtosecond Pump-probe Nondestructive Examination of Materials[J]. Review of Scientific Instruments,2003,74(1):400-406.
    [55]H. P. Hu, X. W. Wang, and X. F. Xu. Generalized Theory of the Photoacoustic Effect in a Multilayer Material [J]. J. of Appl. Phys.,1999,86(7):3953-3958.
    [56]A. Majumdar, K. Luo, Z. Shi, et al. Scanning Thermal Microscopy at Nanometer Scales:a New Frontier in Experimental Heat Transfer[J]. Experimental Heat Transfer,1996,9(2):83-103.
    [57]X. Wang, H. Hu, and X. Xu. Photo-acoustic Measurement of Thermal Conductivity of Thin Films and Bulk Materials[J]. Journal of Heat Transfer,2001,123(1):138-144.
    [58]M. Okuda and S. Ohkubo. A Novel Method for Measuring the Thermal Conductivity of Submicrometre Thick Dielectric Films[J]. Thin Solid Films,1992,213(2):176-181.
    [59]Y. Nagasaga and A.Nagashima. Simultaneous Measurement of the Thermal Conductivity and Thermal Diffusivity of Liquid by the Transient Hot Wire Method[J]. Rev. Sci. Instrum.,1981,52(2):229-234.
    [60]R. D. Cowan. Pulse Method of Measuring Thermal Diffusivity at High Temperatures[J]. J. Appl. Phys.,1963,34(4):926-927.
    [61]J. A. Cape, G. W. Lehman. Temperature and Finite Pulse-Time Effects in Flash Method for Measuring Thermal Diffusivity [J]. J. Appl. Phys.,1963,34(7):1909-1913.
    [62]L. M. Clark, R. E. Taylor. Radiation Loss in Flash Method for Thermal Diffusivity[J]. J. Appl. Phys.1975,46(2):714-719.
    [63]A. B. Dnaldson. Radial Conduction Effects in the Pulse Method of Measuring Thermal Diffusivity[J]. J. Appl. Phys.1972,43(10):4226-4227.
    [64]D. W. Tang, B. L. Zhou, et al., Dynamic Thermal Expansion under Transient Laser Pulse Heating[J]. Appl. Phys. Lett.,1991,59(24):3113-3114.
    [65]F. Cernuschi, L. Lorenzoni, P. Bianchi, et al. The Effects of Sample Surface Treatments on Laser Flash Thermal Diffusivity Measurements [J]. Infrared Physics&Technology,2002,43(3-5):133-138.
    [66]A. Paula, F. Albersa, A.G. Thomaz. Effects of Testing Conditions on the Laser Flash Thermal Diffusivity Measurements of Ceramics[J]. Thermochimica Acta,2001,370(1-2):111-118.
    [67]A. Rogalski. Infrared Detectors:Status and Trends[J]. Progress in Quantum Electronics,2003,27(2-3):59-210.
    [68]陈新贵.薄膜材料热物性多功能综合测试仪的研制和应用[D].中国科学院沈阳金属研究所博士学位论文,2008.
    [69]D. W. Tang, G. H. He, B. L. Zhou. Effects of Absorption Depth and Infrared Detector Nonlinearity on Thermal Diffusivity Measurement of Thin Films Using the Flash Method[J]. Rev. Instrum. Sci.,1995,66(8):4249-4253.
    [70]R. E. Taylor, J. A. Cape. Finite Pulse-time Effects in the Flash Diffusivity Technique[J]. Appl. Phys. Lett.1964,5(10):212-213.
    [71]Y. S. Touloukian and C. Y. Ho. Thermal Properties of Matter[M]. The TPRC Data Series, Vol.l0,Thermal diffusivity, New York:Plenum Press,1970to1977.
    [72]Y. S. Touloukian and others. Thermal Properties of Matter[M]. The TPRC Data Series, Vol.12, Thermal Expansion:Metallic Elements and Alloys, New York:Plenum Press,1970to1977.
    [73]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [74]C. M. Feger, J. E. Khojsteh. Polyimides:Materials, Chemistry and Characterization[M]. Amsderdam:Elsevier,1989.
    [75]徐庆玉,范和平,井强山,等.聚酰亚胺纳米杂化材料的制备、结构和性能[J].功能高分子学报,2002,15(2):207-213.
    [76]张营堂,王忠.利用原子力显微镜研究聚酰亚胺/纳米SiO2复合材料[J].中国塑料,2006,20(2):29-32.
    [77]李鸿岩,郭磊,刘斌,等.聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J].中国电机工程学报,2006,26(20):166-170.
    [78]殷景华,范勇,王暄,等.纳米杂化PI薄膜击穿孔区形貌及元素分布[J].材料科学与工艺,2006,14(2):204-206.
    [79]林保平.含硅聚酰亚胺/纳米钛酸钡杂化膜的热机械性能研究[J].功能材料,2004,z1:2952-2955.
    [80]储焱,张明艳.耐电晕纳米杂化聚酰亚胺的合成及表征[J].哈尔滨理工大学学报,2002,7(6):118-120.
    [81]王卫,李承祥,盛六四,等.聚酰亚胺/醋酸铕杂化材料的制备与光谱研究[J].绝缘材料,2007,40(3):39-41.
    [82]牛颖,张明艳,董铁权,等.固体含量对聚酰亚胺/二氧化硅杂化薄膜热性能的影响[J].绝缘材料,2006,39(6):35-37.
    [83]王伟.聚合物/纳米氧化铝杂化膜的制备[J].热固性树脂,2005,20(5):18-20.
    [84]刘晓东,张要强,马丽婵,等.电子束辐照对聚酰亚胺电气性能的影响[J].绝缘材料,2006,39(6):38-41.
    [85]何丽娟,盖凌云.无机纳米掺杂对聚酰亚胺薄膜电老阀值的影响[J].绝缘材料,2006,39(2):17-19.
    [86]王忠,张营堂,付蕾,等.聚酰亚胺复合材料的热学性能研究[J].化工新型材料,2007,35(11):52-54.
    [87]李艳,付绍云,林大杰,等.二氧化硅/聚酰亚胺纳米杂化薄膜室温及低温力学性能[J].复合材料学报,2005,22(2):11-15.
    [88]Y. H. Zhang, Y. Li, S. Y. Fu, et al. Synthesis and Cryogenic Properties of Polyimide-Silica Hybrid Films by Sol-gel Process[J]. Polymer.2005,46(19):8373-8380.
    [89]陈新贵,郭敬东,王宝全,等.激光脉冲法研究半透明PI/SiO2薄膜的热扩散率[J].高分子材料科学与工程,2009,25(4):109-111.
    [90]J. Blumm, J. B. Henderson, O. Nilsson, et al. Laser Flash Measurement of The Phononic Thermal Diffusivity of Glasses in the Presence of Ballistic Radiative Transfer[J]. High Temperatures-High pressures,1997,29(1):555-560.
    [91]J. K. Cocson, C. S. Hua, P. M. Lee, et al. Characterization of6FDA-APBP Polyimide Films through Impulsive Stimulated Thermal Scattering[J]. Journal of Materials Science,1995,30(23):5960-5966.
    [92]C. L. Choy, W. P. Leung and Y. K. NG. Thermal Diffusivity of Polymer Films by the Flash Radiometry Method[J]. Journal of Polymer Science(Part B), Polymer Physics,1987,25(9):1779-1799.
    [93]奚同庚,周新宇,李宗杰,等.计算机运控的激光热导仪的研究[J].工程热物理学报,1980,1(2):147-155.
    [94]蔡岸,杨莉萍,雒彩云,等PI/SiO2复合薄膜导热性能理论预测和实验验证[J].航空材料学报,2010,30(3):61-65.
    [95]闫刚,魏伯荣,杨海涛,等.聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006,3(5):50-53.
    [96]Y. Agari and T. Uno. Estimation on Thermal-Conductivities of Filled Polymers[J]. Journal of Applied Polymer Science,1986,32(7):5705-5712.
    [97]T. B. Lewis and L. E. Nielsen. Dynamic Mechanical Properties of Particulate-Filled Composites[J]. J. Appl. Poly. Scie.,1970,14(6):1449-1471.
    [98]S. C. Cheng and R. I. Vachon. Prediction of Thermal Conductivity of2-Phase and3-Phase Solid Heterogeneous Mixtures[J]. International Journal of Heat and Mass Transfer,1969,12(3):249-264.
    [99]S. Holotescu and F. D. Stoian. Evaluation of the Effective Thermal Conductivity of Composite Polymers by Considering the Filler Size Distribution Law[J]. Journal of Zhejiang University-Science A,2009,10(5):704-709.
    [100]Z. D. Wang, J. J. Lu, Y. Li, et al. Low Temperature Properties of PI/SiO2Nanocomposite Films[J]. Materials Science and Engineering B,2005,123(3):216-221.
    [101]U. Rieck and K. H. Norian. Microstructural Study of Carbon-Black Polyimide Thick-Films[J]. Thin Solid Films,1988,162(1-2):279-286.
    [102]J. S. Lin and H. T. Chiu. Preparation and Properties of Conductive Polyimide Films[J]. Journal of Polymer Research-Taiwan,2002,9(3):189-194.
    [103]任刚,陈皓明.多孔阳极氧化铝膜在纳米结构制备方面的研究和进展[J].材料导报,2002,16(10):45-48.
    [104]韩婷,温培源,王晨雨,等.多孔阳极氧化铝模板制备的研究进展[J].材料导报,2010,24(1):115-119.
    [105]李婧,梁建,赵君芙,等.阳极氧化铝模板的制备及其在纳米材料领域的应用进展[J].化学与生物工程,2010,27(5):6-10.
    [106]D. H. Nguyen, V. Q. Nguyen, C. Yousuk, et al. An Ammonia Gas Sensor Based on Non-catalytically Synthesized Carbon Nanotubes on an Anodic AluminumOxide Template[J]. Sensors and Actuators B,2007,127(2):447-454.
    [107]S. Sigurdson, V. Sundararmurthy, A. K. Dalai, et al. Effect of Anodic Alumina Pore Diameter Variation on Template-initiated Synthesis of Carbon Nanotube Catalyst Supports[J]. Journal of Molecular Catalysis A:Chemical,2009,306(122):23-32.
    [108]A. Ramazani, K. M. Almasi, M. Alikhani, et al. Fabrication of High Aspect Ratio Co Nanowires with Controlled Magnetization Direction Using ac and Pulse Electro-deposition[J]. Materials Chemistry and Physics,2008,112(1):285-289.
    [109]佘希林,宋国君,彭智,等.浸润AAO模板组装一维聚合物纳米阵列[J].现代化工,2007,27(11):34-36.
    [110]A. P. Li, F. Muller, A. Birner, et al. Fabrication and Microstructuring of Hexagonally Ordered Two-dimensional Nanopore Arrays in Anodic Alumina[J]. Adv. Mater,1999,11(6):483-487.
    [111]G. Sauer, G. Brehm, S. Schneider, et al. Highly Ordered Monocrystalline Silver Nanowire Arrays[J]. J. Appl. Phys.,2002,91(5):3243-3247.
    [112]M. Sun, G. Zangari, R. M. Metzger. Cobalt Island Arrays with In-plane Anisotropy Electrodeposited in Highly Ordered Alumite[J]. Magnetics, IEEE Transactions,2000,36(5):3005-3008.
    [113]A. K. Sharma. Surface Engineering for Thermal Control of Spacecraft[J]. Surface Engineering,2005,21(3):249-253.
    [114]T. R. Ogden, A. D. Rathsam, J. T. Gilchrist. Thermal Conductivity of Thick Anodic Oxide Coatings on Aluminum[J]. Materials Letters,1987,5(3):84-87.
    [115]R. K. Williams, R. S. Graves, M. A. Janney, et al. The Effects of Cr2O3and Fe2O3Additions on The Thermal Conductivity of A12O3[J]. J. Appl. Phys.,1987,61(10):4894-4901.
    [116]I. Stark, M. Stordeur, F. Syrowatka. Thermal Conductivity of Thin Amorphous Alumina Films[J]. Thin Solid Films,1993,226(1):185-190.
    [117]D. A. Borca-Tasciuc, G. Chen. Anisotropic Thermal Properties of Nanochanneled Alumina Templates[J]. J. Appl. Phys.,2005,97(8):084303.
    [118]N. Araki, A. Makino, J. Mihara. Measurement and Evaluation of the Thermal-Diffusivity of Two-Layered Materials[J]. International Journal of Thermophysics,1992,13(2):331-349.
    [119]J. Absi, D. S. Smith, B. Nait-Ali, et al. Thermal Response of Two-layer Systems: Numerical Simulation and Experimental Validation [J]. J. Euro. Ceram. Soc.,2005,25(4),367-373.
    [120]J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, et al. Thermal Conductivity of Dielectric Thin Films[J]. Journal of Applied Physics,1989,66(9):4230-4242
    [121]R. Y. Wang, R. A. Segalman, A. Majumdar. Room Temperature Thermal Conductance of Alkanedithiol Self-assembled Monolayers[J]. Appl. Phys. Lett.,2006, 89(17):173113.
    [122]J. Z. Jin, M. P. Manoharan, Q. Wang, et al. In-plane Thermal Conductivity of Nanoscale Polyaniline Thin Films[J]. Appl. Phys. Lett,2009,95(3):033113.
    [123]M. D. Losego, L. Moh, K. A. Arpin, et al. Interfacial Thermal Conductance in Spun-cast Polymer Films and Polymer Brushes[J]. Appl. Phys. Lett.,2010,97(1):011908.
    [124]G. Chen. Phonon Heat Conduction in Nanostructures[J]. International Journal of Thermal Sciences,2000,39(4):471-480.
    [125]B. Y. Cao, Y. W. Li. A Uniform Source-and-sink Scheme for Calculating Thermal Conductivity by Nonequilibrium Molecular Dynamics[J]. J. Chem. Phys.,2010,133(2):024106.
    [126]鲍志刚,陈元平,欧阳滔,等.L型石墨纳米结的热输运[J].物理学报,2011,60(2):717-722.
    [127]S. T. Huxtable, D. G. Cahill, S. Shenogin, et al. Interfacial Heat Flow in Carbon Nanotube Suspensions[J]. Nature Mater.,2003,2(11):731-734.
    [128]侯泉文,曹炳阳,过增元.碳纳米管的热导率:从弹道到扩散输运[J].物理学报,2009,58(11):7809-7814.
    [129]A. Henry, G. Chen. High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations[J]. Phys. Rev. Lett.,2008,101(23):235502.
    [130]Z. H. Wang, J. A. Carter, A. Lagutchev, et al. Ultrafast Flash Thermal Conductance of Molecular Chains[J]. Science,2007,317(5839):787-790.
    [131]C. L. Choy, Y. Fei, T. G. Xi, Thermal Conductivity of Gel-spun Polyethylene Fibers[J]. J. Polymer Sci. B:Polymer Phys.,1993,31(3):365-370.
    [132]C. L. Choy, Y. W. Wong, G. W. Yang, et al. Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene[J]. J. Polymer Sci. B:Polymer Phys.,1999,37(23):3359-3367.
    [133]J. Liu, R. G. Yang. Tuning the Thermal Conductivity of Polymers with Mechanical Strains[J]. Phys. Rev. B,2010,81(17):174122.
    [134]S. Shen, A. Henry, J. Tong, et al. Polyethylene Nanofibres with Very High Thermal Conductivities[J]. Nature Nanotech,2010,5(4):251-255.
    [135]M. Steinhart, J. H. Wendorff, A. Greiner, et al. Polymer Nanotubes by Wetting of Ordered Porous Templates[J]. Science,2002,296(5575):1997.
    [136]J. Kong, Y. Xu, K. L. Yung, et al. Enhanced Polymer Melts Flow though Nanoscale Channels under Vibration[J]. J. Phys. Chem. C,2009,113(2):624-629.
    [137]S. Lepri, R. Livi, A. Politi. Thermal Conduction in Classical Low Dimensional Lattices[J]. Phys. Rep.,2003,377(1):1-80.
    [138]A. Dhar. Heat Transport in Low-dimensional Systems[J]. Adv. Phys.,2008,57(5):457-537.
    [139]D. C. Venerus, J. D. Schieber, V. Balasubramanian, et al. Anisotropic Thermal Conduction in a Polymer Liquid Subjected to Shear Flow[J]. Phys. Rev. Lett.,2004,93(9):098301.
    [140]S. Rendon, W. R. Burghardt, M. L. Auad, et al. Shear-induced Alignment of Smectic Side Group Liquid Crystalline Polymers[J]. Macromolecules,2007,40(18):6624-6630.
    [141]A. Meller. Dynamics of Polynucleotide Transport through Nanometre-scale Pores[J]. J. Phys. Condens. Matter,2003,15(17):R581-R607.
    [142]M. C. Garcia-Gutierrez, A. Linares, J. J. Hernandez, et al. Confinement Induced One-Dimensional Ferroelectric Polymer Arrays[J]. Nano Lett,2010,10(4):1472-1476.
    [143]P. Mahanandia, J. J. Schneider, M. Khaneft, et al. Polymer Confinement Effects in Aligned Carbon Nanotubes Arrays[J]. Phys. Chem. Chem. Phys.,2010,12(17):4407-4417.