重组人源GPx4及其模拟物的原核表达、结构与功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性氧(ROS)是指化学性质活跃的含氧原子或原子团的总称。机体内的ROS是正常生理代谢的产物,不同浓度的ROS可对机体产生有益或有害的影响。低浓度的ROS具有抵御传染性病原体的侵袭、参与细胞信号转导、刺激细胞增殖以及调控细胞凋亡等作用。然而,当各种诱因使机体内ROS产生过多或清除不利时,过量的ROS可以破坏细胞的脂质、蛋白质或DNA并抑制其正常功能,这种现象被称为氧化应激。氧化应激与机体衰老和多种疾病的发生密切相关。机体内有完整的抗氧化体系,包括酶类和非酶类抗氧化剂,其在维持体内ROS产生与清除的平衡中具有重要作用。
     硒是人体内不可或缺的微量非金属元素,人体内的硒元素大部分是以Sec的形式掺入到蛋白质中。目前已在人体中发现了25种硒蛋白,这些硒蛋白呈现出不同的组织特异性与亚细胞定位,并在维持人体正常生理功能上发挥着重要作用。其中含硒谷胱甘肽过氧化物酶(GPx)是在抗氧化防御系统中起到重要作用的一类硒蛋白。含硒GPx的活性中心是被称为第21种氨基酸的硒代半胱氨酸(Sec),其与谷氨酰胺(Gln)和色氨酸(Trp)组成的催化三联体结构在GPx家族成员中高度保守。Sec插入到蛋白质中需要一种特殊的机制,尽管真核和原核生物Sec的合成及插入机制并不完全相同,但均需要一类被称为硒代半胱氨酸插入序列(SECIS)的顺式作用元件以及多种反式作用转录因子的协助。也正是因为这种差异性,使得很难利用原核表达系统制备真核含硒蛋白。此外由于天然含硒GPx来源有限且性质不稳定,人们尝试对其进行人工模拟,以期获得具有GPx活力的模拟物代替天然GPx。
     为大量制备具有较高活力的GPx模拟酶,我们以hGSTZ1c-1c作为蛋白骨架,通过缺陷型原核表达系统制备多株含硒hGSTZ1c-1c及其突变体蛋白,并结合理论化学的方法对其结构与功能进行研究。而后,利用缺陷型原核表达系统直接制备出重组含硒GPx4蛋白,阐述了非催化中心的Sec替代Cys对蛋白结构产生的影响,并提出减小该影响应采取的策略,成功获得具有较高活力的重组人源GPx4突变体蛋白。
     (1)基于定点突变和计算机模拟研究Seleno-hGSTZ1c-1c的结构与功能
     天然GPx催化双底物反应,在谷胱甘肽(GSH)存在时能够催化分解多种氢过氧化物,但对底物GSH具有高度特异性。多年来对GPx模拟物的研究也表明,具有GSH结合位点是制备高活力GPx模拟物的一个关键因素。同天然GPx一样,hGSTZ1也是一种催化双底物反应的蛋白酶,且二者拥有共同的底物GSH,因此hGSTZ1可作为一种理想的骨架蛋白模拟GPx。hGSTZ1的催化中心是距离GSH结合位点较近的由Ser14-Ser15-Cys16氨基酸残基组成的SSC基序。前期研究中,通过化学修饰法向已形成固有三维结构的hGSTZ1中引入Sec,获得具有较高活力的含硒模拟酶,且Sec-14和Sec-15被认为是其催化中心。为大量制备高活力的含硒hGSTZ1模拟酶以及研究含硒及非含硒hGSTZ1结构与功能的关系,我们利用缺陷表达法将Sec引入到hGSTZ1拟催化位点中,并利用计算机模拟出hGSTZ1不同突变体的3D结构。实验结果表明Ser-14对GSH的定位具有重要作用,而Ser-15对GST活力的贡献更倾向于它的催化功能,这可能是利用缺陷表达法制备的含硒蛋白Seleno-hGSTZ1c-1c(S14C/S15C)并没有显示出预期的GPx活力的重要原因。此外,多个Cys向Sec的转化会使蛋白质结构发生变化,进而影响与GSH的结合。这可能是Seleno-hGSTZ1c-1c及其突变体蛋白没有显示出较高GPx或GST活力的另一个原因。由此可以看出,催化位点Sec的引入应选择对结构影响较小的氨基酸残基作为候选突变位点;而在使用半胱氨酸缺陷型原核表达系统制备具有GPx活力的含硒模拟酶时,应选择含有较少的Cys的骨架蛋白,防止因多个Sec的引入导致预期之外的结构变化。
     (2)重组Se-GPx4的制备及其结构与活性的研究
     成熟GPx4是单体蛋白且无糖基化位点,避免了过多的翻译后修饰过程,而缺陷表达系统已被证实能够高效的向蛋白质中引入Sec,因此我们选择利用该系统实现对人GPx4蛋白的异源重组表达。为避免重组GPx4因相互聚集而失活,将Cys-10和Cys-66编码序列突变为Ser编码序列。利用半胱氨酸缺陷型大肠杆菌高效地表达出重组GPx4并对其进行纯化,获得了性质稳定且纯度较高的重组Se-GPx4蛋白。然而重组Se-GPx4蛋白的活力(22U/μmol)虽然比小分子模拟物Ebselen(0.99U/μmol)高,但却比天然GPx4低两个数量级。重组Se-GPx4中除活性中心Sec-46外还有因缺陷表达系统对蛋白质中Cys的非选择性替换而插入的5个非催化Sec。其所在位置无法通过GSH保持其还原状态,因此这部分Sec是以亚硒酸态存在于蛋白质中。通过计算机模拟出重组Se-GPx4的3D结构,将其与模拟天然GPx4蛋白结构进行比较并分析。由于Sec的结构与Cys差别较大,这种替换引起了蛋白质结构的变化,进而导致重组Se-GPx4催化中心Sec-46中羟基的指向与天然GPx4不同,可能会在空间上妨碍与GSH的结合。在整个催化反应中,次硒酸与GSH的快速反应在防止GPx的催化基团因过度氧化而失活中起到至关重要的作用,GSH对次硒酸还原效率的降低可能是重组Se-GPx4蛋白活力降低的直接原因。本研究首次利用原核表达系统制备人源重组Se-GPx4蛋白酶,虽然活力并没有达到天然酶水平,但在开发GPx药用价值中迈出了坚实的一步,对GPx异源表达的研究亦有重要意义。
     (3)重组GPx4突变体的改造与活力改善
     除活性中心以外的多个Sec的引入会引起蛋白结构的变化,进而影响其活力。因此提高重组Se-GPx4活力最有效的方法是对其进行改造,使其空间结构可能地接近天然GPx4。与Cys理化性质最接近的氨基酸是Ser,因此使用Ser将重组GPx4中的Cys替换不会对其蛋白构象产生较大影响。本实验利用快速定点突变法依次将GPx4蛋白中的Cys-148、Cys-107、Cys-37、Cys-75和Cys-2突变为Ser,并通过半胱氨酸缺陷型大肠杆菌向各个突变体中引入Sec。实验结果表明,随着GPx4蛋白中非催化中心Sec数量的减少,Se-GPx突变体的活力具有增大的趋势。当重组Se-GPx4中除活性中心Sec-46以外的所有Sec被Ser取代后,该突变体呈现出最高的GPx活力值(646U/μmol),大约是突变前GPX活力的15倍。在对重组Se-GPx4完全突变体的3D结构进行分析后发现,其“催化三联体”结构与天然GPx4相近,且次硒酸态Sec的活性羟基指向了蛋白外侧。该结构可能是只保留活性中心Sec-46的Se-GPx4突变体活力提高的原因。此外,本实验将半胱氨酸缺陷型大肠杆菌表达系统与SPP低温表达系统进行联合,并使用“联合”表达方法向重组GPx4蛋白中引入Sec。与单独缺陷表达相比,“联合”表达方法被证明具有更高的可溶性含硒蛋白产率以及更低的目的蛋白表达成本。本实验进一步证实多个Sec的引入可导致GPx结构变化,进而对酶活力产生负面影响。同时也印证了使用原核表达系统制备真核GPx4蛋白时,可以通过Ser代替Cys以减小因非特异性引入的多个Sec与Cys结构差异而导致的蛋白整体结构变化所产生的影响,继而提高其酶活力。这对今后GPx蛋白的重组表达具有重要意义,同时也为GPx结构与催化机制的研究奠定了基础。
Free radicals can be defined as molecules or molecular fragments containing oneor more unpaired electrons in atomic or molecular orbitals. Reactive oxygen species(ROS) are intermediate products of normal metabolism and they can be either harmfulor beneficial to living systems. ROS at low/moderate concentrations playphysiological roles in defending against infectious agents and regulating signaltransduction pathways and transcription factors. The harmful effects of ROS occur athigh concentrations and the excess ROS can cause damage to lipids, proteins andnucleic acids in cells, causing the condition termed oxidative stress. Oxidative stresshas been implicated in a number of human diseases as well as in the ageing process.The balance between beneficial and harmful effects of ROS is essential for thesurvival of organisms and achieved by the antioxidant action of non-enzymatic andenzymatic antioxidants.
     Selenium is well established as an essential trace mineral of fundamentalimportance to human health and this element is mainly incorporated into thepolypeptide chain as part of selenocysteine (Sec). At least25proteins are identified sofar which have different tissue specificity and maintain normal physiological functionof many body tissues. Glutathione peroxidase (GPx) is a member of selenoenzymesand acts as as a free radical scavenger using GSH as reducing substrate. The catalyticcenter of GPx is known as catalytic triad consisting of a Sec, a Trp, and a Gln residue.Sec is also known as the21stamino acid and encoded by UGA, which usuallyfunctions as a stop codon. The incorporation of Sec into protein requires a specialmechanism. The selenocysteine insertion sequence (SECIS) and multi trans-actingfactors are necessary to achieve the incorporation. And the fact that the mechanismdiffers from prokaryotes to eukaryotes makes it difficult to directly heterologouslyexpress recombinant mammalian selenoproteins in E. coli. Due to the disadvantages of limited availability, poor stability and high molecular weight of native GPx, itstherapeutic usage is limited. Researchers’ study focused on artificial imitation of GPx.
     In this research, selenocysteine-containing hGSTZ1c-1c and its various mutantswere prepared by using cysteine auxotrophic strain to obtain GPx mimics with highactivity. And the role of different residues in the SSC motif on binding GSH and theeffect of introducing Sec into hGSTZ1c-1c were explored by site-directedmutagenesis and computational analysis. Furthermore, we produced recombinanthuman GPx4mutants using cysteine auxotrophic strain and discussed the impact ofnon-catalytic Sec on the structure of the protein. A strategy was proposed forenhancing the catalytic activity of recombinant enzyme and a new GPx4mutant withhigh activity was obtained.
     (1) Characterization of catalytic activity and structure of selenocysteine-containinghGSTZ1c-1c based on site-directed mutagenesis and computational analysis
     Glutathione peroxidase (GPx, EC1.11.1.9) is an important class of antioxidantenzymes that protects cells from oxidative damage. As radical scavengers, GPxscatalyze the GSH-dependent reaction and thereby reduce different types of peroxidesto their respective alcohols. Because of the natural binding site of GSH, humanglutathione transferase zeta1c-1c (hGSTZ1c-1c) has been considered to be an idealprotein scaffold for imitating glutathione peroxidase. The SSC motif(Ser14-Ser15-Cys16) highly conserved in most of GSTs was regarded as the activecenter in catalysis. It has been reported that the Sec-14and Sec-15ofselenium-containing hGSTZ1-1(Seleno-hGSTZ1-1) produced by chemicallyconverting Ser to Sec residue contributes significantly to the GPx activity. But it wasdifficult to prepare selenoenzyme in large amount due to the restrictions of chemicalmethod. Instead, Cys auxotrophic expression system was used to produce GPxmimics. The aim of this study is to investigate the changes of catalytic activity fromhGSTZ1c-1c to Seleno-hGSTZ1c-1c produced by using Cys auxotrophic expressionsystem. Furthermore, the role of different residues in the SSC motif on binding GSHand the effect of introducing Sec into hGSTZ1c-1c were explored by site-directed mutagenesis and computational analysis. In this report, several residues near GSHwere mutated to selenocysteine (Sec) or cysteine (Cys) residues and the impacts of thesubstitutions on different activities were discussed. Mutations of Ser-14or/and Ser-15to Cys or Sec residues resulted in dramatic loss of catalytic activity of hGSTZ1c-1cwith chlorofluoroacetic acid (CFA) as substrate, indicating the importance of thehydroxyl groups in Ser-14and Ser-15. And subsequent study by molecular modelingsuggested that Ser-15was probably involved in catalysis, while Ser-14may play acrucial role in binding and orientation of GSH and possibly had a synergistic effectwith Ser-15in catalysis. On the contrary, the result of converting Cys-16to Serindicated its trivial role in catalysis. The investigations of theselenocysteine-containing hGSTZ1c-1c (Seleno-hGSTZ1c-1c) and the mutant S17Cimplied that the substitutions of multi-Sec for Cys residues could lead to subtlechange in the structure of the protein molecule and concomitant change in catalyticactivity as a direct result. This finding provides evidence that the protein scaffoldcontaining fewer cysteines should be chosen for imitating GPx using Cys auxotrophicexpression system to avoid unexpected structural changes.
     (2) Prokaryotic expression of recombinant Se-GPx4and study on its structure andactivity
     Cytosolic GPx4is a single polypeptide chain protein with a molecular mass of19.5kDa, which does not undergo major post-translational modification. cysteineauxotrophic strain has been proved to efficiently achieve the introduction of Sec intoproteins. In this study, recombinant GPx4was produced by using this E. coli strain.Cys-10and Cys-16were mutated to Ser residues for they may cause the recombinantprotein aggregation. Although recombinant GPx4was obtained with high purity andstability and showed higher GPx activity (22U/μmol) than Ebselen (0.99U/μmol),but two orders of magnitude lower than native GPx4. There were five non-catalyticSec residues besides Sec-46in recombinant GPx4which were unspecificallyintroduced by cysteine auxotrophic strain. And the five Sec were seleninic acidsbecause they could not be reduced by GSH. The substitution of multi-Sec for Cys in recombinant GPx4may lead to structural change for the structural differencesbetween Sec and Cys. And this difference caused the active hydroxyl group of Sec-46orientating toward the inside of the protein in comparison to the putative native GPx4and thereby directly interfered with binding of GSH to the recombinant enzyme. Inthe catalytic reaction, the rapid reactions of the selenenic acid with GSH and of theresulting selenenyl sulfide (E-SeSG) with a second GSH to produce the selenol appearto be very important, because these reactions ensure that the selenium moiety in theenzyme is not irreversibly inactivated. Lower reduction efficiency might be the mainreason for the loss of the activity of recombinant GPx4. In this study, it is the firsttime to prepare recombinant human GPx4in prokaryotic expression system. Althoughthe activity of recombinant GPx4is not as high as native GPx4, but the resultsrepresent a solid step forward on the path toward heterologous expression ofrecombinant GPx in E. coli.
     (3) A modification of recombinant GPx4mutant
     The substitution of multi-Sec for Cys in recombinant GPx4may lead to structuralchange and thereby cause the loss of the normal GPx activity. So we need an effectiveway to improve the activity by modifying recombinant GPx4. Ser and Cys exhibitvery similar physical and chemical properties and the substitution of Ser for Cys inrecombinant GPx4wouldn’t lead to severe structural change. In this study, Cys-148,Cys-107, Cys-37, Cys-75and Cys-2in GPx4were mutated to Ser in turn and theresponding Se-GPx4mutants were prepared by using the “combined” expressionsystem. The results indicated that the catalytic activity of recombinant GPx4wasenhanced following the number of non-catalytic Sec decreased. The mutant showedthe highest catalytic activity (646U/μmol) when all the Sec residues in recombinantSe-GPx4mutant were replaced by Ser, which was15fold higer than non-mutatedrecombinant GPx4. A three-dimensional structure of this recombinant Se-GPx4mutant was constructed and the catalytic triad was therefore detected. Unlikenon-mutant recombinant GPx4, the active hydroxyl group of E(mutant)-SeOH isorientated toward the same direction compared with the putative native GPx4. And the increase of the catalytic activity of recombinant Se-GPx4mutant may attribute tothis. In addition, a new way to prepare recombinant Se-GPx4was established by usingcysteine auxotrophic strain combined with SPP system. The “combined” expressionsystem has been proved to express selenoprotein with higher efficiency of solubleprotein production and lower cost of protein production than cysteine auxotrophicexpression system. These results indicated the feasibility of substituting Ser for Cys toenhance the catalytic activity of recombinant Se-GPx4produced in prokaryotic host.This research is of great significance for the heterologous expression of recombinantSe-GPx, and lay the foundation for investigating the clear structure and catalyticmechanism of GPx.
引文
[1] Halliwell B, Cross C E. Oxygen-derived species: their relation to human diseaseand environmental stress[J]. Environmental health perspectives,1994,102(Suppl10):5.
    [2] Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002,18(10):872-879.
    [3] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normalphysiological functions and human disease[J]. International Journal ofBiochemistry and Cell Biology,2007,39(1):44-84.
    [4] Inoue M, Sato E F, Nishikawa M, et al. Mitochondrial generation of reactiveoxygen species and its role in aerobic life[J]. Current medicinal chemistry,2003,10(23):2495-2505.
    [5] Klaunig J E, Xu Y, Bachowski S, et al. Free-radical oxygen-induced changes inchemical carcinogenesis[J]. Free Radical Toxicology,1997:375-400.
    [6] Cadenas E. Biochemistry of oxygen toxicity[J]. Annual review of biochemistry,1989,58(1):79-110.
    [7] Fridovich I. Biological effects of the superoxide radical[J]. Archives ofBiochemistry and Biophysics,1986,247(1):1-11.
    [8] Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants inoxidative stress-induced cancer[J]. Chemico-biological interactions,2006,160(1):1-40.
    [9] Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and thedegenerative diseases of aging[J]. Proceedings of the National Academy ofSciences,1993,90(17):7915-7922.
    [10] Turrens J F. Mitochondrial formation of reactive oxygen species[J]. The Journalof physiology,2003,552(2):335-344.
    [11] Fritz R, Bol J, Hebling U, et al. Compartment-dependent management of H2O2by peroxisomes[J]. Free Radical Biology and Medicine,2007,42(7):1119-1129.
    [12] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damageand cancer incidence[J]. Molecular and cellular biochemistry,2004,266(1-2):37-56.
    [13] Pastor N, Weinstein H, Jamison E, et al. A detailed interpretation of OH radicalfootprints in a TBP-DNA complex reveals the role of dynamics in themechanism of sequence-specific binding[J]. Journal of molecular biology,2000,304(1):55-68.
    [14] Circu M L, Aw T Y. Reactive oxygen species, cellular redox systems, andapoptosis[J]. Free Radical Biology and Medicine,2010,48(6):749-762.
    [15] Valko M, Morris H, Cronin M T D. Metals, toxicity and oxidative stress[J].Current medicinal chemistry,2005,12(10):1161-1208.
    [16] Leonard S S, Harris G K, Shi X. Metal-induced oxidative stress and signaltransduction[J]. Free Radical Biology and Medicine,2004,37(12):1921-1942.
    [17] Burcham P C. Genotoxic lipid peroxidation products: their DNA damagingproperties and role in formation of endogenous DNA adducts[J]. Mutagenesis,1998,13(3):287-305.
    [18] de Grey A D N J. HO2: The forgotten radical[J]. DNA and cell biology,2002,21(4):251-257.
    [19] Porter N A, Caldwell S E, Mills K A. Mechanisms of free radical oxidation ofunsaturated lipids[J]. Lipids,1995,30(4):277-290.
    [19] Dr ge W. Free radicals in the physiological control of cell function[J].Physiological reviews,2002,82(1):47-95.
    [20] Murrell G A, Francis M J, Bromley L. Modulation of fibroblast proliferation byoxygen free radicals[J]. Biochemical Journal,1990,265(3):659.
    [21] Schreck R, Rieber P, Baeuerle P A. Reactive oxygen intermediates as apparentlywidely used messengers in the activation of the NF-kappa B transcription factorand HIV-1[J]. The EMBO Journal,1991,10(8):2247-2258.
    [22] Lo Y Y C, Cruz T F. Involvement of reactive oxygen species in cytokine andgrowth factor induction of c-fos expression in chondrocytes[J]. Journal ofBiological Chemistry,1995,270(20):11727-11730.
    [23] Kovacic P, Jacintho J D. Mechanisms of carcinogenesis focus on oxidative stressand electron transfer[J]. Current medicinal chemistry,2001,8(7):773-796.
    [24] Ridnour L A, Isenberg J S, Espey M G, et al. Nitric oxide regulates angiogenesisthrough a functional switch involving thrombospondin-1[J]. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(37):13147-13152.
    [25] Valko M, Morris H, Mazúr M, et al. Oxygen free radical generating mechanismsin the colon: do the semiquinones of vitamin K play a role in the aetiology ofcolon cancer?[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2001,1527(3):161-166.
    [26] Cadenas E. Basic mechanisms of antioxidant activity[J]. Biofactors,1997,6(4):391-397.
    [27] Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matterwith oxygen?[J]. Annals of the New York Academy of Sciences,1999,893(1):13-18.
    [28] Lawler J M, Barnes W S, Wu G, et al. Direct antioxidant properties of creatine[J].Biochemical and biophysical research communications,2002,290(1):47-52.
    [29] Machlin L J, Bendich A. Free radical tissue damage: protective role ofantioxidant nutrients[J]. The FASEB Journal,1987,1(6):441-445.
    [30] Wu G, Meininger C J. Arginine nutrition and cardiovascular function[J]. TheJournal of nutrition,2000,130(11):2626-2629.
    [31] Lass A, Suessenbacher A, W lkart G, et al. Functional and analytical evidence forscavenging of oxygen radicals by L-arginine[J]. Molecular pharmacology,2002,61(5):1081-1088.
    [32] Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute indrought-tolerant wild watermelon leaves, is an efficient hydroxyl radicalscavenger[J]. Febs Letters,2001,508(3):438-442.
    [33] Redmond H P, JIANG H W, Bouchier-Hayes D, et al. Taurine attenuates nitricoxide-and reactive oxygen intermediate-dependent hepatocyte injury[J].Archives of surgery,1996,131(12):1280-1288.
    [34] Afonso V, Champy R, Mitrovic D, et al. Reactive oxygen species and superoxidedismutases: role in joint diseases[J]. Joint Bone Spine,2007,74(4):324-329.
    [35] Matés J é M, Pérez-Gómez C, De Castro I N. Antioxidant enzymes and humandiseases[J]. Clinical biochemistry,1999,32(8):595-603.
    [36] Landis G N, Tower J. Superoxide dismutase evolution and life span regulation[J].Mechanisms of ageing and development,2005,126(3):365-379.
    [37] Okado-Matsumoto A, Fridovich I. Amyotrophic lateral sclerosis: a proposedmechanism[J]. Proceedings of the National Academy of Sciences,2002,99(13):9010-9014.
    [38] Behrend L, Henderson G, Zwacka R M. Reactive oxygen species in oncogenictransformation[J]. Biochem Soc Trans,2003,31:1441-1444.
    [39] Young I S, Woodside J V. Antioxidants in health and disease[J]. Journal ofclinical pathology,2001,54(3):176-186.
    [40] Díaz A, Loewen P C, Fita I, et al. Thirty years of heme catalases structuralbiology[J]. Archives of Biochemistry and Biophysics,2012,525(2):102-110.
    [41] Buettner G R, Moseley P L. EPR spin trapping of free radicals produced bybleomycin and ascorbate[J]. Free Radical Research,1993,19(s1): s89-s93.
    [42] Bielski B H J, Richter H W, Chan P C. Some properties of the ascorbate freeradical*[J]. Annals of the New York Academy of Sciences,1975,258(1):231-237.
    [43] Washko P W, Wang Y, Levine M. Ascorbic acid recycling in humanneutrophils[J]. Journal of Biological Chemistry,1993,268(21):15531-15535.
    [44] Padayatty S J, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation ofits role in disease prevention[J]. Journal of the American College of Nutrition,2003,22(1):18-35.
    [45] Fang YZ. Free radicals and nutrition[M]//Fang YZ, Zheng RL, eds. Theory andapplication of free radical biology. Beijing: Scientific Press,2002:647.
    [46] Burton G W, Ingold K U. Vitamin E as an in Vitro and in Vivo Antioxidanta[J].Annals of the New York Academy of Sciences,1989,570(1):7-22.
    [47] Pryor W A. Vitamin E and heart disease: basic science to clinical interventiontrials[J]. Free radical biology&medicine,2000,28(1):141-164.
    [48] Guyton K Z, Kensler T W. Oxidative mechanisms in carcinogenesis[J]. Britishmedical bulletin,1993,49(3):523-544.
    [49] Masella R, Di Benedetto R, Varì R, et al. Novel mechanisms of naturalantioxidant compounds in biological systems: involvement of glutathione andglutathione-related enzymes[J]. The Journal of nutritional biochemistry,2005,16(10):577-586.
    [50] Nogueira C W, Zeni G, Rocha J B T. Organoselenium and organotelluriumcompounds: Toxicology and pharmacology[J]. Chemical Reviews,2004,104(12):6255-6285.
    [51] Jones D P, Carlson J L, Mody Jr V C, et al. Redox state of glutathione in humanplasma[J]. Free Radical Biology and Medicine,2000,28(4):625-635.
    [52] Pastore A, Federici G, Bertini E, et al. Analysis of glutathione: implication inredox and detoxification[J]. Clinica chimica acta,2003,333(1):19-39.
    [53] Hollemann A F, Wiberg N. Lehrbuch der anorganischen Chemie[M]//de GruyterBerlin,1985:1451.
    [54] Moxon A L. Alkali disease or selenium poisoning[J]. Alkali disease or seleniumpoisoning,1937,311:1-91.
    [55] Schwarz K, Foltz C M. Selenium as an integral part of factor3against dietarynecrotic liver degeneration[J]. Journal of the American Chemical Society,1957,79(12):3292-3293.
    [56] Rotruck J T, Pope A L, Ganther H E, et al. Selenium: biochemical role as acomponent of glutathione peroxidase[J]. Science,1973,179(4073):588-590.
    [57] Flohe L, Günzler W A, Schock H H. Glutathione peroxidase: a selenoenzyme[J].FEBS letters,1973,32(1):132-134.
    [58] Cone J E, Del Rio R M, Davis J N, et al. Chemical characterization of theselenoprotein component of clostridial glycine reductase: identification ofselenocysteine as the organoselenium moiety[J]. Proceedings of the NationalAcademy of Sciences,1976,73(8):2659-2663.
    [59] Forstrom J W, Zakowski J J, Tappel A L. Identification of the catalytic site of ratliver glutathione peroxidase as selenocysteine[J]. Biochemistry,1978,17(13):2639-2644.
    [60] Kryukov G V, Castellano S, Novoselov S V, et al. Characterization of mammalianselenoproteomes[J]. Science,2003,300(5624):1439-1443.
    [61] Fomenko D E, Gladyshev V N. Identity and functions of CxxC-derived motifs[J].Biochemistry,2003,42(38):11214-11225.
    [62] Fomenko D E, Xing W, Adair B M, et al. High-throughput identification ofcatalytic redox-active cysteine residues[J]. Science Signaling,2007,315(5810):387.
    [63] Johansson L, Gafvelin G, Arnér E S J. Selenocysteine in proteins—properties andbiotechnological use[J]. Biochimica et Biophysica Acta (BBA)-GeneralSubjects,2005,1726(1):1-13.
    [64] Papp L V, Lu J, Holmgren A, et al. From selenium to selenoproteins: synthesis,identity, and their role in human health[J]. Antioxidants&redox signaling,2007,9(7):775-806.
    [65] Reeves M A, Hoffmann P R. The human selenoproteome: recent insights intofunctions and regulation[J]. Cellular and molecular life sciences,2009,66(15):2457-2478.
    [66] Lee B J, Worland P J, Davis J N, et al. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA[J]. Journalof Biological Chemistry,1989,264(17):9724-9727.
    [67] Leinfelder W, Stadtman T C, Bock A. Occurrence in vivo ofselenocysteyl-tRNA(SERUCA) in Escherichia coli: effect of sel mutations[J]. JBiol Chem,1989,264:9720-9723.
    [68] Xu X M, Carlson B A, Mix H, et al. Biosynthesis of selenocysteine on its tRNAin eukaryotes[J]. PLoS biology,2006,5(1): e4.
    [69] Xu X M, Carlson B A, Zhang Y, et al. New developments in seleniumbiochemistry: selenocysteine biosynthesis in eukaryotes and archaea[J].Biological trace element research,2007,119(3):234-241.
    [70] Carlson B A, Xu X M, Kryukov G V, et al. Identification and characterization ofphosphoseryl-tRNA[Ser]Sec kinase[J]. Proc Natl Acad Sci USA,2004,101:12848-12853.
    [71] Castellano S, Lobanov A V, Chapple C, et al. Diversity and functional plasticityof eukaryotic selenoproteins: identification and characterization of the SelJfamily[J]. Proc Natl Acad Sci USA,2005,102:16188-16193.
    [72] B ck A. Biosynthesis of selenoproteins–an overview[J]. Biofactors,2000,11(1):77-78.
    [73] Goyal M M, Basak A. Human catalase: looking for complete identity[J]. Protein&cell,2010,1(10):888-897.
    [74] Berry M J, Banu L, Chen Y, et al. Recognition of UGA as a selenocysteine codonin type I deiodinase requires sequences in the3′untranslated region[J]. Nature,1991,353(6341):273-276.
    [75] Berry M J, Banu L, Harney J W, et al. Functional characterization of theeukaryotic SECIS elements which direct selenocysteine insertion at UGAcodons[J]. The EMBO journal,1993,12(8):3315-3222.
    [76] Wilting R, Schorling S, Persson B C, et al. Selenoprotein synthesis in archaea:identification of an mRNA element of Methanococcus jannaschii probablydirecting selenocysteine insertion[J]. Journal of molecular biology,1997,266(4):637-641.
    [77] Krol A. Evolutionarily different RNA motifs and RNA-protein complexes toachieve selenoprotein synthesis[J]. Biochimie,2002,84(8):765.
    [78] Castellano S, Lobanov A V, Chapple C, et al. Diversity and functional plasticityof eukaryotic selenoproteins: identification and characterization of the SelJfamily[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2005,102(45):16188-16193.
    [79] Copeland P R, Fletcher J E, Carlson B A, et al. A novel RNA binding protein,SBP2, is required for the translation of mammalian selenoprotein mRNAs[J].The EMBO journal,2000,19(2):306-314.
    [80] Copeland P R, Fletcher J E, Carlson B A, et al. A novel RNA binding protein,SBP2, is required for the translation of mammalian selenoprotein mRNAs[J].The EMBO journal,2000,19(2):306-314.
    [81] Chavatte L, Brown B A, Driscoll D M. Ribosomal protein L30is a component ofthe UGA-selenocysteine recoding machinery in eukaryotes[J]. Nature structural&molecular biology,2005,12(5):408-416.
    [82] Miniard A C, Middleton L M, Budiman M E, et al. Nucleolin binds to a subset ofselenoprotein mRNAs and regulates their expression[J]. Nucleic acids research,2010,38(14):4807-4820.
    [83] Budiman M E, Bubenik J L, Driscoll D M. Identification of a signature motif forthe eIF4a3–SECIS interaction[J]. Nucleic acids research,2011,39(17):7730-7739.
    [84] Driscoll D M, Bubenik J L. SECIS-Binding Proteins Regulate the Expression ofthe Selenoproteome[M]//Selenium. Springer New York,2012:47-59.
    [85] Donovan J, Caban K, Ranaweera R, et al. A novel protein domain induces highaffinity selenocysteine insertion sequence binding and elongation factorrecruitment[J]. Journal of Biological Chemistry,2008,283(50):35129-35139.
    [86] Donovan J, Caban K, Ranaweera R, et al. A novel protein domain induces highaffinity selenocysteine insertion sequence binding and elongation factorrecruitment[J]. Journal of Biological Chemistry,2008,283(50):35129-35139.
    [87] Driscoll D M, Copeland P R. Mechanism and regulation of selenoproteinsynthesis[J]. Annual review of nutrition,2003,23(1):17-40.
    [88] Tujebajeva R M, Copeland P R, Xu X M, et al. Decoding apparatus foreukaryotic selenocysteine insertion[J]. EMBO reports,2000,1(2):158-163.
    [89] Forchhammer K, Leinfelder W, B ck A. Identification of a novel translationfactor necessary for the incorporation of selenocysteine into protein[J]. Nature,1989,342(6248):453-456.
    [90] Baron C, B ck A. The length of the aminoacyl-acceptor stem of theselenocysteine-specific tRNA (Sec) of Escherichia coli is the determinant forbinding to elongation factors SELB or Tu[J]. Journal of Biological Chemistry,1991,266(30):20375-20379.
    [91] Forchhammer K, Boesmiller K, B ck A. The function of selenocysteine synthaseand SELB in the synthesis and incorporation of selenocysteine[J]. Biochimie,1991,73(12):1481-1486.
    [92] Rother M. Selenium Metabolism in Prokaryotes[M]//Selenium. Springer NewYork,2012:457-470.
    [93] Rayman M P. Selenoproteins and human health: insights from epidemiologicaldata[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2009,1790(11):1533-1540.
    [94] B sl M R, Takaku K, Oshima M, et al. Early embryonic lethality caused bytargeted disruption of the mouse selenocysteine tRNA gene (Trsp)[J].Proceedings of the National Academy of Sciences,1997,94(11):5531-5534.
    [95] Germain D L S, Galton V A, Hernandez A. Defining the roles of theiodothyronine deiodinases: Current concepts and challenges[J]. Endocrinology,2009,150(3):1097-1107.
    [96] Fairweather-Tait S J, Bao Y, Broadley M R, et al. Selenium in human health anddisease[J]. Antioxidants&redox signaling,2011,14(7):1337-1383.
    [97] Alkan I, Simsek F, Haklar G, et al. Reactive oxygen species production by thespermatozoa of patients with idiopathic infertility: relationship to seminalplasma antioxidants[J]. The Journal of urology,1997,157(1):140-143.
    [98] BELLINGER F P, Arjun V, REEVES M A, et al. Regulation and function ofselenoproteins in human disease[J]. The Biochemical journal,2009,422(1):11.Arthur JR, McKenzie RC, and Beckett GJ. Selenium in the immune system. JNutr133:1457S–1459S,2003. Hoffmann PR and Berry MJ. The influence ofselenium on immune responses.
    [99] Hoffmann P R, Berry M J. The influence of selenium on immune responses[J].Molecular nutrition&food research,2008,52(11):1273-1280.
    [100] Spallholz J E, Boylan L M, Larsen H S. Advances in understanding selenium’srole in the immune system[J]. Ann N Y Acad Sci,1990,587:123-139.
    [101] Kiremidjian-Schumacher L, Roy M. Selenium and immune function[J].Zeitschrift Für ern hrungswissenschaft,1998,37:50.
    [102] Reid M E, Duffield‐Lillico A J, Sunga A, et al. Selenium supplementation andcolorectal adenomas: an analysis of the nutritional prevention of cancer trial[J].International journal of cancer,2006,118(7):1777-1781.
    [103] Rayman M P. The importance of selenium to human health [J]. Lancet,2000,356:233-241.
    [104] Zhou B F, Stamler J, Dennis B, et al. Nutrient intakes of middle-aged men andwomen in China, Japan, United Kingdom, and United States in the late1990s:the INTERMAP study [J]. J Hum Hypertens,2003,17:623-630.
    [105] Hoffmann P R, Berry M J. The influence of selenium on immune responses [J].Mol Nutr Food Res,2008,52:1273-1280.
    [106] Taylor P R, Albanes D. Selenium, vitamin E, and prostate cancer-ready forprime time?[J] J Natl Cancer Inst,1998,90:1184-1185.
    [107] Yang G Q, Ge K Y, Chen J S, et al. Selenium-related endemic diseases and thedaily selenium requirement of humans [J]. World Rev Nutr Diet,1998,55:98-152.
    [108] Goldhaber S B. Trace element risk assessment: essentiality vs. toxicity[J].Regulatory Toxicology and Pharmacology,2003,38(2):232-242.
    [109] Valdiglesias V, Pásaro E, Méndez J, et al. In vitro evaluation of seleniumgenotoxic, cytotoxic, and protective effects: a review[J]. Archives of toxicology,2010,84(5):337-351.
    [110] Valentine J L, Kang H K, Spivey G H. Selenium levels in human blood, urine,and hair in response to exposure via drinking water[J]. Environmental Research,1978,17(3):347-355.
    [111] Cheng W H, Ho Y S, Ross D A, et al. Cellular glutathione peroxidase knockoutmice express normal levels of selenium-dependent plasma and phospholipidhydroperoxide glutathione peroxidases in various tissues[J]. The Journal ofnutrition,1997,127(8):1445-1450.
    [112] Lei X G, Cheng W H, McClung J P. Metabolic regulation and function ofglutathione peroxidase-1[J]. Annu. Rev. Nutr.,2007,27:41-61.
    [113] Lubos E, Loscalzo J, Handy D E. Glutathione peroxidase-1in health anddisease: from molecular mechanisms to therapeutic opportunities[J].Antioxidants&redox signaling,2011,15(7):1957-1997.
    [114] Ramos Martinez J I, Diaz Garcia R, Galarza A M. The kinetic mechanism ofglutathione peroxidase from human platelets[J]. Thrombosis Research,1982,27(2):197-203.
    [115] Miwa T, Adachi T, Ito Y, et al. Purification and properties of glutathioneperoxidase from human liver[J]. Chemical&pharmaceutical bulletin,1983,31(1):179-185.
    [116] Takebe G, Yarimizu J, Saito Y, et al. A comparative study on the hydroperoxideand thiol specificity of the glutathione peroxidase family and selenoprotein P[J].Journal of Biological Chemistry,2002,277(43):41254-41258.
    [117] Ho Y S, Magnenat J L, Bronson R T, et al. Mice deficient in cellular glutathioneperoxidase develop normally and show no increased sensitivity to hyperoxia[J].Journal of Biological Chemistry,1997,272(26):16644-16651.
    [118] Cheng W H, Ho Y S, Valentine B A, et al. Cellular glutathione peroxidase is themediator of body selenium to protect against paraquat lethality in transgenicmice[J]. The Journal of nutrition,1998,128(7):1070-1076.
    [119] de Haan J B, Bladier C, Griffiths P, et al. Mice with a homozygous nullmutation for the most abundant glutathione peroxidase, Gpx1, show increasedsusceptibility to the oxidative stress-inducing agents paraquat and hydrogenperoxide[J]. Journal of Biological Chemistry,1998,273(35):22528-22536.
    [120] Beck M A, Esworthy R S, Ho Y, et al. Glutathione peroxidase protects micefrom viral-induced myocarditis[J]. The FASEB journal,1998,12(12):1143-1149.
    [121] McClung J P, Roneker C A, Mu W, et al. Development of insulin resistance andobesity in mice overexpressing cellular glutathione peroxidase[J]. Proceedingsof the National Academy of Sciences of the United States of America,2004,101(24):8852-8857.
    [122] Wingler K, Brigelius-Flohé R. Gastrointestinal glutathione peroxidase[J].Biofactors,1999,10(2):245-249.
    [123] Chu F F, Esworthy R S, Ho Y S, et al. Expression and chromosomal mapping ofmouse Gpx2gene encoding the gastrointestinal form of glutathione peroxidase,GPx-GI[J]. Biomedical and environmental sciences: BES,1997,10(2-3):156.-162
    [124] Wingler K, Brigelius-Flohé R. Gastrointestinal glutathione peroxidase[J].Biofactors,1999,10(2):245-249.
    [125] Chu F F, Doroshow J H, Esworthy R S. Expression, characterization, and tissuedistribution of a new cellular selenium-dependent glutathione peroxidase,GSHPx-GI[J]. Journal of Biological Chemistry,1993,268(4):2571-2576.
    [126] Esworthy R S, Swiderek K M, Ho Y S, et al. Selenium-dependent glutathioneperoxidase-GI is a major glutathione peroxidase activity in the mucosalepithelium of rodent intestine[J]. Biochimica et Biophysica Acta (BBA)-GeneralSubjects,1998,1381(2):213-226.
    [127] Chu F F, Esworthy R S, Chu P G, et al. Bacteria-induced intestinal cancer inmice with disrupted Gpx1and Gpx2genes[J]. Cancer research,2004,64(3):962-968.
    [128] Esworthy R S, Yang L, Frankel P H, et al. Epithelium-specific glutathioneperoxidase, Gpx2, is involved in the prevention of intestinal inflammation inselenium-deficient mice[J]. The Journal of nutrition,2005,135(4):740-745.
    [129] Banning A, Kipp A, Schmitmeier S, et al. Glutathione Peroxidase2InhibitsCyclooxygenase-2–Mediated Migration and Invasion of HT-29AdenocarcinomaCells but Supports Their Growth as Tumors in Nude Mice[J]. Cancer Research,2008,68(23):9746-9753.
    [130] Bhabak K P, Mugesh G. A Simple and Efficient Strategy To Enhance theAntioxidant Activities of Amino‐Substituted Glutathione PeroxidaseMimics[J]. Chemistry-a European Journal,2008,14(28):8640-8651.
    [131] Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcriptionfactors[J]. Biological chemistry,2006,387(10/11):1329-1335.
    [132] Sachdev S W, Sunde R A. Selenium regulation of transcript abundance andtranslational efficiency of glutathione peroxidase-1and-4in rat liver[J].Biochemical Journal,2001,357(Pt3):851.
    [133] MüLLER C, Wingler K, Brigelius-Flohé R.3’UTRs of glutathione peroxidasesdifferentially affect selenium-dependent mRNA stability and selenocysteineincorporation efficiency[J]. Biological chemistry,2003,384(1):11-18.
    [134] Wingler K, B cher M, Flohé L, et al. mRNA stability and selenocysteineinsertion sequence efficiency rank gastrointestinal glutathione peroxidase highin the hierarchy of selenoproteins[J]. European Journal of Biochemistry,1999,259(1‐2):149-157.
    [135] Yoshimura S, Watanabe K, Suemizu H, et al. Tissue specific expression of theplasma glutathione peroxidase gene in rat kidney[J]. Journal of biochemistry,1991,109(6):918-923.
    [136] Ottaviano F G, Tang S S, Handy D E, et al. Regulation of the extracellularantioxidant selenoprotein plasma glutathione peroxidase (GPx-3) in mammaliancells[J]. Molecular and cellular biochemistry,2009,327(1-2):111-126.
    [137] Bj rnstedt M, Xue J, Huang W, et al. The thioredoxin and glutaredoxin systemsare efficient electron donors to human plasma glutathione peroxidase[J]. Journalof Biological Chemistry,1994,269(47):29382-29384.
    [138] Freedman J E, Frei B, Welch G N, et al. Glutathione peroxidase potentiates theinhibition of platelet function by S-nitrosothiols[J]. Journal of ClinicalInvestigation,1995,96(1):394.
    [139] Roveri A, Maiorino M, Nisii C, et al. Purification and characterization ofphospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrialmembranes[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure andMolecular Enzymology,1994,1208(2):211-221.
    [140] Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxideglutathione peroxidase (PHGPx, GPx4) in mammalian cells[J]. Free RadicalBiology and Medicine,2003,34(2):145-169.
    [141] Maiorino M, Thomas J P, Girotti A W, et al. Reactivity of phospholipidhydroperoxide glutathione peroxidase with membrane and lipoprotein lipidhydroperoxides[J]. Free Radical Research,1991,12(1):131-135.
    [142] Bao Y, Jemth P, Mannervik B, et al. Reduction of thymine hydroperoxide byphospholipid hydroperoxide glutathione peroxidase and glutathionetransferases[J]. FEBS letters,1997,410(2):210-212.
    [143] Seiler A, Schneider M, F rster H, et al. Glutathione peroxidase4senses andtranslates oxidative stress into12/15-lipoxygenase dependent-and AIF-mediatedcell death[J]. Cell metabolism,2008,8(3):237-248.
    [144] Yant L J, Ran Q, Rao L, et al. The selenoprotein GPx4is essential for mousedevelopment and protects from radiation and oxidative damage insults[J]. FreeRadical Biology and Medicine,2003,34(4):496-502.
    [145] Ursini F, Heim S, Kiess M, et al. Dual function of the selenoprotein PHGPxduring sperm maturation[J]. Science,1999,285(5432):1393-1396.
    [146] Roveri A, Ursini F, Flohé L, et al. PHGPx and spermatogenesis[J]. Biofactors,2001,14(1):213-222.
    [147] Mauri P, Benazzi L, Flohé L, et al. Versatility of selenium catalysis in PHGPxunraveled by LC/ESI-MS/MS[J]. Biological chemistry,2003,384(4):575-588.
    [148] Liang H, Remmen H V, Frohlich V, et al. Gpx4protects mitochondrial ATPgeneration against oxidative damage[J]. Biochemical and biophysical researchcommunications,2007,356(4):893-898.
    [149] Ran Q, Liang H, Gu M, et al. Transgenic mice overexpressing glutathioneperoxidase4are protected against oxidative stress-induced apoptosis[J]. Journalof Biological Chemistry,2004,279(53):55137-55146.
    [150] Seiler A, Schneider M, F rster H, et al. Glutathione peroxidase4senses andtranslates oxidative stress into12/15-lipoxygenase dependent-and AIF-mediatedcell death[J]. Cell metabolism,2008,8(3):237-248.
    [151] Ghyselinck N B, Jimenez C, Courty Y, et al. Androgen-dependent messengerRNA (s) related to secretory proteins in the mouse epididymis[J]. Journal ofreproduction and fertility,1989,85(2):631-639.
    [152] Vernet P, Rock E, Mazur A, et al. Selenium‐independent epididymis‐restricted glutathione peroxidase5protein (GPx5) can back up failing Se‐dependent GPxs in mice subjected to selenium deficiency[J]. Molecularreproduction and development,1999,54(4):362-370.
    [153] Hall L, Williams K, Perry A C, et al. The majority of human glutathioneperoxidase type5(GPx5) transcripts are incorrectly spliced: implications for therole of GPx5in the male reproductive tract[J]. Biochemical Journal,1998,333(Pt1):5.
    [154] Kryukov G V, Castellano S, Novoselov S V, et al. Characterization ofmammalian selenoproteomes[J]. Science,2003,300(5624):1439-1443.
    [155] Utomo A, Jiang X, Furuta S, et al. Identification of a novel putativenon-selenocysteine containing phospholipid hydroperoxide glutathioneperoxidase (NPGPx) essential for alleviating oxidative stress generated frompolyunsaturated fatty acids in breast cancer cells[J]. Journal of BiologicalChemistry,2004,279(42):43522-43529.
    [156] Maiorino M, Aumann K D, Brigelius-Flohé R, et al. Probing the presumedcatalytic triad of selenium-containing peroxidases by mutational analysis ofphospholipid hydroperoxide glutathione peroxidase (PHGPx)[J]. Biologicalchemistry Hoppe-Seyler,1995,376(11):651-660.
    [157] Scheerer P, Borchert A, Krauss N, et al. Structural Basis for Catalytic Activityand Enzyme Polymerization of Phospholipid Hydroperoxide GlutathionePeroxidase-4(GPx4),§[J]. Biochemistry,2007,46(31):9041-9049.
    [158] Tosatto S C E, Bosello V, Fogolari F, et al. The catalytic site of glutathioneperoxidases[J]. Antioxidants&redox signaling,2008,10(9):1515-1526.
    [159] Koh C S, Didierjean C, Navrot N, et al. Crystal structures of a poplarthioredoxin peroxidase that exhibits the structure of glutathione peroxidases:insights into redox-driven conformational changes[J]. Journal of molecularbiology,2007,370(3):512-529.
    [160] Navrot N, Collin V, Gualberto J, et al. Plant glutathione peroxidases arefunctional peroxiredoxins distributed in several subcellular compartments andregulated during biotic and abiotic stresses[J]. Plant Physiology,2006,142(4):1364-1379.
    [161] Maiorino M, Ursini F, Bosello V, et al. The Thioredoxin Specificity ofDrosophil GPx: A Paradigm for a Peroxiredoxin-like Mechanism of manyGlutathione Peroxidases[J]. Journal of molecular biology,2007,365(4):1033-1046.
    [162] Toppo S, Vanin S, Bosello V, et al. Evolutionary and structural insights into themultifaceted glutathione peroxidase (Gpx) superfamily[J]. Antioxidants&redoxsignaling,2008,10(9):1501-1514.
    [163] Flohé L, Loschen G, Günzler W A, Eichele E. Glutathione peroxidase, thekinetic mechanism[J]. Hoppe-Seyler's Z Physiol Chem,1972,353:987-999.
    [164] Ursini F, Maiorini M, Gregolin C. Purification from pig liver of a protein whichprotects liposomes and biomembranes from peroxidative degradation andexhibits glutathione peroxidase activity on phosphatidylcholinehydroperoxides[J]. Biochem Biophys Acta,1982,710:197-211.
    [165] Ganther H E, Kraus R J. Oxidation states of glutathione peroxidase[J]. MethodsEnzymol,1984,107:192-193.
    [166] Prabhakar R, Vreven T, Morokuma K, et al. Elucidation of the mechanism ofselenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxidereduction by two glutathione molecules: a density functional study[J].Biochemistry,2005,44(35):11864-11871.
    [167] Dalziel K. The interpretation of kinetic data for enzyme-catalysed reactionsinvolving three substrates[J]. Biochemical Journal,1969,114(3):547-556.
    [168]Dalziel K. Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms[J]. Acta chem. scand,1957,11(10):1706-1723.
    [169] Segel I H. Enzyme Kinetics[M]//John Wiley and Sons, New York,1975:227.
    [170] Carsol M A, Pouliquen‐Sonaglia I, Lesgards G, et al. A New Kinetic Model forthe Mode of Action of Soluble and Membrane‐Immobilized GlutathionePeroxidase from Bovine Erythrocytes—Effects of Selenium[J]. EuropeanJournal of Biochemistry,1997,247(1):248-255.
    [171] Cleland W W. The kinetics of enzyme-catalyzed reactions with two or moresubstrates or products (nomenclature and rate equation)[J]. Biochimica etBiophysica Acta (BBA)-Specialized Section on Enzymological Subjects,1963,67:104-137.
    [172] Cleland W W. The kinetics of enzyme-catalyzed reactions with two or moresubstrates or products (Inhibition: nomenclature and theory)[J]. Biochimica etBiophysica Acta (BBA)-Specialized Section on Enzymological Subjects,1963,67:173-187.
    [173] Cleland W W. The kinetics of enzyme-catalyzed reactions with two or moresubstrates or products (Prediction of initial velocity and inhibition patterns byinspection)[J]. Biochimica et Biophysica Acta (BBA)-Specialized Section onEnzymological Subjects,1963,67:188-196.
    [174] Wu, Z P, Hilvert D. Conversion of a protease into an acyl transferase:selenosubtilisin[J]. Journal of the American Chemical Society,1989,111:4513-4514.
    [175] Luo G M, Zhu Z Q, Ding L, et al. Generation of selenium-containing abzymeby using chemical mutation[J]. Biochemical and Biophysical ResearchCommunications,1984,198:1240-1247.
    [176] Yin L, Song J, Board P G, et al. Characterization of selenium‐containingglutathione transferase zeta1–1with high GPx activity prepared in eukaryoticcells[J]. Journal of Molecular Recognition,2013,26(1):38-45.
    [177] Liu H, Yin L, Board P G, et al. Expression of selenocysteine-containingglutathione S-transferase in eukaryote[J]. Protein Expression and Purification,2012,84(1):59-63.
    [178] Arner E S, Sarioglu H, Lottspeich F, et al. High-level expression in Escherichiacoli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusionswith engineered bacterial-type SECIS elements and co-expression with the selA,selB and selC genes[J]. Journal of molecular biology,1999,292(5):1003.
    [179] Hazebrouck S, Camoin L, Faltin Z, et al. Substituting selenocysteine forcatalytic cysteine41enhances enzymatic activity of plant phospholipidhydroperoxide glutathione peroxidase expressed in Escherichia coli[J]. Journalof Biological Chemistry,2000,275(37):28715-28721.
    [180] Mueller S, Senn H, Gsell B, et al. The formation of diselenide bridges inproteins by incorporation of selenocysteine residues: biosynthesis andcharacterization of (Se)2-thioredoxin[J]. Biochemistry,1994,33(11):3404-3412.
    [181] Li J, Liu X M, Ji Y T, et al. Biosynthesis of selenosubtilisin: A novel way totarget selenium into the active site of subtilisin[J]. Chinese Science Bulletin,2008,53(16):2454-2461.
    [182] Yu Y, Song J, Song Y, et al. Characterization of catalytic activity and structureof selenocysteine-containing hGSTZ1c‐1c based on site-directed mutagenesisand computational analysis[J]. IUBMB life,2013,65(2):163-170.
    [183] Zheng K Y, Board P G, Fei X, et al. A novel selenium-containing glutathionetransferase zeta1-1, the activity of which surpasses the level of some nativeglutathione peroxidases[J]. The International Journal of Biochemistry&Cell
    Biology,2008,40(10):2090-2097.
    [1] Johansson L, Gafvelin G, Arnér E S J. Selenocysteine in proteins—properties andbiotechnological use[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2005,1726(1):1-13.
    [2] Zheng K Y, Board P G, Fei X, et al. A novel selenium-containing glutathionetransferase zeta1-1, the activity of which surpasses the level of some nativeglutathione peroxidases[J]. The International Journal of Biochemistry&CellBiology,2008,40(10):2090-2097.
    [3] Wilson S R, Zucker P A, Huang R R C, et al. Development of syntheticcompounds with glutathione peroxidase activity[J]. Journal of the AmericanChemical Society,1989,111(15):5936-5939.
    [4] Tong Z, Board P G, Anders MW. Glutathione transferase zeta catalyses theoxygenation of the carcinogen dichloroacetic acid to glyoxylic acid[J].Biochemical Journal,1998,331:371-374.
    [5] Mannervik B. Glutathione peroxidase[J]. Methods Enzymol,1985,113:490-495.
    [6] Mugesh G, Singh H B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity[J]. Chemical Society Reviews,2000,29(5):347-357.
    [7] Yin L, Song J, Board P G, et al. Characterization of selenium-containingglutathione transferase zeta1–1with high GPx activity prepared in eukaryoticcells[J]. Journal of Molecular Recognition,2013,26(1):38-45.
    [1] Maiorino M, Mauri P L, Roveri A, et al. Primary structure of the nuclear formsof phospholipid hydroperoxide glutathione peroxidase (PHGPx) in ratspermatozoa[J]. FEBS letters,2005,579(3):667-670.
    [2] Pfeifer H, Conrad M, Roethlein D, et al. Identification of a specific sperm nucleiselenoenzyme necessary for protamine thiol cross-linking during spermmaturation[J]. The FASEB Journal,2001,15(7):1236-1238.
    [3] Toppo S, Vanin S, Bosello V, et al. Evolutionary and structural insights into themultifaceted glutathione peroxidase (Gpx) superfamily[J]. Antioxidants&redoxsignaling,2008,10(9):1501-1514.
    [4] Conrad M, Schneider M, Seiler A, et al. Physiological role of phospholipidhydroperoxide glutathione peroxidase in mammals[J]. Biological chemistry,2007,388(10):1019-1025.
    [5] Scheerer P, Borchert A, Krauss N, et al. Structural Basis for Catalytic Activityand Enzyme Polymerization of Phospholipid Hydroperoxide GlutathionePeroxidase-4(GPx4),§[J]. Biochemistry,2007,46(31):9041-9049.
    [6] Toppo S, Flohé L, Ursini F, et al. Catalytic mechanisms and specificities ofglutathione peroxidases: variations of a basic scheme[J]. Biochimica etBiophysica Acta (BBA)-General Subjects,2009,1790(11):1486-1500.
    [7] Knopp E A, Arndt T L, Eng K L, et al. Murine phospholipid hydroperoxideglutathione peroxidase: cDNA sequence, tissue expression, and mapping[J].Mammalian genome,1999,10(6):601-605.
    [8] Yant L J, Ran Q, Rao L, et al. The selenoprotein GPx4is essential for mousedevelopment and protects from radiation and oxidative damage insults[J]. FreeRadical Biology and Medicine,2003,34(4):496-502.
    [9] Imai H, Hirao F, Sakamoto T, et al. Early embryonic lethality caused by targeteddisruption of the mouse PHGPx gene[J]. Biochemical and biophysical researchcommunications,2003,305(2):278-286.
    [10] Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxideglutathione peroxidase (PHGPx, GPx4) in mammalian cells[J]. Free RadicalBiology and Medicine,2003,34(2):145-169.
    [11] Brigelius-Flohé R, Aumann K D, Bl cker H, et al. Phospholipid-hydroperoxideglutathione peroxidase. Genomic DNA, cDNA, and deduced amino acidsequence[J]. Journal of Biological Chemistry,1994,269(10):7342-7348.
    [12] Mauri P, Benazzi L, Flohé L, et al. Versatility of selenium catalysis in PHGPxunraveled by LC/ESI-MS/MS[J]. Biological chemistry,2003,384(4):575-588.
    [13] Pfeifer H, Conrad M, Roethlein D, et al. Identification of a specific sperm nucleiselenoenzyme necessary for protamine thiol cross-linking during spermmaturation[J]. The FASEB Journal,2001,15(7):1236-1238.
    [14] Maiorino M, Scapin M, Ursini F, et al. Distinct promoters determine alternativetranscription of gpx-4into phospholipid-hydroperoxide glutathione peroxidasevariants[J]. Journal of Biological Chemistry,2003,278(36):34286-34290.
    [15] Moreno S G, Laux G, Brielmeier M, et al. Testis-specific expression of thenuclear form of phospholipid hydroperoxide glutathione peroxidase (PHGPx)[J].Biological chemistry,2003,384(4):635-643.
    [16] Roveri A, Maiorino M, Nisii C, et al. Purification and characterization ofphospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrialmembranes[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure andMolecular Enzymology,1994,1208(2):211-221.
    [17] Maiorino F M, Brigelius-Flohe R, Aumann K D, et al.[5] Diversity ofglutathione peroxidases[J]. Methods in enzymology,1995,252:38-53.
    [18] Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipidhydroperoxide glutathione peroxidase[J]. Biochimica et Biophysica Acta(BBA)-General Subjects,1985,839(1):62-70.
    [19] Mugesh G, Singh H B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity[J]. Chemical Society Reviews,2000,29(5):347-357.
    [20] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normalphysiological functions and human disease[J]. International Journal ofBiochemistry and Cell Biology,2007,39(1):44-84.
    [21] Brigelius-Flohé R. Tissue-specific functions of individual glutathioneperoxidases[J]. Free Radical Biology and Medicine,1999,27(9):951-965.
    [22] Ursini F, Heim S, Kiess M, et al. Dual function of the selenoprotein PHGPxduring sperm maturation[J]. Science,1999,285(5432):1393-1396.
    [23] Maiorino M, Aumann K D, Brigelius-Flohé R, et al. Probing the presumedcatalytic triad of selenium-containing peroxidases by mutational analysis ofphospholipid hydroperoxide glutathione peroxidase (PHGPx)[J]. Biologicalchemistry Hoppe-Seyler,1995,376(11):651-660.
    [24] Bhabak K P, Mugesh G. A Simple and Efficient Strategy To Enhance theAntioxidant Activities of Amino‐Substituted Glutathione Peroxidase Mimics[J].Chemistry-a European Journal,2008,14(28):8640-8651.
    [25] Goto K, Saiki T, Akine S, et al. Synthesis and reactions of conformationalisomers of a stable selenenic acid bearing a bridged calix [6] arene framework[J].Heteroatom Chemistry,2001,12(4):195-197.
    [26] Epp O, Ladenstein R, Wendel A. The Refined Structure of the SelenoenzymeGlutathione Peroxidase at0.2‐nm Resolution[J]. European Journal ofBiochemistry,1983,133(1):51-69.
    [27] Ren B, Huang W, kesson B, et al. The crystal structure of seleno-glutathioneperoxidase from human plasma at2.9resolution[J]. Journal of molecularbiology,1997,268(5):869-885.
    [28] Bayse C A. Model mechanisms of sulfhydryl oxidation by methyl-andbenzeneseleninic acid, inhibitors of zinc-finger transcription factors[J]. Journalof inorganic biochemistry,2010,104(1):1-8.
    [1] Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, et al. Bacterial programmed celldeath and multicellular behavior in bacteria[J]. PLoS Genetics,2006,2(10):15181526.
    [2] Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal"addiction module" regulated by guanosine [corrected]3',5'-bispyrophosphate: amodel for programmed bacterial cell death[J]. Proceedings of the NationalAcademy of Sciences,1996,93(12):6059-6063.
    [3] Engelberg-Kulka H, Glaser G. Addiction modules and programmed cell death andantideath in bacterial cultures[J]. Annual Reviews in Microbiology,1999,53(1):43-70.
    [4] Kamada K, Hanaoka F, Burley S K. Crystal structure of the MazE/MazF complex:molecular bases of antidote-toxin recognition[J]. Molecular cell,2003,11(4):875.
    [5] Zhang Y, Zhang J, Hoeflich K P, et al. MazF Cleaves Cellular mRNAs Specificallyat ACA to Block Protein Synthesis in Escherichia coli[J]. Molecular cell,2003,12(4):913-923.
    [6] Suzuki M, Zhang J, Liu M, et al. Single protein production in living cellsfacilitated by an mRNA interferase[J]. Molecular cell,2005,18(2):253-261.
    [7] Suzuki M, Roy R, Zheng H, et al. Bacterial bioreactors for high yield productionof recombinant protein[J]. Journal of Biological Chemistry,2006,281(49):37559-37565.
    [8] Qing G, Ma L C, Khorchid A, et al. Cold-shock induced high-yield proteinproduction in Escherichia coli[J]. Nature biotechnology,2004,22(7):877-882.
    [9] Serber Z, Corsini L, Durst F, et al. In-cell NMR spectroscopy[J]. Methods inenzymology,2005,394:17-41.
    [10] Serber Z, Selenko P, H nsel R, et al. Investigating macromolecules insidecultured and injected cells by in-cell NMR spectroscopy[J]. Nature protocols,2007,1(6):2701-2709.
    [11] Maiorino M, Roche C, Kiess M, et al. A Selenium‐Containing Phospholipid‐Hydroperoxide Glutathione Peroxidase in Schistosoma mansoni[J]. EuropeanJournal of Biochemistry,1996,238(3):838-844.
    [12] Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipidhydroperoxide glutathione peroxidase[J]. Biochimica et Biophysica Acta(BBA)-General Subjects,1985,839(1):62-70.
    [13] Mugesh G, Singh H B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity[J]. Chemical Society Reviews,2000,29(5):347-357