用户名: 密码: 验证码:
遥测用多次反射式弹光调制傅里叶变换光谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、高灵敏度、高分辨率、宽光谱范围的光谱测量技术及仪器在科学研究、宇宙探索、环境监测、航天、军事、高速物化反应、含能材料研究等方面有广泛的应用和迫切的需求。本论文针对现有动镜扫描傅里叶变换光谱仪速度慢、抗振性能差,以及静态傅里叶变换光谱仪光谱分辨率低、光谱范围窄的缺点,借鉴弹光调制固有的高速、高灵敏度、宽光谱范围及抗振等优点,在国家自然科学基金项目仪器专项基金(61127015)和科技部国际科技合作项(2012DFA10680)项目的支持下,深入分析了弹光调制傅里叶变换光谱技术,并针对现有弹光调制傅里叶变换光谱技术光谱分辨率不足等问题,提出了一种多次反射式弹光调制干涉仪结构,并以此为基础,开展了相关理论分析、设计、研制工作,取得成果如下:
     1.深入分析了二维对称振动模式理论,采用正八角形弹光晶体结构与长棒状压电石英驱动器相结合的弹光调制器结构,通过合理选择压电石英驱动器的切型及尺寸匹配,实现了良好的驱动频率单一性,并选择合理的支撑和耦合模式,使得所研制的弹光调制器振动谐振稳定性大大提高,研制出了0=5210、线性度良好的高性能弹光调制器,为弹光调制干涉仪的稳定工作提高了基本保障;
     2.首次提出多次反射式弹光调制干涉仪结构,提高了光谱分辨率,同时兼顾了光能利用率。建立了相应的干涉-光谱复原数理模型,分析了其干涉调制的特点,设计、研制出多次反射式弹光调制干涉仪样机,并进行了相关单色光干涉及光谱复原实验,结果表明该结构的干涉调制频率为50.036kHz,并将原有弹光调制干涉仪的光谱分辨率提高了近15倍,达到了121.9cm.,并且光通量只从原先的35%降低至20%左右;
     3.设计了与多次反射式弹光调制干涉仪相匹配的卡塞格林望远镜和准直-缩束光学结构。搭建出了整个光谱遥测系统,并进行了激光光谱测量实验以及主动氙灯光源遥测实验,验证了该原理系统的可行性,得到了预期结果。
The spectrum technology and its instruments with high speed,high sensitivity, highresolution and widest range of spectra has a wide range of applications in geoscience,cosmology, aerospace, millitary, high-speed physicochemical reactions, energetic mateiralresearch etc.. According to the disadvantage of low speed,insufficient vibration performanceof Fourier tramsform spectrometer with sanning mirror and low spectral resolution of staticFouirer tramsform spectrometer, and under the support by the Special Funds of the NationalNatural Science Foundation of China (Grant No.61127015),the International S&TCooperation Projects of China (Grant No.2012DFA10680),the paper reference thephoto-elastic modulator's inherent advantage of high speed, high sensitivity, wide spectrumrange and anti vibration, etc. throught deep analysis of the photo-elastic modulator-basedfourier transform spectroscopy, and then a multi-reflected photo-elastic modulator-basedinterferometer structure was proposed in order to solve the problem of insufficient spectrumresolution of current photo-elastic modulator-based fourier transform spectroscopy. Based onthe multi-reflected photo-elastic modulator-based interferometer structure, we carired outrelated theoretical analysis, design and development works,and the results are as follows:
     1.By deep analysis of the two-dimensional symmetric vibration mode theory,we designed aphoto-elastic modulator(PEM) structure which combine with a octangle photo-elastic crystaland two piezoelectric quartz crystal. Throught the rational choice of the cut-type anddimension matching,Finally,we developed a PEM with a very pure vibration frequency and avery stable resonance by reasonable choice of the mounting and coupling method,The qualityfactor of developed PEM is5210,and the linearity of the modulation is alse fine. The researchoffered the basic guarantee for the PEM-based interferometer.
     2.In order to improve the spectrum resolution and consideration to sufficient luminous lfux,amulti-reflected photo-elastic modulator-based interferometer structure was first put forward.The mathematical model of interference-spectrum retrieval for the structure was established, and its modulation characteristics was analysed, then the prototype was designed andprocessed out. The laser interference-spectrum retireval experimental results shows that,theinterfere modulate frequency is50.036kHz, and the spectrum resolution reached12.9cm"1with the structure, its nearly15times compared with the original PEM-based interferometer,and the luminous flux just The luminous flux only reduced from original35%to about20%.
     3. The Cassegrain telescope and collimate-condense optical structure which is match to themulti-reflected PEM-based interferometer was designed, and the system of Multi-reflectedPEM-Based Fourier Transform Telemetry Spectroscopy was established finally. Then thepirnciple of veirfication tests was finished by using laser and xenon lamp. The results verifiedthe feasibility of the pirnciple of the system,and the expected result was obtained byanalysing the experiment data.
引文
1Becker E D, Farrar T C. Fourier transform spectroscopy[J]. Science,1972,178(4059):361-368.
    2Ernst R R, Anderson W A. Application of Fourier transform spectroscopy to magnetic resonance[J]. Review of Scientific Instruments,1966,37(1):93-102.
    3Gerstenkom S, Luc P. Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy:the (BX) system[J]. Journal de Physique,1985,46(6):867-881.
    4Newman S M, Lane I C, Orr-Ewing A J, et al. Integrated absorption intensity and Einstein coefficients for the O a A-X S (0,0) transition:A comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell[J]. The Journal of chemical physics,1999,110:10749.
    5王多加,周向阳.近红外光谱检测在农业和食物分析上的应用[J].光谱学与光谱分析,2004,24(4):448.
    6Jain N, Prabhakar S, Singh R A. Fourier transform infrared spectra and normal mode analysis of drug molecules:Zidovudine[J]. Journal of Molecular Structure,2012.
    7Harrigan G G, LaPlante R H, Cosma G N, et al. Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies:contribution to a study on the development of an animal model for idiosyncratic toxicity[J]. Toxicology Letters,2004,146(3):197-205.
    8高国龙.傅里叶变换光谱仪技术进展概况[J].《红外》月刊,2002,(9):38-46.
    9齐晓,韩建国,李曼莉.近红外光谱分析仪器的发展状况[J].光谱学与光谱分析,2007,27(10):2022-2025.
    10Schaub T M, Hendrickson C L, Horning S, et al. High-performance mass spectrometry: Fourier transform ion cyclotron resonance at14.5Tesla[J]. Analytical chemistry,2008, 80(11):3985-3990.
    11Low M J D. Fourier transform spectroscopy[J]. Naturwissenschaften,1970,57(6):280-287.
    12王学琳,孙淑萍,铁梅.傅里叶变换近红外光谱进展[J].现代仪器,1997,(6):1-3.
    13Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing[J]. Optics Express,2005,13(22):9029-9038.
    14Persky M J. A review of spaceborne infrared Fourier transform spectrometers for remote sensing[J]. Review of scientific instruments,1995,66(10):4763-4797.
    15Padgett M J, Harvey A R. A static Fourier-transform spectrometer based on Wollaston prisms[J]. Review of scientific instruments,1995,66(4):2807-2811.
    16Patterson B A, Antoni M, Courtial J, et al. An ultra-compact static Fourier-transform spectrometer based on a single birefringent component[J]. Optics communications,1996,130(1):1-6.
    17Boer G, Scharf T, Dandliker R. Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology [J]. Applied optics,2002,41(7):1400-1407.
    18金玉希,黄梅珍,施嫚嫚.傅里叶变换光谱仪现状及其微型化进展[J].现代科学仪器,2010,(3):131-136.
    19Griffiths P, De Haseth J A. Fourier transform infrared spectrometry[M]. Wiley-Interscience,2007.
    20Lewis E N, Treado P J, Reeder R C, et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector[J]. Analytical chemistry,1995,67(19):3377-3381.
    21虞宝珠.傅里叶变换光谱术及其应用[J].物理.1984.13,(9):545-556.
    22吕乃光.傅里叶光学[M].机械工业出版社,2006:195-195.
    23王文桂.干涉光谱仪[M].宇航出版社出版,1988:169-227.
    24Tuthill P G, Monnier J D, Danchi W C, et al. Michelson interferometry with the Keck I telescope[J]. Publications of the Astronomical Society of the Pacific,2000,112(770):555-565.
    25彭秀华.迈克耳孙干涉仪中附加光程差对干涉图样影响的讨论[J].大学物理,2001,20(1):32-35.
    26刘国庆.傅里叶变换红外光谱仪[J1.电子器件,987,(3):17-20.
    27Hirschfeld T. Fellgett's advantage in uv-VIS multiplex spectroscopy[J]. Applied Spectroscopy,1976,30(1):68-69.
    28Farrow M M, Burnham R K, Eyring E M. Fourier-transform photoacoustic spectroscopy[J]. Applied Physics Letters,1978,33(8):735-737.
    29彭晶,孟超.傅里叶光谱仪扫描速度对测试的影响[J].光谱实验室,2009,26(6):1504-1507
    30吴航行,华建文,王培纲,等.傅里叶变换光谱仪中干涉信号的畸变[J].红外技术,2004,26(4):25-30.
    31Smith B C. Fundamentals of FourierTransform Infrared Spectroscopy[M]. CRC,2009.
    32Richards P L. High-resolution Fourier transform spectroscopy in the far-infrared [J]. JOSA,1964,54(12):1474-1484.
    33Haris P I, Chapman D. Does Fourier-transform infrared spectroscopy provide useful information on protein structures?[J]. Trends in biochemical sciences,1992,17(9):328-333.
    34Manning C J. Factors Inducing and Correction of Photometric Error Introduced to FTIR Spectra by a Non-Linear [C]. Proc.11th Int. Conf. on Fourier Transform, Spectroscopy, AIP Conf. Proceedings,1998,43084.
    35Winthrop Wadsworth, Jens Peter Dybwad. Rugged High Speed Rotary Imaging Fourier Transform Spectrometer for Industrial Use [C]. Vibrational Spectroscopy-based Sensor Systems, Proc. of SPIE,2002,4577:83-88.
    36Winthrop Wadsworth, Jens Peter Dybwad. A Very Fast Imaging FT Spectrometer for Online Process Monitoring and Control [C]. Part of the SPIE Conference on Online Chemical Process Monitorinci with Advanced Techniques,1999,3537:54-61.
    37Yang Xiaoxu, Zhou Sizhong, Lu Qunbo, et al. High-Resolution&High-Speed Rotary Fourier Transform [C]. Proceedings of the2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies,2006,6150,61504X:1-5.
    38Arno Simon, Jurgen Gast, Axel Keens. Fourier Spectrometer:US5,309,217[P],1994-03-03.
    39Julia Rentz Dupuis, David Carlson, James Engel. High-Speed Resonant FTIR Spectrometer [C]. Next-Generation Spectroscopic Technologies Ⅲ, Proc. of SPIE,2010,7680,76800S-76800S-12.
    40Griffiths Peter R, Hirsche Blayne L, Christopher J M. Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry [J]. Vibrational Spectroscopy,1999,19:165-176.
    41Ma Lin, Zheng Weijian, Su Junhong. Study on Infrared Imaging Spectrometer with Large Aperture Static Interferometer [C].2009International Conference on Optical Instruments and Technology, Proc. of SPIE,2009,7506.
    42Gao Zhan. Static Fourier-Transform Spectrometer with Spherical Reflectors [J]. Applied Optics,2002,41(3):560-563.
    43时善进,沈为民,顾华俭,周望.紧凑型静态傅里叶变换光谱仪的工作原理与光学设计[J].激光杂志,2000,21(3):16-19.
    44余本国,王建中.基于非扫描式干涉仪的光谱探测研究[J].光学学报,2010,30(7):2001-2005.
    45余本国,王建中.基于双边倾斜傅里叶干涉具的激光光谱探测技术研究[J].光谱学与光谱分析,2010,30(16):1717-1721.
    46Bliss Mary, Craig Richard A, and Anheier Norman C. Demonstration of a Static Fourier Transform Spectrometer [C]. Part of the SPIE Conference on Fiber Optic and Laser Sensors and Application, Proc. of SPIE,1998,3541:103-109.
    47Lacan Antoine, Breon Francois-Marie, Rosak Alain, et al.. A static Fourier Transform Spectro-meter for Atmospheric Sounding:Concept and Experimental Implementation [J]. Optics Express,2010,18(8):8239-8250.
    48Cemence Pierangelo, Jacques Loese. A Static Fourier Transform Spectroscopy Breadboards for Atmospheric Chemistry and Climate [C]. Optical Design and Engineering,2008, Proc. of SPIE,2008,7100:1-11.
    49A.Lancan,F, Breon M, et al.. Static Fourier Transform Spectrometer Breadboard Dedicated to Atmospheric Sounding, Implementation of a Specific Component:A Modulating-Compensating Plate, ISCO,2008.
    50田二明,张记龙,王志斌.激光告警系统中小型静态傅里叶变换光谱仪的研究[J].光谱学与光谱分析,2009,29(3):853-857.
    51李晓,张记龙,薛尚峰,田二明,张悦,王志斌.基于马赫-泽德干涉具的激光光谱探测技术研究[J].光谱学与光谱分析,2009,29(1):62-65.
    52刘智超,张记龙,王志斌等.静态傅里叶变换干涉具在大视场探测中的应用[J].光子学报,2009,38(11):2839-2843.
    53Li Xiao, Zhang Ji-long, Tian Er-ming, Wang Zhi-bin. Passive Laser Spectrum Detection Technology Based on Static Interferometer [C].2008International Conference of Optical Instrument and Technology, Proc. of SPIE,2008,7160:11-1-5.
    54Dierking Matthew P, Karim Mohammad A. Solid-Block Stationary, Fourier-Transform Spectrometer [J]. Applied Optics,1996,35(1):84-89.
    55Naylor David A, Goma Brad G, Schofielda Ian S, et al.. Wavelengths, Millimeter and Sub-millimeter Dectors for Astronomy [C]. Proc. of SPIE,2003,4855:540-551.
    56Oliveira N de, Joyeux D, Phalippou D, et al.. A Fourier Transform Spectrometer without a Beam Splitter for Vacuum Ultraviolet Range:from the Optical Design to the First UV Spectrum [C]. Review of Scientific Instruments,2009,80.
    57Zhang Chunmin, Zhao Baochang, Xiang li-Bin. Wide-field-of-view Polarization Interference Imaging Spectrometer [J]. Applied Optics,2004,43(33):6090-6094.
    58Zhang Chunmin, Jian Xiaohua. Wide-Spectrum Reconstruction Method for a Birefringence Interference Imaging Spectrometer [J]. Optics Letters,2010,35(3):366-368.
    59Kudenov Michael W, Dereniak Eustace L. Compact Snapshot Birefringent Imaging Fourier Transform Spectrometer [C]. Imaging Spectrometry XV, Proc. of SPIE,2010,7812:781206-1.
    60Komisarek Dan, Reichard Karl, Merdes Dan, et al.. High-Performance Nonscanning Fourier-Transform Spectrometer that Uses a Wollaston Prism Array [J]. Applied Optics,2004,43(20):3983-3988.
    61Andrew Harvey, David Fletcher-Holmes. Birefringent Fourier-Transform Imaging Spectro-meter [J]. Optics Express,2004,12(22):5368-5374.
    62Craven Julia, Kudenov Michael W, Stapelbroek Maryn G, et al.. Compact Infrared Hyper-spectral Imaging Polarimeter [C]. Algorithms and Technologies for Multispectral, Hyper-spectral, and Ultra-spectral Imagery XVI, Proc. of SPIE,2010,7695.
    63仝雷,高瞻Wollaston棱镜阵列干涉光谱仪的研制及其光通量的分析[J].光学技术,2008,34:131-137.
    64Gao Zhan, Kazuhiko Oka, Tsuyoshi Ishigaki, Naoshi Baba. Static Fourier Transform Spectro-meter Based on Savart Polariscope [C]. Imaging Spectrometry Ⅶ, Proceedings of SPIE,2002,4480:198-203.
    65Lu Yan-Qing, Wong Charles, Wu Shin.-Tson. Liquid Crystal-based Fourier Optical Spectrum Analyzer [C]. IEEE Photonics Technology Letters,2004,16:861-863.
    66LU Yan-qing, Du Fang, WU Yung-Hsun, et al.. Liquid-Crystal-Based Fourier Optical Spectrum Analyzer without Moving Parts [J]. Jpn. J. Appl. Phys.,2005,44(1A):291-293.
    67Chao Tien-Hsin, Zhou Hanying. Electro-Optic Imaging Fourier Transform Spectrometer: US7,639,363B2[P].2009-11-29.
    68Boer Gerben, Scharf Toralf, et al.. Compact Static Fourier Transform Spectrometer, with A Large Field of View Based on Liquid-Crystal Technology [J]. Applied Optics,2002,41(71):1400-1407.
    69Chao Tien-Hsin, Lu Thomas T. Compact Liquid Crystal Waveguide Based Fourier Transform Spectrometer for In-Situ and Remote Gas and Chemical Sensing [C]. Proc. of SPIE,2008,6977.
    70James C. Kemp. Piezo-Optical Birefringence Modulators:New Use for a Long-Known Effect [J]. Journal of The Optical Society of America,1969,59(8):950-953.
    71Canit J C, Badoz J. New Design for a Photoelastic Modulator [J]. Applied Optics,1983,22(4):592-594.
    72陈友华,张记龙,王艳超,魏海潮,王志斌,张瑞,王立福.基于铌酸锂压电弹光双效应的单晶体弹光调制器[J].光学学报,2012,32(11):1116002-1-5.
    73Bammer F, Petkovsek R. Q-switching of a fiber laser with a single crystal photo-elastic modulator[J]. Opt. Express,2007,15(10):6177-6182.
    74Bammer F, Holzinger B, Schumi T. A single crystal photo-elastic modulator[C]//Integrated Optoelectronic Devices2007. International Society for Optics and Photonics,2007:64690O-64690O-8.
    75Petkovsek R, Bammer F, Schuocker D, et al. Dual-mode single-crystal photoelastic modulator and possible applications[J]. Applied optics,2009,48(7):C86-C91.
    76Hough J H. Polarimetry Techniques at Optical and Infrared Wavelengths [C]. Current Status and Future Directions ASP Conference Series,2005,343:3-14.
    77Wang Baoliang, List Jennifer. Basic Optical Properties of the Photo-elastic Modulator Part I:Useful Aperture and Acceptance Angle [C]. Proc. of SPIE,2005,5888:436-443.
    78Cheng J C, Nafie L A, Allen S D, et al.. Photoelastic Modulator for the0.55-13μm Range [J]. Applied Optics,1976,15(8):1960-1965.
    79YANG D, CANIT J C, GAIGNEBET E. Photo-elastic Modulator:Polarization Modulation and Phase Modulation [J]. J. Optics (Paris),1995,26(4):152-159.
    80Buican, T. N., Feasibility Study for the Development of a High-Speed Fourier Transform Infrared (FTIR) Photoelastic Modulator (PEM) Based Spectrometer. Tech. Report to ERDEC, TCN Number95-035, BTI, Albuquerque, NM,53pp.
    81Buican Tudor N. Real-time Fourier Transform Spectrometry for Fluorescence Imaging and Flow Cytometry [C]. Bio-imaging and Two-Dimensional Spectroscopy, Proc.of SPIE,1990,1205:126-133.
    82Buican Tudor N, Carrieri Arthur H. Ultra-High Speed Solid-State FTIR Spectroscopy and Applications for Chemical Defense [C]. Proceedings for the Army Science Conference (24th),2004.
    83Buican T N. Birefringence interferometers for ultra-high-speed FT spectrometry and hyperspectral imaging:I. Dynamic model of the resonant photoelastic modulator[J]. Vibrational spectroscopy,2006,42(1):51-58.
    84Buican Tudor N. High Retardation-Amplitude Photoelastic Modulator:US7,764,415B2[P].2010-7-27.
    85Biber S, Schneiderbanger D, Schmidt L P, et al. Low loss silicon window material for submillimeter waves using micromachined artificial dielectrics for anti-reflection coating[C]//Infrared and Millimeter Waves,2004and12th International Conference on Terahertz Electronics,2004. Conference Digest of the2004Joint29th International Conference on. IEEE,2004:105-106.
    86Carrieri A H. Panoramic infrared-imaging spectroradiometer model with reverse phase-modulated beam broadcasting [J]. Applied optics,1997,36(9):1952-1964.
    87Carrieri A H. Panoramic infrared-imaging spectroradiometer with reverse phase modulation beam broadcasting:U.S. Patent5,708,503[P].1998-1-13.
    88Carrieri A H, Owens D J, Schultz J C. Infrared Mueller matrix acquisition and preprocessing system and method:U.S. Patent7,737,399[P].2010-6-15.
    89Buican T N, Carrieri A H. Multiphysics modeling of a novel photoelastic modulator for ultra-high performance FT spectrometry[R]. SEMIOTIC ENGINEERING ASSOCIATES LLC ALBUQUERQUE NM,2008.
    90Carrieri A H, Barditch I F, Owens D J, et al. Tactical thermal luminescence sensor for ground path contamination detection:U.S. Patent6,464,392[P].2002-10-15.
    91Diner D J, Davis A, Hancock B, et al. Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing[J]. Applied optics,2007,46(35):8428-8445.
    92曾爱军,王向朝,董作人,等.光弹调制器在偏振方向调制中的应用[J].中国激光,2005,32(8):1063-1067.
    93Hu C G, Sun L D, Li Y N, et al.. Retardation Correction for Photoelastic Modulator-Based Multi-Channel Reflectance Difference Spectroscopy [J]. Opt. Soc.2008,25(6):1240-1245.
    94胡春光,孙立东,李艳宁,等.光弹调制式反射差分光谱仪的理论分析[J].纳米技术与精密工程,2007,5(1):1-5.
    95胡淼,王太勇,乔志峰,等.基于弹光调制的红外光谱吸收法在室内VOC检测中的 研究[J].光谱学与光谱分析,2012,31(12):3232-3235.
    96Kemp J C. Symmetric birefringence modulator:U.S. Patent3,867,014[P].1975.
    97Diner D J, Davis A, Cunningham T, et al. Use of photoelastic modulators for high-accuracy spectropolarimetric imaging of aerosols[C]//2006Earth Science Technology Conference (ESTC-06), College Park, MD, June26,2006. Pasadena, CA:Jet Propulsion Laboratory, National Aeronautics and Space Administration,2006.,2006.
    98秦自楷.压电石英晶体[M].国防工业出版社,1980.
    99Wang Yue, Jiang Yijian. Crystal orientation dependence of piezoelectric properties in LiNbO3and LiTaO3[J]. Opt. Mater.,2003,23(1-2):403-408
    100张维屏,机械振动.机械振动学[M].冶金工业出版社,1983.
    101倪振华.振动力学[M].西安交通大学出版社,1989.
    102刘勇.高灵敏微悬臂梁探针设计制作及特性研究[D].中国科学技术大学,2011.
    102Weber M J. Handbook of optical materials[M]. CRC,2002.
    103Siahpoushan M M, Hinds J A, Rockwell R R. Mounting apparatus for an optical assembly of a photoelastic modulator:U.S. Patent5,886,810[P].1999-3-23.
    104高新来,王跃林,李和昌,等.脱酰胺型RTV硅橡胶的研究[J].有机硅材料,2003,17(3):7-9.
    105阮鹏,陈智军,付大丰,等.基于COMSOL的声表面波器件仿真[J].测试技术学报,2012,26(005):422-428.
    106Ling W P. Photoelastic modulator system:U.S. Patent7,920,318[P].2011-4-5.
    107肖定全,王民,物理学.晶体物理学[M].四川大学出版社,1989.
    108Oakberg T C. Modulated interference effects:use of photoelastic modulators with lasers[J]. Optical Engineering,1995,34(6):1545-1550.
    109BUICAN T. High retardation-amplitude photoelastic modulator:WIPO Patent2010011376[P].2010-1-29.
    110Kuhn J R, Potter D, Parise B. Imaging polarimetric observations of a new circumstellar disk system[J]. The Astrophysical Journal Letters,2008,553(2):L189.
    111Wang B, List J. Basic optical properties of the photoelastic modulator:part Ⅰ. Useful aperture and acceptance angle[C]//Optics&Photonics2005. International Society for Optics and Photonics,2005:588811-588811-8.
    112唐晋发.应用薄膜光学[M].上海科学技术出版社,1984.
    113伍和云,王培纲.离轴反射式光学系统设计[J].光电工程,2006,33(1):34-37.
    114张亮,安源,金光.大视场,长焦距离轴三反射镜光学系统的设计[J].红外与激光工程,2007,36(2):278-280.
    115张以谟.应用光学[M].电子工业出版社,2008.
    116黄和平,夏寅辉,安成斌,等.大口径,长焦距红外系统调焦机构设计[J].激光与红外,2006,35(10):745-747.
    117李晓彤.几何光学和光学设计[M].浙江大学出版社,1997.
    118Draganov V, James D G. Compact telescope for free-space communications [J]. Current Developments in Lens Design and Optical Engineering III,2002,4767:151-158.
    119Hannan P. Microwave antennas derived from the Cassegrain telescope[J]. Antennas and Propagation, IRE Transactions on,1961,9(2):140-153.
    120Yang H S, Lee Y W, Kim E D, et al. Alignment methods for Cassegrain and RC telescope with wide-field of view[C]//Proc. of SPIE Vol.2004,5528:335.
    121Massey P, Gronwall C. The Kitt Peak spectrophotometric standards-Extension to1micron[J]. The Astrophysical Journal,1990,358:344-349.
    122Morris R V, Golden D C, Ming D W, et al. Phyllosilicate-poor palagonitic dust from Manna Kea Volcano (Hawaii):A mineralogical analogue for magnetic Martian dust?[J]. Journal of geophysical research,2001,106(E3):5057-5083.
    123Jarvis M, Bernstein G M, Fischer P, et al. Weak-Lensing Results from the75Square Degree Cerro Tololo Inter-American Observatory Survey [J]. The Astronomical Journal,2007,125(3):1014.
    124Rousset G, Lacombe F, Puget P, et al. NAOS, the first AO system of the VLT:on-sky performance[C]//Proceedings of SPIE.2003,4839:140-149.
    125Riess A G, Strolger L G, Tonry J, et al. Type la supernova discoveries at z>1from the Hubble space telescope:evidence for past deceleration and constraints on dark energy evolution[J]. The Astrophysical Journal,2008,607(2):665.
    126丛杉珊.大视场,长焦距,反射式空间光学系统设计[D].长春理工大学,2008.
    127梁培.离轴抛物镜准直特性的研究[J].光学学报,2006,26(6):909-913.
    128郝沛明,孔祥蕾.两镜系统扩束器的研究[J].量子电子学报,2001,18(2):179-183.
    129李志刚.紫外-真空紫外傅里叶变换光谱技术的研究[D].中国科学院长春光学精密机械与物理研究所,2000.
    130张红,薛建国,成斌,等.10.6txm C02激光对HgCdTe探测器破坏阈值的实验研究[J].光电工程,2006,33(5):41-43.
    131付芸,徐长吉,丁亚林.航空遥感相机扫描反射镜支撑技术[J].光学精密工程,2003,11(6):550-554.
    132黄深旺,陈磊,陈进榜,等.红外干涉仪调试和测量技术的研究[J].光学精密工程,1996,4(2):98-102.
    133石广玉.大气辐射学[M].科学出版社,2007.
    134Greengard L, Lee J Y. Accelerating the Nonuniform Fast Fourier Transform [J]. SIAM Rev,2004,6:439-454.
    135O'Sullivan J D. Fast Sinc Function Griding Algorithm for Fourier Inversion in Computer Tomography [J]. IEEE Trans. Med. Imag.,1985,4(4):200-207.
    136Meyer Craigh, Hu Bobs, Nishimura Dwightg, et al.. Fast Spiral Coromary Artery Imaging [J]. Magnetic Resonance Medicine,1992,28:202-213
    137Dutt A, Rokhlin V. Fast Fourier Transforms for Nonequispaced Data [J]. Applied and Harmonic Analysis,1995,2:85-100
    138相里斌,吕群波,黄旻等.两种干涉成像光谱技术方案的比较[J].光谱学与光谱分析,2010,30(5):1422-1426
    139景娟娟,周锦松,相里斌等.反射转镜式干涉光谱仪光程差非线性修正方法比较[J].光谱学与光谱分析,2010,30(6):1678-1682
    140姚涛,吕群波,相里斌,袁艳.非均匀采样干涉数据光谱反演技术研究[J].光谱学与光谱分析,2010,30(5):1430-1433
    141杨晓许,周泗忠,相里斌等.转镜式傅里叶变换光谱仪光程差非线性的研究[J].光 学学报,2004,24(10):1388-1392
    142Gerrard A, Burch J M. Introduction to matrix methods in optics[M]. Dover Publications,1994.
    143陈友华,王召巴,王志斌,等.弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究[J].物理学报,2012,62(6):060702.
    144王竹澳,郭敦仁.特殊函数概论[J].北京:科学出版杜,1979.
    145梁昆淼,刘法,缪国庆.数学物理方法[M].电子工业出版社,1990.
    146陈媛媛.基于FTIR大气污染气体红外光谱处理方法研究[D].中北大学,2012.
    147张敏娟,张记龙,王志斌,等.FTIR单边干涉图相位校正技术的研究与改进[J].光谱学与光谱分析,2012,32(5):1203-1208.
    148黄深旺,陈磊,陈进榜,等.红外干涉仪调试和测量技术的研究[J].光学精密工程,1996,4(2):98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700