用户名: 密码: 验证码:
纳米线波导的非线性光学效应及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当前光子器件微型化的发展趋势,本论文着眼于微纳光子学的一个重要研究内容——纳米线波导,系统研究了纳米线波导中的二阶非线性参量过程的相位匹配条件,提出了基于耦合纳米线波导结构的类准相位匹配机理,提出并验证了基于单根纳米线波导横向发射的倍频(和频)机制,成功研制了一种基于单根纳米线波导的超快光学相关器,实现了对超弱超短脉冲的测量,为纳米线波导在非线性光学领域的研究和应用开辟了新的途径。
     在第一章中,主要介绍了微纳光子学的研究背景。首先,简要综述了纳米线波导研究的发展历史,并介绍了其在非线性光学器件及应用方面的初步探索与代表性的工作。同时,介绍了超快测量技术发展现状以及发展趋势,并针对超短脉冲测量技术的小型化发展趋势,指出了结合纳米线波导在非线性光子器件应用的优势及潜力,将有可能实现小型化、可集成、高效、稳定及简单实用的超短脉冲测量技术,从而进一步推动超快技术在未来新领域更广泛的应用。
     在第二章中,系统研究了纳米线波导的线性及非线性光学特性,包括光在其中的传输、端面的散射及引起的光力耦合作用、非线性材料特性等。研究表明,纳米线波导对光场的强约束使得有效模场面积非常小(~O.1μm2),同时当波导结构的弯曲半径减小为微米量级时,仅有约为1dB/90°较低的弯曲损耗;通过研究端面散射特性及其内在的物理图像,解释了较强的端面光力耦合作用,揭示了其在发展基于纳米线波导光动量的全光开关等非线性器件上的潜力;同时本论文还研究了纳米线波导的色散特性及纳米线半导体材料的非线性光学性质,揭示了波导结构在非线性光学应用中具有的独特优势。这些特性的研究结果表明纳米线波导在实现微型化、多功能、低能耗的非线性微纳光子器件具有独特的优势和潜力。
     本论文的第三章深入研究了纳米线波导中二阶非线性参量过程中的相位匹配问题。以二倍频为例,研究表明在单根纳米线波导中无法通过调节模式色散的方式实现基频光和倍频光的基模模式之间的相位匹配,而仅能在基频光的基模与倍频光的高阶模之间实现相位匹配,但由于两种模式的空间分布差异较大,极大地制约了非线性转换效率。为解决这个问题,本论文提出了基于耦合纳米线结构的类准相位匹配方式,实现了基模模式之间的二倍频相位匹配,非线性的转换效率得以大幅度提高,从而为介观尺度实现有效的倍频转换提供了新的思路。同时,本论文提出了基于单根纳米线波导的横向发射倍频(和频)的机理,即利用波导中两束相向传播的光波在传播方向上的相位匹配条件的自动满足,观察得到了垂直于波导平面倍频(和频)信号的发射。该种机理简化了实现相位匹配的结构,特别是免除了对波导直径参数的严格要求,在实现宽谱可调的非线性光学器件上具有显著的优势。
     本论文在第四章中,基于纳米线波导的横向发射倍频(和频)方式,本论文以硫化镉纳米线波导为载体,进一步讨论了横向发射倍频原理,并基于单根纳米线波导在实验上实现了连续激光激发的横向发射倍频、和频光。在较低功率(毫瓦量级)的基频连续激光激发条件下,观察得到了微纳尺度上宽谱可调谐的、具有良好偏振特性的横向发射倍频(和频)相干光。该种相干光源,具有可靠、简单、紧凑的特点,在物理、化学、生物等学科上都具有潜在的应用前景。
     更进一步地,基于横向发射倍频机理,本论文在第五章中研制了一种基于单根纳米线波导的超快光学相关器,构建了具有微型化、可集成、高效、稳定及简单实用等特点的新型超短脉冲测量技术。基于单根硫化镉纳米线波导,本论文在实验上首次在单根纳米线波导中实现了对飞秒脉冲脉宽的测量。实验指出,该光学相关器可以有效地测量低至50飞焦能量(对应于3.3×105photons/pulse)的超短脉冲脉宽;同时研究表明,其还具有重建超短脉冲的能力。与传统的测量方法不同的是,该光学相关器不需要复杂的设备、严格对准的光路,设备尺寸非常小,且不需要精密的延时控制系统,在测量超短脉冲上有着诸多独特的优势。该种测量方式的引入,不但很好地拓展和补充了现有超快测量技术的内容,更为进一步推动超快技术在未来新领域的发展提供了新的契机。
     第六章总结了本论文主要工作以及创新点,同时展望了纳米线波导未来在非线性光学方向上更进一步的应用与发展。
The miniaturization of electronic and photonic devices is essential for the continued success of photonic technologies over the past decades. As one of the most important topics in the frontiers of micro-/nanophotonics, nanowire waveguides have been identified as potential building blocks that mimic conventional photonic components. In this thesis, phase matching condition of parametric processes was comprehensively investigated inside nanowire waveguides. A quasi-phase-matching like scheme was proposed for efficient second-harmonic generation inside coupled semiconductor nanowire structures. Besides, transverse second-harmonic and sum-frequency generations (TSHG/TSFG) were demonstrated from single semiconductor nanowire waveguides both theoretically and experimentally for the first time, which would open up truly new applications opportunities for nonlinear optics.
     In Chapter1, research background of micro-/nanophotonics was briefly introduced including history of nanowire waveguide research development. Specifically, current explorations of nanowire research were reviewed in the field of nonlinear optical applications. Also present ultrafast measurement techniques were briefly reviewed and trends for future development were concluded. Regarding the features of nanowire waveguide for building future nonlinear optical components, nanowire waveguide would hold the potential for developing new measurement techniques that featured better performance, low cost, low power consumption and reduced footprint
     Both linear and nonlinear optical properties were theoretically studied in Chapter2, including properties of waveguiding, endface diffraction and induced optomechanical force, parametric processes and so on. And the results revealed that:(1) effective mode area was as small as0.1μm2due to the strong confinement of light fields;(2) acceptable bending losses (~1dB/90°) were predicted in nanowire waveguides even with bending radii down to micrometer level;(3) strong optomechanical effects were found at the endface showing promised potential for constructing optomechanical components or devices like all-optical nonlinear switches;(3) tailorable and large dispersion was demonstrated together with large nonlinear coefficients of diverse material choice. The combination of these properties enabled impressive demonstration of the applicability of nanowire waveguides to nonlinear optical devices with better performance.
     In Chapter3, phase matching condition of second-order parametric processes was comprehensively investigated inside nanowire waveguides. As for second-harmonic generation, it was found difficult to eliminate the phase mismatch between first-order modes of fundamental and second-harmonic waves, via the way of utilizing modal dispersion phase matching method. Phase match could be only achieved between first-order mode of fundamental waves and high-order mode of second-harmonic waves, which performed poorly in nonlinear optical conversion due to the relatively limited overlap between the two kind modes. To solve this problem, a quasi-phase-matching like scheme was innovatively proposed for phase matched second-harmonic generation between first-order modes inside coupled semiconductor nanowire structures. Compared with modal dispersion phase matching method, this method possessed the unique feature of large nonlinear overlap integrals thus provided a new way for more efficient second-harmonic generation on the micro-/nanoscale. Furthermore, principles of transverse second-harmonic and sum-frequency generations (TSHG/TSFG) were introduced inside single nanowire waveguides. In this scheme, guided waves counterpropagated in the nanowire waveguide which resulted in a radiation of TSHG normal to the intersection region of the counterpropagating pulses. Conservation of the wave vector of TSHG/TSFG naturally occurs in the plane of the waveguide regardless of input light wavelength. This scheme would further simplify the acquired complex structure and eliminate the strict morphology such as diameter for achieving phase matching condition.
     Utilizing of TSHG/TSFG principles in Chapter4, a micro-/nanoscale broadband tunable and polarized coherent light source was constructed under low-power continuous wave excitation (-mW level) in single Cadmium Sulfide (CdS) nanowire waveguides. This kind light source had the advantages such as reliability, simplicity and compactness, which would readily find its potential application in physics, chemistry, materials science and biology.
     In Chapter5, based on the principle of TSHG, a simple, real time, and highly compact single nanowire optical correlator (SNOC) was demonstrated experimentally for measuring ultrafast ultra-low-power laser pulses in single CdS nanowire waveguides with miniaturized size and integratable interface. Using SNOC, pulse widths of ultrafast laser pulses were easily measured even with relatively low energy of50fJ/pulse (i.e.,3.3×105photons/pulse). Furthermore, SNOC was proved efficiently for retrieving ultrafast pulses. Unlike the traditional techniques involving complex apparatuses, SNOC is free of elaborate and complex optical components, and especially free of critical alignment. The unique features of background free, broadband and ultralow power operation, large measuring range, and ability for pulse retrieval, promise a powerful tool for ultrafast light-measurement in a novel manner. The invention of such compact and simple optical correlator, could open up truly new applications opportunities and would make ultrafast techniques accessible to a much wider range of potential users.
     Chapter6mainly summarized the work and innovations presented in this thesis, and prospected the possible continued development of nanowire waveguides in the field of nonlinear optics.
引文
1. M. Roco and W. Bainbridge, Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology and cognitive science (Kluwer Academic Publishers Dordrecht,2003).
    2. P. Prasad, Nanophotonics (Wiley, New York,2004).
    3. R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nat. Photonics 1,303-305 (2007).
    4. A. Jenkins, "The road to nanophotonics," Nat. Photonics 2,258-260 (2008).
    5. M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res.34,83-122 (2004).
    6. C. Barrelet, A. Greytak, and C. Lieber, "Nanowire photonic circuit elements," Nano Lett.4, 1981-1985 (2004).
    7. Y. Heo, D. Norton, L. Tien, Y. Kwon, B. Kang, F. Ren, S. Pearton, and J. LaRoche, "ZnO nanowire growth and devices," Mat. Sci. Eng. R Rep.47,1-47 (2004).
    8. Y. Li, F. Qian, J. Xiang, and C. Lieber, "Nanowire electronic and optoelectronic devices," Mat. Today 9,18-27(2006).
    9. W. Lu and C. Lieber, "Semiconductor nanowires," J. Phys. D Appl. Phys.39, R387 (2006).
    10. P. Pauzauskie and P. Yang, "Nanowire photonics," Mat. Today 9,36-45 (2006).
    11. W. Lu and C. Lieber, "Nanoelectronics from the bottom up," Nat. Mater.6,841-850 (2007).
    12. B. Tian, T. Kempa, and C. Lieber, "Single nanowire photovoltaics," Chem. Soc. Rev.38, 16-24(2009).
    13. Z. Wang, "ZnO nanowire and nanobelt platform for nanotechnology," Mat. Sci. Eng. R Rep. 64,33-71 (2009).
    14. R. Yan, D. Gargas, and P. Yang, "Nanowire photonics," Nat. Photonics 3,569-576 (2009).
    15. C. Lieber, "Nanoscale science and technology:building a big future from small things," Mrs. Bull.28,486-491 (2003).
    16. E. Menke, M. Thompson, C. Xiang, L. Yang, and R. Penner, "Lithographically patterned nanowire electrodeposition," Nat. Mater.5,914-919 (2006).
    17. C. Xiang, S. Kung, D. Taggart, F. Yang, M. Thompson, A. Guell, Y. Yang, and R. M. Penner, "Lithographically patterned nanowire electrodeposition:a method for patterning electrically continuous metal nanowires on dielectrics," ACS Nano 2,1939-1949 (2008).
    18. A. Morales and C. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science 279,208-211 (1998).
    19. X. Duan and C. Lieber, "Laser-assisted catalytic growth of single crystal GaN nanowires," J. Am. Chem. Soc.122,188-189 (2000).
    20. H. Yan, R. He, J. Pham, and P. Yang, "Morphogenesis of One-Dimensional ZnO Nano and Microcrystals," Adv. Mater.15,402-405 (2003).
    21. H. Yan, R. He, J. Johnson, M. Law, R. Saykally, and P. Yang, "Dendritic nanowire ultraviolet laser array," J. Am. Chem. Soc.125,4728-4729 (2003).
    22. Z. Pan and Z. Wang, "Nanobelts of semiconducting oxides," Science 291,1947-1949 (2001).
    23. Z. Wu, X. Mei, D. Kim, M. Blumin. and H. Ruda, "Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy," Appl. Phys. Lett.81,5177-5179 (2002).
    24. Y. Chan, X. Duan, S. Chan, I. Sou, X. Zhang, and N. Wang, "ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy," Appl. Phys. Lett.83, 2665-2667 (2003).
    25. L. Schubert, P. Werner, N. Zakharov, G. Gerth, F. Kolb, L. Long, U. Gosele, and T. Tan, "Silicon nanowhiskers grown on<111> Si substrates by molecular-beam epitaxy," Appl. Phys. Lett.84,4968-4970 (2004).
    26. J. Holmes, K. Johnston, R. Doty, and B. Korgel, "Control of thickness and orientation of solution-grown silicon nanowires," Science 287,1471-1473 (2000).
    27. H. Yu and W. Buhro, "Solution-liquid-solid growth of soluble GaAs nanowires," Adv. Mater.15,416-419(2003).
    28. J. Matthews, G. Wnek, D. Simpson, and G. Bowlin, "Electrospinning of collagen nanofibers," Biomacromolecules 3,232-238 (2002).
    29. S. Harfenist, S. Cambron, E. Nelson, S. Berry, A. Isham, M. Crain, K. Walsh, R. Keynton, and R. Cohn, "Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers," Nano Lett.4,1931-1937 (2004).
    30. L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen,I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819(2003).
    31. G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12,2258-2263 (2004).
    32. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14,82-87 (2006).
    33. N. Wang, Y. Cai, and R. Zhang, "Growth of nanowires," Mat. Sci. Eng. R Rep.60,1-51 (2008).
    34. Z. Wang, "The new field of nanopiezotronics," Mat. Today 10,20-28 (2007).
    35. C. Lieber and Z. Wang, "Functional nanowires," Mrs. Bull.32,99 (2007).
    36. D. Avila-Brande, A. Landa-Canovas, and L. Otero-Diaz, "Order-disorder and direct evidence of oxygen vacancies in a new family of BICUWOX compounds," Chem. Mater. 19,323-328 (2007).
    37. D. Awschalom and M. Flatte, "Challenges for semiconductor spintronics," Nat. Phys.3, 153-159(2007).
    38. E. Liu, J. Nah, K. Varahramyan, and E. Tutuc, "Lateral Spin Injection in Germanium Nanowires," Nano Lett.10,3297-3301 (2010).
    39. K. Fischer, B. Aleman, S. Tao, R. Daniels, E. Li, M. Bunger, G. Nagaraj, P. Singh, A. Zettl, and T. Desai, "Biomimetic nanowire coatings for next generation adhesive drug delivery systems," Nano Lett.9,716-720 (2009).
    40. R. Yan, J. Park, Y. Choi, C. Heo, S. Yang, L. Lee, and P. Yang, "Nanowire-based single-cell endoscopy," Nat. Nanotechnol.7,191-196 (2011).
    41. C. Chan, H. Peng, G. Liu, K. Mcllwrath, X. Zhang, R. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires," Nat. Nanotechnol.3, 31-35 (2007).
    42. Z. Wang, "Nanopiezotronics," Adv. Mater.19,889-892 (2007).
    43. G. Snyder and E. Toberer, "Complex thermoelectric materials," Nat. Mater.7,105-114 (2008).
    44. P. Yang, "Semiconductor nanowire building blocks:From flux line pinning to artificial photosynthesis," Mrs. Bull.37,806-813 (2012).
    45. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292,1897-1899 (2001).
    46. J. Johnson, H. Yan, R. Schaller, L. Haber, R. Saykally, and P. Yang, "Single nanowire lasers," J. Phys. Chem. B 105,11387-11390 (2001).
    47. J. Johnson, H. Choi, K. Knutsen, R. Schaller, P. Yang, and R. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater.1,106-110 (2002).
    48. X. Duan, Y. Huang, R. Agarwal, and C. Lieber, "Single-nanowire electrically driven lasers," Nature 421,241-245 (2003).
    49. J. Johnson, H. Yan, P. Yang, and R. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107,8816-8828 (2003).
    50. M. Gudiksen, L. Lauhon, J. Wang, D. Smith, and C. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415,617-620 (2002).
    51. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, "Nanowire ultraviolet photodetectors and optical switches," Adv. Mater.14,158 (2002).
    52. J. Law and J. Thong, "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time," Appl. Phys. Lett.88,133114 (2006).
    53. G. O'Brien, A. Quinn, D. Tanner, and G. Redmond, "A single polymer nanowire photodetector," Adv. Mater.18,2379-2383 (2006).
    54. K. Rosfjord, J. Yang, E. Dauler, A. Kerman, V. Anant, B. M. Voronov, G. Gol'Tsman, and K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14,527-534 (2006).
    55. C. Soci, A. Zhang, B. Xiang, S. Dayeh, D. Aplin, J. Park, X. Bao, Y. Lo, and D. Wang, "ZnO nanowire UV photodetectors with high internal gain," Nano Lett.7,1003-1009 (2007).
    56. C. Soci, A. Zhang, X. Bao, H. Kim, Y. Lo, and D. Wang, "Nanowire photodetectors," J. Nanosci. Nano. Techno.10,1430-1449 (2010).
    57. Y. Nakayama, P. Pauzauskie, A. Radenovic, R. Onorato, R. Saykally, J. Liphardt, and P. Yang, "Tunable nanowire nonlinear optical probe," Nature 447,1098-1101 (2007).
    58. J. Zhang, D. Li, R. Chen, and Q. Xiong, "Laser cooling of a semiconductor by 40 kelvin," Nature 493,504-508 (2013).
    59. T. Maiman, "Stimulated optical radiation in ruby," Nature 187,493-494 (1960).
    60. M. Sargent, M. Scully, and W. Lamb, Laser physics, (Addision-Wiesley,1974).
    61. A. Siegman, Lasers University Science Books, (Mill Valley, CA,1986).
    62. W. Koechner, Solid-state laser engineering, (Springer,2006).
    63. A. Demaria, D. Stetser, and H. Heynau, "SELF MODE-LOCKING OF LASERS WITH SATURABLE ABSORBERS-(REGENERATIVE PULSE OSCILLATOR BLEACHABLE DYES E)," Appl. Phys. Lett.8,174 (1966).
    64. C. Shank and E. Ippen, "SUBPICOSECOND KILOWATT PULSES FROM A MODE-LOCKED CW DYE LASER," Appl. Phys. Lett.24,373-375 (1974).
    65. J. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Academic press,2006).
    66. A. Weiner, Ultrafast Optics (Wiley, Hoboken, NJ,2009).
    67.张志刚,飞秒激光技术(科学出版社,北京,2011).
    68. M. Maier, W. Kaiser, and J. Giordmaine, "Intense Light Bursts in the Stimulated Raman Effect," Phys. Rev. Lett.17,1275-1277 (1966).
    69. J. Armstrong, "Measurement of Picosecond Laser Pulse Widths," Appl. Phys. Lett.10,16 (1967).
    70. J. Giordmaine, "Two-Photon Excitation of Fluorescence by Picosecond Light Pulses," Appl. Phys. Lett.11,216(1967).
    71. H. Weber, "Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase-Locked Lasers using Nonlinear Optics," J. Appl. Phys.38,2231 (1967).
    72. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, and D. Kane, "Measuring Ultrashort Laser Pulses in the Time-Frequency Domain Using Frequency-Resolved Optical Gating," Rev. Sci. Instrum.68,3277-3295 (1997).
    73. C. Iaconis and I. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett.23,792-794 (1998).
    74. J. Nicholson, J. Jasapara, W. Rudolph, F. Omenetto, and A. Taylor, "Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements," Opt. Lett.24,1774-1776 (1999).
    75. R. Trebino, K. DeLong, and D. Kane, "Single-Shot Measurement of the Intensity and Phase an Arbitrary Ultra-Short Pulse Using Frequency-Resolved Optical Gating," Lith. J. Phys. 33,247-252(1993).
    76. R. Trebino and D. Kane, "Using Phase Retrieval to Measure the Intensity and Phase of Ultrashort Pulses:Frequency-Resolved Optical Gating," J. Opt. Soc. Amer. A 10, 1101-1111(1993).
    77. H. Stark, Image recovery:theory and application, (Academic Press, Orlando, FL,1987)
    78. F. Kaertner, Ultrafast optics, (Lecture notes at Massachusetts Institute of Technology, OpenCourseWare,2005).
    79. W. Knox, "Ultrafast technology in telecommunications," IEEE. J. Sel. Top. Quant.6, 1273-1278(2000).
    80. R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akrurk, and M. Kimmel, "Simple Devices for Measuring Complex Pulses," Laser Photon. Rev.3,314-342 (2009).
    81. J. Zhang, A. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, "Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating," Opt. Express 11,601-609(2003).
    82. S. Haacke, S. Schenkl, S. Vinzani, and M. Chergui, "Femtosecond and picosecond fluorescence of native bacteriorhodopsin and a nonisomerizing analog," Biopolymers.67, 306-309 (2002).
    83. P. O'shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett.26,932-934 (2001).
    84. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, "Crossed-beam spectral interferometry:a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time," Opt. Express 14, 11892-11900(2006).
    85. P. Bowlan, P. Gabolde, and R. Trebino, "Directly measuring the spatio-temporal electric field of focusing ultrashort pulses," Opt. Express 15,10219-10230 (2007).
    86. P. Bowlan, P. Gabolde, M. Coughlan, R. Trebino, and R. Levis. "Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution," J. Opt. Soc. Am. B 25, A81-A92 (2008).
    87. P. Gabolde and R. Trebino, "Self-referenced measurement of the complete electric field of ultrashort pulses," Opt. Express 12,4423-4429 (2004).
    88. P. Gabolde and R. Trebino, "Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography," Opt. Express 14,11460-11467 (2006).
    89. P. Gabolde and R. Trebino, "Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography," J. Opt. Soc. Am. B 25, A25-A33 (2008).
    90. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12,1025-1035 (2004).
    91. A. Snyder and J. Love, Optical waveguide theory (Springer,1983).
    92. R. Oulton, G. Bartal, D. Pile, and X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys.10,105018 (2008).
    93. R. Oulton, V. Sorger, D. Genov, D. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2,496-500 (2008).
    94. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, "Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium," Opt. Express 19, 12925-12936(2011).
    95. Y. Song, M. Yan, Q. Yang, L. Tong, and M. Qiu, "Reducing crosstalk between nanowire-based hybrid plasmonic waveguides," Opt. Commun.284,480-484 (2011).
    96. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, "Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement," Opt. Lett.36,2312-2314 (2011).
    97. G. Agrawal, Nonlinear fiber optics (Springer,2000).
    98. M. Foster, A. Turner. M. Lipson, and A. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16,1300-1320 (2008).
    99. M. Foster. A. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13, 6848-6855 (2005).
    100. S. Coen, A. Chau, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19,753-764 (2002).
    101. M. Sumetsky, Y. Dulashko, J. Fini, and A. Hale, "Optical microfiber loop resonator," Appl. Phys. Lett.86,161108(2005).
    102. L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, "Assembly of silica nanowires on silica aerogels for microphotonic devices," Nano Lett.5,259-262 (2005).
    103. P. Pauzauskie, D. Sirbuly, and P. Yang, "Semiconductor nanowire ring resonator laser,' Phys. Rev. Lett.96,143903 (2006).
    104. Y. Li and L. Tong, "Mach-Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett.33,303-305 (2008).
    105. H. Yu, S. Wang, J. Fu, M. Qiu, Y. Li. F. Gu, and L. Tong, "Modeling bending losses of optical nanofibers or nanowires," Appl. Opt.48,4365-4369 (2009).
    106. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am.66,216-220 (1976).
    107. L. Faustini and G. Martini, "Bend loss in single-mode fibers," J. Lightwave. Technol.15, 671-679(1997).
    108. M. Sumetsky, "Optical fiber microcoil resonators," Opt. Express 12,2303-2316 (2004).
    109. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires:Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    110. Q. Wang, G. Rajan, P. Wang, and G. Frarell, "Polarisation Dependence of Bend Loss for a Standard Singlemode Fiber," Opt. Express 15,4909-4920 (2007).
    111. M. Heiblum and J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum. Electron.11,75-83 (1975).
    112. D. Dai, Y. Shi, and S. He, "Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration," Appl. Opt.45,4941-4946 (2006).
    113. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends." Opt. Express 14,11128-11141 (2006).
    114. Z. Ye, X. Hu, M. Li, K. Ho, and P. Yang, "Propagation of guided modes in curved nanoribbon waveguides," Appl. Phys. Lett.89,241108 (2006).
    115. A. Taflove and S. Hagness, Computational electrodynamics (Artech house Boston,2000), Vol.160.
    116. F. Kien, J. Liang, K. Hakuta, and V. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun.242,445-455 (2004).
    117. W. She, J. Yu, and R. Feng, "Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light," Phys. Rev. Lett.101,243601 (2008).
    118. J. Yu, R. Feng, and W. She, "Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light," Opt. Express 17,4640-4645 (2009).
    119. H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, "Longitudinal Lorentz force on a subwavelength-diameter optical fiber," Phys. Rev. A 83,053830 (2011).
    120. J. Jackson, Classical electrodynamics (Wiley, New York,1999).
    121. A. Zakharian, M. Mansuripur, and J. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielectric media," Opt. Express 13,2321-2336 (2005).
    122. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12,5375-5401 (2004).
    123. B. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Appl. Phys. Lett.86,183109 (2005).
    124. H. Yu et al., "Single nanowire ultra-low-power optical correlator," submitted.
    125. Y Shen, The principles of nonlinear optics (Wiley-Interscience, New York,1984).
    126. M. Fejer, G. Magel, D. Jundt, and R. Byer, "Quasi-phase-matched second harmonic generation:tuning and tolerances," IEEE J. Quantum. Electron.28,2631-2654 (1992).
    127. L. Myers, R. Eckardt, M. Fejer, R. Byer. W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B Opt. Phys.12,2102-2116(1995).
    128. R. Byer, "Quasi-phasematched nonlinear interactions and devices," J. Nonlinear. Opt. Phys. 6.549-592(1997).
    129. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett.71,753-755 (1997).
    130. Y. Shen, "Optical second harmonic generation at interfaces," Annu. Rev. Phys. Chem.40, 327-350(1989).
    131. Y. Shen, "Surface properties probed by second-harmonic and sum-frequency generation," Nature 337,519-525(1989).
    132. J. Zyss, "Nonlinear organic materials for integrated optics-A review," J. Mol. Electron.1, 25-45 (1985).
    133. G. Stegeman and R. Stolen, "Waveguides and fibers for nonlinear optics," J. Opt. Soc. Am. B Opt. Phys.6,652-662 (1989).
    134. P. Prasad and D. Williams, Introduction to nonlinear optical effects in molecules and polymers (Wiley, New York.,1991).
    135. G. Rikken, C. Seppen, E. Staring, and A. Venhuizen, "Efficient modal dispersion phase matched frequency doubling in poled polymer waveguides," Appl. Phys. Lett.62, 2483-2485(1993).
    136. K. Clays, J. Schildkraut, and D. Williams, "Phase-matched second-harmonic generation in a four-layered polymeric waveguide," J. Opt. Soc. Am. B 11,655-664 (1994).
    137. T. Penner. H. Motschmann, N. Armstrong, M. Ezenyilimba, and D. Williams, "Efficient phase-matched second-harmonic generation of blue light in an organic waveguide," Nature 367,49-51 (1994).
    138. M. Jager, G. Stegeman, G. Mohlmann, M. Flipse, and M. Diemeer, "Second harmonic generation in polymeric channel waveguides using modal dispersion," Electron. Lett.32, 2009-2010(1996).
    139. M. Jager, G. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, and B. Zysset, "Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation," J. Opt. Soc. Am. B 15, 781-788(1998).
    140. T. Kowalczyk, K. Singer, and P. Cahill, "Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide," Opt. Lett.20.2273-2275 (1995).
    141. P. Tien, R. Ulrich, and R. Martin, "OPTICAL SECOND HARMONIC GENERATION IN FORM OF COHERENT CERENKOV RADIATION FROM A THIN-FILM WAVEGUIDE," Appl. Phys. Lett.17,447-450 (1970).
    142. D. Fluck, T. Pliska, P. Gunter, L. Beckers, and C. Buchal, "Cerenkov-type second-harmonic generation in KNbO< sub> 3 channel waveguides," IEEE J. Quantum. Electron.32, 905-916(1996).
    143. H. Yu et al., "Coupled semiconductor nanowires for phase-matched second-harmonic generation," submitted.
    144. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum. Electron.9, 919-933(1973).
    145. P. Franken, A. Hill, C. Peters, and G. Weinreich, "Generation of Optical Harmonics," Phys. Rev. Lett.7,118-119(1961).
    146. N. Bloembergen, H. Simon, and C. Lee, "Total Reflection Phenomena in Second-Harmonic Generation of Light," Phys. Rev.181,1261-1271 (1969).
    147. R. Normandin and G. I. Stegeman, "Nondegenerate four-wave mixing in integrated optics," Opt. Lett.4,58-59(1979).
    148. R. Normandin and G. Stegeman. "Picosecond signal processing with planar, nonlinear integrated optics," Appl. Phys. Lett.36,253-255 (1980).
    149. D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. Smith, "Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers," Appl. Phys. Lett.55,1164 (1989).
    150. P. Vella, R. Normandin, and G. Stegeman, "Enhanced second-harmonic generation by counter-propagating guided optical waves," Appl. Phys. Lett.38,759-760 (1981).
    151. D. Vakhshoori, M. Wu, and S. Wang, "Surface-emitting second-harmonic generator for waveguide study." Appl. Phys. Lett.52,422-424 (1988).
    152. T. Ulmer, M. Hanna. B. Washburn, S. Ralph, and A. SpringThorpe, "Microcavity-enhanced surface-emitted second-harmonic generation for ultrafast all-optical signal processing," IEEE J. Quantum. Electron.38,19-30 (2002).
    153. K. Shore, X. Chen, and P. Blood, "Frequency doubling and sum frequency generation in semiconductor optical waveguide devices," Prog. Quant. Electron.20,181-218 (1996).
    154. Y. Beaulieu, S. Janz, H. Dai, E. Frlan, C. Fernando, A. Delage, P. VanDerMeer, M. Dion, and R. Normandin, "Surface emitted harmonic generation for sensor and display applications," J. Nonlinear. Opt. Phys.4,893-927 (1995).
    155. C. Degen, G. Jennemann, I. Fischer, W. Elsaβer, S. Leu, R. Rettig, and W. Stolz, "Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides," Opt. Quant. Electron 34,707-716(2002).
    156. K. Huang, S. Yang, and L. Tong, "Modeling of evanescent coupling between two parallel optical nanowires," Appl. Opt.46,1429-1434 (2007).
    157. H. Yu et al., "Transverse sum-frequency generation in single semiconductor nanowires " in CLEO, (San Jose, CA, US,2013).
    158. H. Yu et al., "Transverse third-harmonic generation from single semiconductor nanowires," submitted.
    159. N. Whitbread, J. A. Williams, J. Roberts, I. Bennion, and P. Robson, "Optical autocorrelator that uses a surface-emitting second-harmonic generator on (211) B GaAs," Opt. Lett.19, 2089-2091 (1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700