新型纳米复合物的制备及在电化学分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料能够有效改善电化学分析的灵敏度、响应速度、检测限等性能。本文致力于制备新型石墨烯纳米复合物以及新型的纳米孔电极材料,利用现代分析手段对电极材料进行表征,优化其电化学性能,并将其应用于检测一些环境有害物质和生物分子,具体工作如下:
     1.构建了一种由半胱氨酸氧化物和纳米金组成的复合物纳米孔阵列电极(NA-COGH),讨论了纳米孔阵列电极结构与电化学性能的关系,并将电极应用于同时检测对苯二酚和邻苯二酚。
     2.利用电化学聚合方法制备磺基丙氨酸与石墨烯组成的复合物膜电极材料。探讨了甲硝唑在该电极材料上的电子转移动力学。将该复合膜电极材料应用于对水样、人尿样中的甲硝唑的检测
     3.以b-环糊精为还原剂和稳定剂,在微波辅助下一步法快速合成β-CD/GN/Ag纳米复合物。将该纳米复合物修饰的电极应用于计时电流法检测4-硝基苯酚,其结果具有较好的稳定性、较宽的线性范围和较低的检测限。
     4.在微波辅助条件下同时还原石墨烯氧化物和氯铂酸,制备了石墨烯-聚苯乙烯磺酸盐-铂纳米复合物,并将其应用于多巴胺的电化学检测研究中。
Electrochemical analysis has exhibited great potential in the field of analyticalchemistry, owing to its high sensitivity, fast response, low detection limit and cheapequipment. Recently, some novel nanomaterials, including metal nanoparticles,carbon nanomaterial, and micro-nano conducting polymers, have been applied in thefield of electrochemical analysis. In this thesis, several new kinds of nanocompositewere developed. The electrochemical properties of the nanocomposites wereevaluated. Furthemore, the nanocomposite modified electrodes were applied to thedetermination of some pollutants and biomolecules. This work probably opens a newroute to the development of new nanocomposite, and improves the sensitivity,detection limit of the fabricated sensors.
     1. The nanopore array derived from L-cysteine oxide/gold hybrids (NA-COGH)was applied to the simultaneous determination of hydroquinone (HQ) and catechol(CT). NA-COGH was prepared by a sequential electrodeposition of L-cysteine oxideand gold into the voids of polystyrene spheres template, followed by removing thetemplate using tetrahydrofuran. A fast charge transfer rate was obtained by optimizingthe electrodeposition conditions. More interestingly, the as-prepared NA-COGH presents high electrocatalytic activity for the oxidation of HQ and CT. The sensingplatform based on NA-COGH was applied to the simultaneous determination of HQand CT.
     3. A novel composite film derived from cysteic acid andpoly(diallydimethylammonium chloride)-functionalized graphene (PDDA-GN) wasused as an enhanced electrode material for ultrasensitive determination ofmetronidazole. The cysteic acid/PDDA-GN composite film was prepared by theelectrochemical grafting of cysteic acid onto the PDDA-GN coated glassy carbonelectrode (GCE). The cyclic voltammetry investigations reveal that the peak currentof metronidazole reduction obtained with the cysteic acid/PDDA-GN/GCE was moreremarkably enhanced compared with those obtained with the bare GCE, the cysteicacid/GCE and the PDDA-GN/GCE. The heterogeneous electron transfer rate constantand the diffusion coefficient of metronidazole were further evaluated by rotating diskelectrode experiments. Moreover, we applied the present method to the determinationof metronidazole in urine and lake water with satisfactory results.
     3. b-cyclodextrin functionalized graphene/Ag nanocomposite (b-CD/GN/Ag) wasprepared via a microwave-assisted one-step reduction of the mixture of grapheneoxide and AgNO3. b-cyclodextrin was used both as the reductant and stabilizer. Theas-prepared b-CD/GN/Ag nanocomposite exhibits higher electrocatalytic activity inthe reduction of4-nitrophenol compared with b-CD/GN, b-CD/Ag, and bare electrode.The sensing platform based on b-CD/GN/Ag shows a wide linear response and a lowdetection limit for the determination of4-nitrophenol. Furthermore, the sensingplatform has been applied to the determination of4-nitrophenol in lake water, humanurine and serum with good selectivity and high sensitivity.
     4. Graphene-poly(styrene sulfonate)-Pt nanocomposite (GN-PSS-Pt) was used asan enhanced material for sensitive determination of dopamine by electrochemicalmethod. GN-PSS-Pt was prepared via a facile one-pot reduction of graphene oxideand H2PtCl6under microwave irradiation. The product was well characterized bytransmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, respectively. The GN-PSS-Pt modified electrode exhibits excellentelectrocatalytic activity towards the redox reaction of dopamine. The calibration curvewas obtained over a linear range of2.0×10-7~4.0×10-3mol/L, with a detection limitof4.0×10-8mol/L (S/N=3). Moreover, the modified electrode has been applied to thedetermination of dopamine in human urine and serum samples with good selectivityand high sensitivity.
引文
[1] Doyle R. Rewriting history-how statistical revisions color our view of the past[J]. Sci Am,2001,284:26-26.
    [2] Banholzer MJ, Qin LD, Millstone JE, et al. On-wire lithography: Synthesis,encoding and biological applications [J]. Nat Protoc,2009,4:838-848.
    [3] Chen M, Goodman DW. Catalytically active gold: From nanoparticles to ultrathinfilms [J]. Acc Chem Res,2006,39:739-746.
    [4] Corma A, Serna P. Chemoselective hydrogenation of nitro compounds withsupported gold catalysts [J]. Science,2006,313:332-334.
    [5] El-Sayed MA. Small is different: Shape-, size-, and composition-dependentproperties of some colloidal semiconductor nanocrystals [J]. Acc Chem Res,2004,37:326-333.
    [6] Sperling RA, Rivera GP, Zhang F, et al. Biological applications of goldnanoparticles [J]. Chem Soc Rev,2008,37:1896-1908.
    [7] Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of goldnanoparticles [J]. Science,1997,277:1078-1080.
    [8] Bardhan R, Lal S, Joshi A, et al. Theranostic nanoshells: From probe design toimaging and treatment of cancer [J]. Acc Chem Res,2011,44:936-946.
    [9] Turkevich J, Stevenson PC, Hillier J. The nucleation and growth processes in thesynthesis of colloidal gold [J]. Discuss Faraday Soc,1951,No.11:55-75.
    [10]Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold suspensions [J]. Nature, Phys Sci,1973,241:20-22.
    [11]Giersig M, Mulvaney P. Preparation of ordered colloid monolayers byelectrophoretic deposition [J]. Langmuir,1993,9:3408-3413.
    [12]Gentilini C, Evangelista F, Rudolf P, et al. Water-soluble gold nanoparticlesprotected by fluorinated amphiphilic thiolates [J]. J Am Chem Soc,2008,130:15678-15682.
    [13]Parab H, Jung C, Woo M-A, et al. An anisotropic snowflake-like structuralassembly of polymer-capped gold nanoparticles [J]. J Nanopart Res,2011,13:2173-2180.
    [14]Garcia ME, Baker LA, Crooks RM. Preparation and characterization ofdendrimer-gold colloid nanocomposites [J]. Anal Chem,1999,71:256-258.
    [15]Edgar JA, McDonagh AM, Cortie MB. Formation of gold nanorods by astochastic "popcorn" mechanism [J]. ACS Nano,2012,6:1116-1125.
    [16]Chiang C-L. Controlled growth of gold nanoparticles in aerosol-ot/sorbitanmonooleate/isooctane mixed reverse micelles [J]. J Colloid Interface Sci,2000,230:60-66.
    [17]Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach forshape-controlled synthesis of spheroidal and rod-like gold nanoparticles using asurfactant template [J]. Adv Mater,2001,13:1389-1393.
    [18]Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of goldnanorods (nrs) using seed-mediated growth method [J]. Chem Mater,2003,15:1957-1962.
    [19]Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, et al. Gold nanorods:Synthesis, characterization and applications [J]. Coord Chem Rev,2005,249:1870-1901.
    [20]Murphy CJ, Thompson LB, Chernak DJ, et al. Gold nanorod crystal growth:From seed-mediated synthesis to nanoscale sculpting [J]. Curr Opin Colloid InterfaceSci,2011,16:128-134.
    [21]Niu W, Zheng S, Wang D, et al. Selective synthesis of single-crystalline rhombicdodecahedral, octahedral, and cubic gold nanocrystals [J]. J Am Chem Soc,2008,131:697-703.
    [22]Kim D-Y, Yu T-K, Cho E-C, et al. Synthesis of gold nano-hexapods withcontrollable arm lengths and their tunable optical properties [J]. Angew Chem, Int Ed,2011,50:6328-6331.
    [23]Wu H-L, Tsai H-R, Hung Y-T, et al. A comparative study of gold nanocubes,octahedra, and rhombic dodecahedra as highly sensitive sers substrates [J]. InorgChem,2011,50:8106-8111.
    [24]Bakshi MS, Possmayer F, Petersen NO. Aqueous-phase room-temperaturesynthesis of gold nanoribbons: Soft template effect of a gemini surfactant [J]. J PhysChem C,2008,112:8259-8265.
    [25]Zhang Y, Xu F, Sun Y, et al. Seed-mediated synthesis of au nanocages and theirelectrocatalytic activity towards glucose oxidation [J]. Chem--Eur J,2010,16:9248-9256.
    [26]Kou X, Sun Z, Yang Z, et al. Curvature-directed assembly of gold nanocubes,nanobranches, and nanospheres [J]. Langmuir,2009,25:1692-1698.
    [27]Liz-Marzan LM, Giersig M, Mulvaney P. Synthesis of nanosized gold-silicacore-shell particles [J]. Langmuir,1996,12:4329-4335.
    [28]Evanoff DD, Jr., Chumanov G. Synthesis and optical properties of silvernanoparticles and arrays [J]. ChemPhysChem,2005,6:1221-1231.
    [29]Bratlie KM, Lee H, Komvopoulos K, et al. Platinum nanoparticle shape effectson benzene hydrogenation selectivity [J]. Nano Lett,2007,7:3097-3101.
    [30]Lee H, Habas SE, Kweskin S, et al. Morphological control of catalytically activeplatinum nanocrystals [J]. Angew Chem-Int Edit,2006,45:7824-7828.
    [31]Caruso F. Nanoengineering of particle surfaces [J]. Adv Mater (Weinheim, Ger),2001,13:11-22.
    [32]Geim AK, Novoselov KS. The rise of graphene [J]. Nat Mater,2007,6:183-191.
    [33]Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications [J]. MaterToday,2012,15:86-97.
    [34]Li XS, Magnuson CW, Venugopal A, et al. Large-area graphene single crystalsgrown by low-pressure chemical vapor deposition of methane on copper [J]. J AmChem Soc,2011,133:2816-2819.
    [35]Li XS, Cai WW, An JH, et al. Large-area synthesis of high-quality and uniformgraphene films on copper foils [J]. Science,2009,324:1312-1314.
    [36]Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization ofgraphene oxide paper [J]. Nature,2007,448:457-460.
    [37]Hummers W, Offeman R.[J]. J Am Chem Soc1958,80:1339-1339.
    [38]Duca M, Figueiredo MC, Climent V, et al. Selective catalytic reduction atquasi-perfect pt(100) domains: A universal low-temperature pathway from nitrite ton2[J]. J Am Chem Soc,2011,133:10928-10939.
    [39]Tung VC, Allen MJ, Yang Y, et al. High-throughput solution processing oflarge-scale graphene [J]. Nat Nanotechnol,2009,4:25-29.
    [40]Stankovich S, Piner RD, Chen XQ, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16:155-158.
    [41]Zhang J, Yang H, Shen G, et al. Reduction of graphene oxide via l-ascorbic acid[J]. Chem Commun (Camb),2010,46:1112-1114.
    [42]Zhu CZ, Guo SJ, Fang YX, et al. Reducing sugar: New functional molecules forthe green synthesis of graphene nanosheets [J]. Acs Nano,2010,4:2429-2437.
    [43]Zhu YW, Stoller MD, Cai WW, et al. Exfoliation of graphite oxide in propylenecarbonate and thermal reduction of the resulting graphene oxide platelets [J]. ACSNano,2010,4:1227-1233.
    [44]Acik M, Lee G, Mattevi C, et al. The role of oxygen during thermal reduction ofgraphene oxide studied by infrared absorption spectroscopy [J]. J Phys Chem C,2011,115:19761-19781.
    [45]Guo Y, Guo S, Ren J, et al. Cyclodextrin functionalized graphene nanosheetswith high supramolecular recognition capability: Synthesis and host guest inclusionfor enhanced electrochemical performance [J]. ACS Nano,2010,4:4001-4010.
    [46]Guo YJ, Guo SJ, Li J, et al. Cyclodextrin-graphene hybrid nanosheets asenhanced sensing platform for ultrasensitive determination of carbendazim [J].Talanta,2011,84:60-64.
    [47]Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites [J]. J Phys ChemC,2008,112:19841-19845.
    [48]Venkateswara RC, Cabrera CR, Ishikawa Y. Graphene-supported pt-au alloynanoparticles: A highly efficient anode for direct formic acid fuel cells [J]. J PhysChem C,2011,115:21963-21970.
    [49]Qin XY, Luo YL, Lu WB, et al. One-step synthesis of ag nanoparticles-decoratedreduced graphene oxide and their application for h2o2detection [J]. Electrochim Acta,2012,79:46-51.
    [50]Zhu CZ, Guo SJ, Fang YX, et al. One-step electrochemical approach to thesynthesis of graphene/mno(2) nanowall hybrids [J]. Nano Research,2011,4:648-657.
    [51]Guo SJ, Dong SJ, Wang EW. Three-dimensional pt-on-pd bimetallicnanodendrites supported on graphene nanosheet: Facile synthesis and used as anadvanced nanoelectrocatalyst for methanol oxidation [J]. Acs Nano,2010,4:547-555.
    [52]Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metaloxide graphene nanocomposites for electrochemical energy storage [J]. ACS Nano,2010,4:1587-1595.
    [53]Maduraiveeran G, Ramaraj R. A facile electrochemical sensor designed fromgold nanoparticles embedded in three-dimensional sol-gel network for concurrentdetection of toxic chemicals [J]. Electrochem Commun,2007,9:2051-2055.
    [54]Labande A, Astruc D. Colloids as redox sensors: Recognition of h2po4-andhso4-by amidoferrocenylalkylthiol-gold nanoparticles [J]. Chem Commun(Cambridge),2000:1007-1008.
    [55]Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassaybased on a colloidal gold label [J]. Anal Chem,2000,72:5521-5528.
    [56]Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitativeelectrochemical detection of amplified human cytomegalovirus DNA using disposablemicroband electrodes [J]. Anal Chem,2001,73:4450-4456.
    [57]Zhou Y-G, Yang S, Qian Q-Y, et al. Gold nanoparticles integrated in a nanotubearray for electrochemical detection of glucose [J]. Electrochem Commun,2009,11:216-219.
    [58]Li S-J, Li J, Wang K, et al. A nanochannel array-based electrochemical device forquantitative label-free DNA analysis [J]. ACS Nano,2010,4:6417-6424.
    [59]Song Y-Y, Gao Z-D, Wang J-H, et al. Multistage coloring electrochromic devicebased on tio2nanotube arrays modified with wo3nanoparticles [J]. Adv Funct Mater,2011,21:1941-1946.
    [60]Yuan YF, Xia XH, Wu JB, et al. Hierarchically ordered porous nickel oxide arrayfilm with enhanced electrochemical properties for lithium ion batteries [J].Electrochem Commun,2010,12:890-893.
    [61]Xu J, Luan C-Y, Tang Y-B, et al. Low-temperature synthesis of cuinse2nanotubearray on conducting glass substrates for solar cell application [J]. ACS Nano,2010,4:6064-6070.
    [62]Zou CW, Rao YF, Alyamani A, et al. Heterogeneous lollipop-like v2o5/zno array:A promising composite nanostructure for visible light photocatalysis [J]. Langmuir,2010,26:11615-11620.
    [63]Zhuo L, Huang Y, Cheng MS, et al. Nanoarray membrane sensor based on amultilayer design for sensing of water pollutants [J]. Anal Chem,2010,82:4329-4332.
    [64]Chao C-C, Wang T-C, Ho R-M, et al. Robust block copolymer mask fornanopatterning polymer films [J]. ACS Nano,2010,4:2088-2094.
    [65]Gao X, Rodriguez BJ, Liu L, et al. Microstructure and properties of well-orderedmultiferroic pb(zr,ti)o3/cofe2o4nanocomposites [J]. ACS Nano,2010,4:1099-1107.
    [66]Shang NG, Papakonstantinou P, McMullan M, et al. Catalyst-free efficientgrowth, orientation and biosensing properties of multilayer graphene nanoflake filmswith sharp edge planes [J]. Adv Funct Mater,2008,18:3506-3514.
    [67]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase andbiosensing for glucose based on graphene [J]. Anal Chem (Washington, DC, U S),2009,81:2378-2382.
    [68]Guo SJ, Wen D, Zhai YM, et al. Ionic liquid-graphene hybrid nanosheets as anenhanced material for electrochemical determination of trinitrotoluene [J]. BiosensBioelectron,2011,26:3475-3481.
    [69]Fang YX, Guo SJ, Zhu CZ, et al. Self-assembly of cationicpolyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: Atwo-dimensional heterostructure for hydrogen peroxide sensing [J]. Langmuir,2010,26:11277-11282.
    [70]Sun CL, Lee HH, Yang JM, et al. The simultaneous electrochemical detection ofascorbic acid, dopamine, and uric acid using graphene/size-selected ptnanocomposites [J]. Biosens Bioelectron,2011,26:3450-3455.
    [71]Dey RS, Raj CR. Development of an amperometric cholesterol biosensor basedon graphene-pt nanoparticle hybrid material [J]. J Phys Chem C,2010,114:21427-21433.
    [72]Qin XY, Lu WB, Luo YL, et al. Preparation of ag nanoparticle-decoratedpolypyrrole colloids and their application for h2o2detection [J]. ElectrochemCommun,2011,13:785-787.
    [73]Lu DB, Zhang Y, Wang LT, et al. Sensitive detection of acetaminophen based onfe3o4nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalizedgraphene nanocomposite film [J]. Talanta,2012,88:181-186.
    [74]Ye YP, Kong T, Yu XF, et al. Enhanced nonenzymatic hydrogen peroxidesensing with reduced graphene oxide/ferroferric oxide nanocomposites [J]. Talanta,2012,89:417-421.
    [75]Gong JM, Miao XJ, Wan HF, et al. Facile synthesis of zirconiananoparticles-decorated graphene hybrid nanosheets for an enzymeless methylparathion sensor [J]. Sensors and Actuators B-Chemical,2012,162:341-347.
    [76]Hu JG, Li FH, Wang KK, et al. One-step synthesis of graphene-aunps by hmtaand the electrocatalytical application for o-2and h2o2[J]. Talanta,2012,93:345-349.
    [77]Han J, Zhuo Y, Chai YQ, et al. Highly conducting gold nanoparticles-graphenenanohybrid films for ultrasensitive detection of carcinoembryonic antigen [J]. Talanta,2011,85:130-135.
    [78]Guo K, Qian K, Zhang S, et al. Bio-electrocatalysis of nadh and ethanol based ongraphene sheets modified electrodes [J]. Talanta,2011,85:1174-1179.
    [79]Kang XH, Wang J, Wu H, et al. A graphene-based electrochemical sensor forsensitive detection of paracetamol [J]. Talanta,2010,81:754-759.
    [80]Li FH, Chai J, Yang HF, et al. Synthesis of Pt/ionic liquid/graphenenanocomposite and its simultaneous determination of ascorbic acid and dopamine [J].Talanta,2010,81:1063-1068.
    [81]Li JA, Chen JH, Zhang XL, et al. A novel sensitive detection platform forantitumor herbal drug aloe-emodin based on the graphene modified electrode [J].Talanta,2010,83:553-558.
    [82]Li LM, Du ZF, Liu SA, et al. A novel nonenzymatic hydrogen peroxide sensorbased on MnO2/graphene oxide nanocomposite [J]. Talanta,2010,82:1637-1641.
    [83]Hu S, Wang YH, Wang XZ, et al. Electrochemical detection of hydroquinonewith a gold nanoparticle and graphene modified carbon ionic liquid electrode [J].Sensors and Actuators B-Chemical,2012,168:27-33.
    [84]Li F, Li JJ, Feng Y, et al. Electrochemical behavior of graphene doped carbonpaste electrode and its application for sensitive determination of ascorbic acid [J].Sensors and Actuators B-Chemical,2011,157:110-114.
    [85]Liu ZM, Wang ZL, Cao YY, et al. High sensitive simultaneous determination ofhydroquinone and catechol based on graphene/bmimpf6nanocomposite modifiedelectrode [J]. Sensors and Actuators B-Chemical,2011,157:540-546.
    [86]Ion I, Ion AC. Differential pulse voltammetric analysis of lead in vegetablesusing a surface amino-functionalized exfoliated graphite nanoplatelet chemicallymodified electrode [J]. Sensors and Actuators B-Chemical,2012,166:842-847.
    [87]Lu Q, Dong XC, Li LJ, et al. Direct electrochemistry-based hydrogen peroxidebiosensor formed from single-layer graphene nanoplatelet-enzyme composite film [J].Talanta,2010,82:1344-1348.
    [88]Wu H, Wang J, Kang XH, et al. Glucose biosensor based on immobilization ofglucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film [J].Talanta,2009,80:403-406.
    [89]Yin HS, Zhou YL, Ma QA, et al. Electrocatalytic oxidation behavior ofguanosine at graphene, chitosan and fe3o4nanoparticles modified glassy carbonelectrode and its determination [J]. Talanta,2010,82:1193-1199.
    [90]Jiang YY, Zhang QX, Li FH, et al. Glucose oxidase and graphenebionanocomposite bridged by ionic liquid unit for glucose biosensing application [J].Sensors and Actuators B-Chemical,2012,161:728-733.
    [91]Xu HF, Dai H, Chen GN. Direct electrochemistry and electrocatalysis ofhemoglobin protein entrapped in graphene and chitosan composite film [J]. Talanta,2010,81:334-338.
    [92]Guo CC, Sun H, Zhao XS. Myoglobin within graphene oxide sheets and nafioncomposite films as highly sensitive biosensor [J]. Sensors and Actuators B-Chemical,2012,164:82-89.
    [93]Fan Y, Liu JH, Yang CP, et al. Graphene-polyaniline composite film modifiedelectrode for voltammetric determination of4-aminophenol [J]. Sensors and ActuatorsB-Chemical,2011,157:669-674.
    [94]Karuwan C, Sriprachuabwong C, Wisitsoraat A, et al. Inkjet-printedgraphene-poly(3,4-ethylenedioxythiophene):Poly(styrene-sulfonate) modified onscreen printed carbon electrode for electrochemical sensing of salbutamol [J]. Sensorsand Actuators B-Chemical,2012,161:549-555.
    [95]Zhang FY, Wang ZH, Zhang YZ, et al. Simultaneous electrochemicaldetermination of uric acid, xanthine and hypoxanthine based onpoly(l-arginine)/graphene composite film modified electrode [J]. Talanta,2012,93:320-325.
    [96]Du M, Yang T, Li X, et al. Fabrication of DNA/graphene/polyanilinenanocomplex for label-free voltammetric detection of DNA hybridization [J]. Talanta,2012,88:439-444.
    [97]Gan T, Hu CG, Chen ZL, et al. A disposable electrochemical sensor for thedetermination of indole-3-acetic acid based on poly(safranine t)-reduced grapheneoxide nanocomposite [J]. Talanta,2011,85:310-316.
    [98]Jiang YY, Zhang XD, Shan CS, et al. Functionalization of graphene withelectrodeposited prussian blue towards amperometric sensing application [J]. Talanta,2011,85:76-81.
    [1] Xie T, Liu Q, Shi Y. Simultaneous determination of positional isomers ofbenzenediols by capillary zone electrophoresis with square wave amperometricdetection [J]. J Chromatogr A,2006,1109:317-321.
    [2] Wang J, Park JN, Wei XY, et al. Room-temperature heterogeneous hydroxylationof phenol with hydrogen peroxide over fe2+, co2+ion-exchanged na beta zeolite [J].Chem Commun,2003:628-629.
    [3] Cui H, He CX, Zhao GW. Determination of polyphenols by high-performanceliquid chromatography with inhibited chemiluminescence detection [J]. J ChromatogrA,1999,855:171-179.
    [4] Guan N, Zeng ZR, Wang YC, et al. Open tubular capillaryelectrochromatography in fused-silica capillaries chemically bonded with macrocyclicdioxopolyamine [J]. Anal Chim Acta,2000,418:145-151.
    [5] Sun Y, Cui H, Li Y, et al. Determination of some catechol derivatives by a flowinjection electrochemiluminescent inhibition method [J]. Talanta,2000,53:661-666.
    [6] Nagaraja P, Vasantha RA, Sunitha KR. A new sensitive and selectivespectrophotometric method for the determination of catechol derivatives and itspharmaceutical preparations [J]. J Pharm Biomed Anal,2001,25:417-424.
    [7] Guo Q, Huang J, Chen P, et al. Simultaneous determination of catechol andhydroquinone using electrospun carbon nanofibers modified electrode [J]. SensActuators, B,2012,163:179-185.
    [8] Qi H, Zhang C. Simultaneous determination of hydroquinone and catechol at aglassy carbon electrode modified with multiwall carbon nanotubes [J]. Electroanalysis,2005,17:832-838.
    [9] Hu F, Chen S, Wang C, et al. Study on the application of reduced graphene oxideand multiwall carbon nanotubes hybrid materials for simultaneous determination ofcatechol, hydroquinone, p-cresol and nitrite [J]. Anal Chim Acta,2012,724:40-46.
    [10]Yin H, Zhang Q, Zhou Y, et al. Electrochemical behavior of catechol, resorcinoland hydroquinone at graphene–chitosan composite film modified glassy carbonelectrode and their simultaneous determination in water samples [J]. Electrochim Acta,2011,56:2748-2753.
    [11]Du H, Ye J, Zhang J, et al. A voltammetric sensor based on graphene-modifiedelectrode for simultaneous determination of catechol and hydroquinone [J]. JElectroanal Chem,2011,650:209-213.
    [12]Wang L, Zhang Y, Du Y, et al. Simultaneous determination of catechol andhydroquinone based on poly (diallyldimethylammonium chloride) functionalizedgraphene-modified glassy carbon electrode [J]. J Solid State Electrochem,2011,16:1323-1331.
    [13]Yu J, Du W, Zhao F, et al. High sensitive simultaneous determination of catecholand hydroquinone at mesoporous carbon cmk-3electrode in comparison withmulti-walled carbon nanotubes and vulcan xc-72carbon electrodes [J]. ElectrochimActa,2009,54:984-988.
    [14]Trojanowicz M, Krawczyński vel Krawczyk T. Electrochemical biosensors basedon enzymes immobilized in electropolymerized films [J]. Microchim Acta,1995,121:167-181.
    [15]Emr SA, Yacynych AM. Use of polymer films in amperometric biosensors [J].Electroanalysis,1995,7:913-923.
    [16]Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemicalsensors and arrays [J]. Anal Chim Acta,2008,614:1-26.
    [17]Trojanowicz M. Application of conducting polymers in chemical analysis [J].Microchim Acta,2003,143:75-91.
    [18]Rahman M, Kumar P, Park D-S, et al. Electrochemical sensors based on organicconjugated polymers [J]. Sensors,2008,8:118-141.
    [19]Enache TA, Oliveira-Brett AM. Boron doped diamond and glassy carbonelectrodes comparative study of the oxidation behaviour of cysteine and methionine[J]. Bioelectrochemistry,2011,81:46-52.
    [20]Zhou M, Ding J, Guo LP, et al. Electrochemical behavior of l-cysteine and itsdetection at ordered mesoporous carbon-modified glassy carbon electrode [J]. AnalChem,2007,79:5328-5335.
    [21]Wang C, Mao Y, Wang D, et al. Voltammetric determination of terbinafine inbiological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubescomposite film [J]. Bioelectrochemistry,2008,72:107-115.
    [22]Terashima C, Rao TN, Sarada BV, et al. Direct electrochemical oxidation ofdisulfides at anodically pretreated boron-doped diamond electrodes [J]. Anal Chem,2003,75:1564-1572.
    [23]Spataru N, Sarada BV, Popa E, et al. Voltammetric determination of l-cysteine atconductive diamond electrodes [J]. Anal Chem,2001,73:514-519.
    [24]Molina R, Espinós JP, Yubero F, et al. Xps analysis of down stream plasmatreated wool: Influence of the nature of the gas on the surface modification of wool [J].Appl Surf Sci,2005,252:1417-1429.
    [25]Ramanathan T, Fisher FT, Ruoff RS, et al. Amino-functionalized carbonnanotubes for binding to polymers and biological systems [J]. Chem Mater,2005,17:1290-1295.
    [26]Fox MA. Fundamentals in the design of molecular electronic devices: Long-rangecharge carrier transport and electronic coupling [J]. Acc Chem Res,1999,32:201-207.
    [27]Janata J, Josowicz M. Conducting polymers in electronic chemical sensors [J].Nat Mater,2003,2:19-24.
    [28]Kwak J, Bard AJ. Scanning electrochemical microscopy. Apparatus andtwo-dimensional scans of conductive and insulating substrates [J]. Anal Chem,1989,61:1794-1799.
    [29]Kwak J, Bard AJ. Scanning electrochemical microscopy. Theory of the feedbackmode [J]. Anal Chem,1989,61:1221-1227.
    [30]Amiri M, Ghaffari S, Bezaatpour A, et al. Carbon nanoparticle-chitosancomposite electrode with anion, cation, and neutral binding sites: Dihydroxybenzeneselectivity [J]. Sens Actuators, B,2012,162:194-200.
    [31]Ahammad AJS, Rahman MM, Xu G-R, et al. Highly sensitive and simultaneousdetermination of hydroquinone and catechol at poly(thionine) modified glassy carbonelectrode [J]. Electrochim Acta,2011,56:5266-5271.
    [32]Li DW, Li YT, Song W, et al. Simultaneous determination of dihydroxybenzeneisomers using disposable screen-printed electrode modified by multiwalled carbonnanotubes and gold nanoparticles [J]. Anal Methods,2010,2:837-843.
    [33]Zhao DM, Zhang XH, Feng LJ, et al. Simultaneous determination ofhydroquinone and catechol at pasa/mwnts composite film modified glassy carbonelectrode [J]. Colloids Surf B Biointerfaces,2009,74:317-321.
    [1] Cosar C, Julou L. Activity of1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (rp8823) in experimental trichomonas vaginalis infections [J]. Ann Inst Pasteur,1959,96:238-241.
    [2] Speelman P. Single-dose tinidazole for the treatment of giardiasis [J]. AntimicrobAgents Chemother,1985,27:227-229.
    [3] IARC, International Agency for Research on Cancer, Lyon, France,(Suppl7),1987, pp250–251.
    [4] Krause JR, Ayuyang HQ, Ellis LD. Occurrence of three cases of carcinoma inindividuals with crohn's disease treated with metronidazole [J]. Am J Gastroenterol,1985,80:978-982.
    [5] Dobias L, Cerna M, Rossner P, et al. Genotoxicity and carcinogenicity ofmetronidazole [J]. Mutat Res,1994,317:177-194.
    [6] Bendesky A, Menendez D, Ostrosky-Wegman P. Is metronidazole carcinogenic?[J]. Mutat Res,2002,511:133-144.
    [7] Roe FJ. Toxicologic evaluation of metronidazole with particular reference tocarcinogenic, mutagenic, and teratogenic potential [J]. Surgery,1983,93:158-164.
    [8] Bostofte E, Bak JF, Hoier R.[metronidazole and its possible carcinogenic andmutagenic effect][J]. Ugeskr Laeger,1981,143:2211-2214.
    [9] Falagas ME, Walker AM, Jick H, et al. Late incidence of cancer aftermetronidazole use: A matched metronidazole user/nonuser study [J]. Clin Infect Dis,1998,26:384-388.
    [10]Beard CM, Noller KL, O'Fallon WM, et al. Cancer after exposure tometronidazole [J]. Mayo Clin Proc,1988,63:147-153.
    [11]Valdez CA, Tripp JC, Miyamoto Y, et al. Synthesis and electrochemistry of2-ethenyl and2-ethanyl derivatives of5-nitroimidazole and antimicrobial activityagainst giardia lamblia [J]. J Med Chem,2009,52:4038-4053.
    [12]Liang F, Jia M, Hu J. Pt-implanted indium tin oxide electrodes and theiramperometric sensor applications for nitrite and hydrogen peroxide [J]. ElectrochimActa,2012,75:414-419.
    [13]Parimoo P. Quantitative determination of metronidazole in drug preparations byindirect acid-base titration method [J]. J Indian Chem Soc,1988,65:151-152.
    [14]Nagaraja P, Sunitha KR, Vasantha RA, et al. Spectrophotometric determinationof metronidazole and tinidazole in pharmaceutical preparations [J]. J Pharm BiomedAnal,2002,28:527-535.
    [15]Yamda S, Tanaka C, Suzuki M, et al. Determination of α1-adrenoceptorantagonists in plasma by radioreceptor assay [J]. J Pharm Biomed Anal,1996,14:289-294.
    [16]Parimoo P, Umapathi P, Ravikumar N, et al. Determination of metronidazole anddiiodohydroxyquinoline in pharmaceutical preparations by quantitative thin-layerchromatography [J]. Indian Drugs,1992,29:228-230.
    [17]Bhatia SC, Shanbhag VD. Electron-capture gas chromatographic assays of5-nitroimidazole class of antimicrobials in blood [J]. J Chromatogr, Biomed Appl,1984,305:325-334.
    [18]Turcant A, Premel-Cabic A, Cailleux A, et al. Toxicological screening of drugsby microbore high-performance liquid chromatography with photodiode-arraydetection and ultraviolet spectral library searches [J]. Clin Chem (Winston-Salem, NC),1991,37:1210-1215.
    [19]Jin W, Li W, Xu Q, et al. Quantitative assay of metronidazole by capillary zoneelectrophoresis with amperometric detection at a gold microelectrode [J].Electrophoresis,2000,21:1409-1414.
    [20] zkan SA, zkan Y, entürk Z. Electrochemical reduction of metronidazole atactivated glassycarbon electrode and its determination in pharmaceutical dosageforms [J]. J Pharm Biomed Anal1998,17:299-305.
    [21]La-Scalea MA, Serrano SHP, Gutz IGR. Voltammetric behavior of metronidazoleat mercury electrodes [J]. J Braz Chem Soc,1999,10:127-135.
    [22]Lu S, Wu K, Dang X, et al. Electrochemical reduction and voltammetricdetermination of metronidazole at a nanomaterial thin film coated glassy carbonelectrode [J]. Talanta,2004,63:653-657.
    [23]Salimi A, Izadi M, Hallaj R, et al. Simultaneous determination of ranitidine andmetronidazole at glassy carbon electrode modified with single wall carbon nanotubes[J]. Electroanalysis,2007,19:1668-1676.
    [24]Bartlett PN, Ghoneim E, El-Hefnawy G, et al. Voltammetry and determination ofmetronidazole at a carbon fiber microdisk electrode [J]. Talanta,2005,66:869-874.
    [25]Guzmán A, Agüí L, Pedrero M, et al. Voltammetric determination of antibacterialnitro-compounds at activated carbon fibre microelectrodes [J]. Electroanalysis,2004,16:1763-1770.
    [26]Rezaei B, Damiri S. Fabrication of a nanostructure thin film on the gold electrodeusing continuous pulsed-potential technique and its application for the electrocatalyticdetermination of metronidazole [J]. Electrochim Acta,2010,55:1801-1808.
    [27]Gholivand MB, Torkashvand M. A novel high selective and sensitivemetronidazole voltammetric sensor based on a molecularly imprinted polymer-carbonpaste electrode [J]. Talanta,2011,84:905-912.
    [28]Chen S, Liu JW, Chen ML, et al. Unusual emission transformation of graphenequantum dots induced by self-assembled aggregation [J]. Chem Commun (Camb),2012,48:7637-7639.
    [29]Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomicallythin carbon films [J]. Science,2004,306:666-669.
    [30]Hu JG, Li FH, Wang KK, et al. One-step synthesis of graphene-aunps by hmtaand the electrocatalytical application for o-2and h2o2[J]. Talanta,2012,93:345-349.
    [31]Wang DH, Choi DW, Li J, et al. Self-assembled tio2-graphene hybridnanostructures for enhanced li-ion insertion [J]. ACS Nano,2009,3:907-914.
    [32]Wang Y, Li Y, Tang L, et al. Application of graphene-modified electrode forselective detection of dopamine [J]. Electrochem Commun,2009,11:889-892.
    [33]Lu J, Drzal LT, Worden RM, et al. Simple fabrication of a highly sensitiveglucose biosensor using enzymes immobilized in exfoliated graphite nanoplateletsnafion membrane [J]. Chem Mater,2007,19:6240-6246.
    [34]Guo SJ, Wen D, Zhai YM, et al. Ionic liquid-graphene hybrid nanosheets as anenhanced material for electrochemical determination of trinitrotoluene [J]. BiosensBioelectron,2011,26:3475-3481.
    [35]Zhou M, Zhai YM, Dong SJ. Electrochemical sensing and biosensing platformbased on chemically reduced graphene oxide [J]. Anal Chem,2009,81:5603-5613.
    [36]Guo SJ, Wen D, Zhai YM, et al. Platinum nanoparticle ensemble-on-graphenehybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material forelectrochemical sensing [J]. Acs Nano,2010,4:3959-3968.
    [37]Tung VC, Allen MJ, Yang Y, et al. High-throughput solution processing oflarge-scale graphene [J]. Nat Nanotechnol,2009,4:25-29.
    [38]Stankovich S, Piner RD, Chen XQ, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16:155-158.
    [39]Zhu CZ, Guo SJ, Fang YX, et al. Reducing sugar: New functional molecules forthe green synthesis of graphene nanosheets [J]. Acs Nano,2010,4:2429-2437.
    [40]Zhang JL, Yang HJ, Shen GX, et al. Reduction of graphene oxide via l-ascorbicacid [J]. Chem Commun,2010,46:1112-1114.
    [41]Xu LQ, Yang WJ, Neoh K-G, et al. Dopamine-induced reduction andfunctionalization of graphene oxide nanosheets [J]. Macromolecules,2010,43:8336-8339.
    [42]Zhang S, Shao Y, Liao H, et al. Polyelectrolyte-induced reduction of exfoliatedgraphite oxide: A facile route to synthesis of soluble graphene nanosheets [J]. ACSNano,2011,5:1785-1791.
    [43]Le Z-G, Liu Z, Qian Y, et al. A facile and efficient approach to decoration ofgraphene nanosheets with gold nanoparticles [J]. Appl Surf Sci,2012,258:5348-5353.
    [44]Lu DB, Zhang Y, Wang LT, et al. Sensitive detection of acetaminophen based onfe3o4nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalizedgraphene nanocomposite film [J]. Talanta,2012,88:181-186.
    [45]Fang YX, Guo SJ, Zhu CZ, et al. Self-assembly of cationicpolyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: Atwo-dimensional heterostructure for hydrogen peroxide sensing [J]. Langmuir,2010,26:11277-11282.
    [46]Terashima C, Rao TN, Sarada BV, et al. Direct electrochemical oxidation ofdisulfides at anodically pretreated boron-doped diamond electrodes [J]. Anal Chem,2003,75:1564-1572.
    [47]Enache TA, Oliveira-Brett AM. Boron doped diamond and glassy carbonelectrodes comparative study of the oxidation behaviour of cysteine and methionine[J]. Bioelectrochemistry,2011,81:46-52.
    [48]Wang C, Mao Y, Wang D, et al. Voltammetric determination of terbinafine inbiological fluid at glassy carbon electrode modified by cysteic acid/carbon nanotubescomposite film [J]. Bioelectrochemistry,2008,72:107-115.
    [49]Wang C, Shao X, Liu Q, et al. Differential pulse voltammetric determination ofnimesulide in pharmaceutical formulation and human serum at glassy carbonelectrode modified by cysteic acid/cnts based on electrochemical oxidation ofl-cysteine [J]. J Pharm Biomed Anal,2006,42:237-244.
    [50]Duca M, Figueiredo MC, Climent V, et al. Selective catalytic reduction atquasi-perfect pt(100) domains: A universal low-temperature pathway from nitrite ton2[J]. J Am Chem Soc,2011,133:10928-10939.
    [51]Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide [J]. J Am ChemSoc,1958,80:1339.
    [52]Lu T, Pan L, Li H, et al. Microwave-assisted synthesis of graphene–znonanocomposite for electrochemical supercapacitors [J]. J Alloys Compd,2011,509:5488-5492.
    [53]Murugan AV, Muraliganth T, Manthiram A. Rapid, facilemicrowave-solvothermal synthesis of graphene nanosheets and their polyanilinenanocomposites for energy strorage [J]. Chem Mater,2009,21:5004-5006.
    [54]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites: Microwaveirradiation synthesis and enhanced cycling and rate performances for lithium ionbatteries [J]. J Mater Chem,2010,20:5538-5543.
    [55]Hassan HMA, Abdelsayed V, Khder AERS, et al. Microwave synthesis ofgraphene sheets supporting metal nanocrystals in aqueous and organic media [J]. JMater Chem,2009,19:3832-3837.
    [56]McAllister MJ, Li J-L, Adamson DH, et al. Single sheet functionalized grapheneby oxidation and thermal expansion of graphite [J]. Chem Mater,2007,19:4396-4404.
    [57]Tuinstra F, Koenig JL. Raman spectrum of graphite [J]. J Chem Phys,1970,53:1126-1130.
    [58]Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [59]Rao CNR, Sood AK, Subrahmanyam KS, et al. Graphene: The newtwo-dimensional nanomaterial [J]. Angew Chem Int Ed,2009,48:7752-7777.
    [60]Molina R, Espinós JP, Yubero F, et al. Xps analysis of down stream plasmatreated wool: Influence of the nature of the gas on the surface modification of wool [J].Appl Surf Sci,2005,252:1417-1429.
    [61]Deinhammer RS, Ho M, Anderegg JW, et al. Electrochemical oxidation ofamine-containing compounds: A route to the surface modification of glassy carbonelectrodes [J]. Langmuir,1994,10:1306-1313.
    [62]Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassycarbon electrode and its application for the direct electrochemistry and electrocatalyticbehavior of hemoglobin [J]. Biosens Bioelectron,2005,21:337-345.
    [63]Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications[M]. New York: Wiley,1980.
    [64]Zhang L, Yuan F, Zhang X, et al. Facile synthesis of flower like copper oxide andtheir application to hydrogen peroxide and nitrite sensing [J]. Chem Cent J,2011,5:1-9.
    [1] US Environmental Protection Agency, Fed Regist,1989,52:131.
    [2] Guo X, Wang Z, Zhou S. The separation and determination of nitrophenolisomers by high-performance capillary zone electrophoresis [J]. Talanta,2004,64:135-139.
    [3] Xu C, Wang J, Wan L, et al. Microwave-assisted covalent modification ofgraphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemicaldetection of phenolic organic pollutants [J]. J Mater Chem,2011,21:10463-10471.
    [4] Li J, Kuang D, Feng Y, et al. A graphene oxide-based electrochemical sensor forsensitive determination of4-nitrophenol, water pollution monitoring [J]. J HazardMater,2012,201-202:250-259.
    [5] Niaz A, Fischer J, Barek J, et al. Voltammetric determination of4-nitrophenolusing a novel type of silver amalgam paste electrode [J]. Electroanalysis,2009,21:1786-1791.
    [6] Hofmann D, Hartmann F, Herrmann H. Analysis of nitrophenols in cloud waterwith a miniaturized light-phase rotary perforator and hplc-ms [J]. Anal BioanalChem,2008,391:161-169.
    [7] Padilla-Sanchez JA, Plaza-Bolanos P, Romero-Gonzalez R, et al. Application of aquick, easy, cheap, effective, rugged and safe-based method for the simultaneousextraction of chlorophenols, alkylphenols, nitrophenols and cresols in agriculturalsoils, analyzed by using gas chromatography-triple quadrupole-massspectrometry/mass spectrometry [J]. J Chromatogr A,2010,1217:5724-5731.
    [8] Zhang W, Wilson CR, Danielson ND. Indirect fluorescent determination ofselected nitro-aromatic and pharmaceutical compounds via uv-photolysis of2-phenylbenzimidazole-5-sulfonate [J]. Talanta,2008,74:1400-1407.
    [9] Rounaghi G, Kakhki RM, Azizi-toupkanloo H. Voltammetric determination of4-nitrophenol using a modified carbon paste electrode based on a new synthetic crownether/silver nanoparticles [J]. Mater Sci Eng, C,2012,32:172-177.
    [10]Liu W, Li C, Tang L, et al. Nanopore array derived from l-cysteine oxide/goldhybrids: Enhanced sensing platform for hydroquinone and catechol determination [J].Electrochim Acta,2013,88:15-23.
    [11]Huang H, Liu X, Zhang X, et al. Fabrication of new magnetic nanoparticles(Fe3O4) grafted multiwall carbon nanotubes and heterocyclic compound modifiedelectrode for electrochemical sensor [J]. Electroanalysis,2010,22:433-438.
    [12]Hu Y, Zhang Z, Zhang H, et al. Sensitive and selective imprinted electrochemicalsensor for p-nitrophenol based on zno nanoparticles/carbon nanotubes doped chitosanfilm [J]. Thin Solid Films,2012,520:5314-5321.
    [13]Chang G, Luo Y, Lu W, et al. Ag nanoparticles decorated polyaniline nanofibers:Synthesis, characterization, and applications toward catalytic reduction of4-nitrophenol and electrochemical detection of h2o2and glucose [J]. Catal SciTechnol,2012,2:800-806.
    [14]Lupu S, Lete C, Marin M, et al. Electrochemical sensors based on platinumelectrodes modified with hybrid inorganic-organic coatings for determination of4-nitrophenol and dopamine [J]. Electrochim Acta,2009,54:1932-1938.
    [15]Liu N, Cai X, Zhang Q, et al. Real-time nitrophenol detection using single-walledcarbon nanotube based devices [J]. Electroanalysis,2008,20:558-562.
    [16]Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomicallythin carbon films [J]. Science,2004,306:666-669.
    [17]Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene [J].Chem Rev,2010,110:132-145.
    [18]Yoo E, Kim J, Hosono E, et al. Large reversible li storage of graphene nanosheetfamilies for use in rechargeable lithium ion batteries [J]. Nano Lett,2008,8:2277-2282.
    [19]Wang HL, Casalongue HS, Liang YY, et al. Ni(oh)(2) nanoplates grown ongraphene as advanced electrochemical pseudocapacitor materials [J]. J Am Chem Soc,2010,132:7472-7477.
    [20]Li XL, Wang XR, Zhang L, et al. Chemically derived, ultrasmooth graphenenanoribbon semiconductors [J]. Science,2008,319:1229-1232.
    [21]Xu Y, Liu Z, Zhang X, et al. A graphene hybrid material covalentlyfunctionalized with porphyrin: Synthesis and optical limiting property [J]. Adv Mater,2009,21:1275-1279.
    [22]Tian XQ, Cheng CM, Yuan HY, et al. Simultaneous determination of l-ascorbicacid, dopamine and uric acid with goldnanoparticles-beta-cyclodextrin-graphene-modified electrode by square wavevoltammetry [J]. Talanta,2012,93:79-85.
    [23]Zhu C, Wang P, Wang L, et al. Facile synthesis of two-dimensionalgraphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties [J].Nanoscale,2011,3:4376-4382.
    [24]Guo YJ, Guo SJ, Li J, et al. Cyclodextrin-graphene hybrid nanosheets asenhanced sensing platform for ultrasensitive determination of carbendazim [J].Talanta,2011,84:60-64.
    [25]Liu W, Zhang J, Li C, et al. A novel composite film derived from cysteic acid andpdda-functionalized graphene: Enhanced sensing material for electrochemicaldetermination of metronidazole [J]. Talanta,2013,104:204-211.
    [26]Fang YX, Guo SJ, Zhu CZ, et al. Self-assembly of cationicpolyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: Atwo-dimensional heterostructure for hydrogen peroxide sensing [J]. Langmuir,2010,26:11277-11282.
    [27]Dey RS, Raj CR. Development of an amperometric cholesterol biosensor basedon graphene-pt nanoparticle hybrid material [J]. J Phys Chem C,2010,114:21427-21433.
    [28]Lu DB, Zhang Y, Wang LT, et al. Sensitive detection of acetaminophen based onfe3o4nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalizedgraphene nanocomposite film [J]. Talanta,2012,88:181-186.
    [29]Lu WB, Luo YL, Chang GH, et al. Synthesis of functional sio2-coated grapheneoxide nanosheets decorated with ag nanoparticles for h2o2and glucose detection [J].Biosens Bioelectron,2011,26:4791-4797.
    [30]Luo ZM, Yuwen LH, Han YJ, et al. Reduced graphene oxide/pamam-silvernanoparticles nanocomposite modified electrode for direct electrochemistry ofglucose oxidase and glucose sensing [J]. Biosens Bioelectron,2012,36:179-185.
    [31]Tang J, Tang DP, Su BL, et al. Silver nanowire-graphene hybrid nanocompositesas label for sensitive electrochemical immunoassay of alpha-fetoprotein [J].Electrochim Acta,2011,56:8168-8175.
    [32]Sun W, Zhang YY, Wang XZ, et al. Electrodeposited graphene and silvernanoparticles modified electrode for direct electrochemistry and electrocatalysis ofhemoglobin [J]. Electroanalysis,2012,24:1973-1979.
    [33]Tung VC, Allen MJ, Yang Y, et al. High-throughput solution processing oflarge-scale graphene [J]. Nat Nanotechnol,2009,4:25-29.
    [34]Stankovich S, Piner RD, Chen XQ, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16:155-158.
    [35]Liang YY, Wu DQ, Feng XL, et al. Dispersion of graphene sheets in organicsolvent supported by ionic interactions [J]. Adv Mater,2009,21:1679-1683.
    [36]Guo Y, Guo S, Ren J, et al. Cyclodextrin functionalized graphene nanosheetswith high supramolecular recognition capability: Synthesis and host guest inclusionfor enhanced electrochemical performance [J]. ACS Nano,2010,4:4001-4010.
    [37]Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins [J].Chem Rev,1998,98:1875-1918.
    [38]Duca M, Figueiredo MC, Climent V, et al. Selective catalytic reduction atquasi-perfect pt(100) domains: A universal low-temperature pathway from nitrite ton2[J]. J Am Chem Soc,2011,133:10928-10939.
    [39]Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide [J]. J Am ChemSoc,1958,80:1339.
    [40]Pande S, Ghosh SK, Praharaj S, et al. Synthesis of normal and invertedgold silver core shell architectures in β-cyclodextrin and their applications in sers [J].The Journal of Physical Chemistry C,2007,111:10806-10813.
    [41]Qin XY, Luo YL, Lu WB, et al. One-step synthesis of ag nanoparticles-decoratedreduced graphene oxide and their application for h2o2detection [J]. Electrochim Acta,2012,79:46-51.
    [42]Murugan AV, Muraliganth T, Manthiram A. Rapid, facilemicrowave-solvothermal synthesis of graphene nanosheets and their polyanilinenanocomposites for energy strorage [J]. Chem Mater,2009,21:5004-5006.
    [43]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites: Microwaveirradiation synthesis and enhanced cycling and rate performances for lithium ionbatteries [J]. J Mater Chem,2010,20:5538-5543.
    [44]Hassan HMA, Abdelsayed V, Khder AERS, et al. Microwave synthesis ofgraphene sheets supporting metal nanocrystals in aqueous and organic media [J]. JMater Chem,2009,19:3832-3837.
    [45]Tuinstra F, Koenig JL. Raman spectrum of graphite [J]. J Chem Phys,1970,53:1126-1130.
    [46]Han SW, Kim Y, Kim K. Dodecanethiol-derivatized au/ag bimetallicnanoparticles: Tem, uv/vis, xps, and ftir analysis [J]. J Colloid Interface Sci,1998,208:272-278.
    [47]Guo YJ, Guo SJ, Ren JT, et al. Cyclodextrin functionalized graphene nanosheetswith high supramolecular recognition capability: Synthesis and host-guest inclusionfor enhanced electrochemical performance [J]. Acs Nano,2010,4:4001-4010.
    [48]Bard AJ, Faulkner LR. Electrochemical methods, fundamentals and applications
    [M]. New York: Wiley,1980.
    [49]Niesner R, Heintz A. Diffusion coefficients of aromatics in aqueous solution [J]. JChem Eng Data,2000,45:1121-1124.
    [50]De Cássia Silva Luz R, Damos FS, De Oliveira AB, et al. Voltammetricdetermination of4-nitrophenol at a lithium tetracyanoethylenide (litcne) modifiedglassy carbon electrode [J]. Talanta,2004,64:935-942.
    [51]Xu X, Liu Z, Zhang X, et al. Β-cyclodextrin functionalized mesoporous silica forelectrochemical selective sensor: Simultaneous determination of nitrophenol isomers[J]. Electrochim Acta,2011,58:142-149.
    [52]Zhang W, Chang J, Chen J, et al. Graphene-au composite sensor forelectrochemical detection of para-nitrophenol [J]. Res Chem Intermed,2012,38:2443-2455.
    [53]Arvinte A, Mahosenaho M, Pinteala M, et al. Electrochemical oxidation ofp-nitrophenol using graphene-modified electrodes, and a comparison to theperformance of mwnt-based electrodes [J]. Microchim Acta,2011,174:337-343.
    [54]Peng L, Wollenberger U, Hofrichter M, et al. Bioelectrocatalytic properties ofagrocybe aegerita peroxygenase [J]. Electrochim Acta,2010,55:7809-7813.
    [1] Herdon HJ, Wilson CA. Changes in hypothalamic dopamine d-2receptors duringsexual maturation in male and female rats [J]. Brain Res,1985,343:151-153.
    [2] Sun CL, Lee HH, Yang JM, et al. The simultaneous electrochemical detection ofascorbic acid, dopamine, and uric acid using graphene/size-selected ptnanocomposites [J]. Biosens Bioelectron,2011,26:3450-3455.
    [3] Wightman RM, Amatore C, Engstrom RC, et al. Real-time characterization ofdopamine overflow and uptake in the rat striatum [J]. Neuroscience,1988,25:513-523.
    [4] Wightman RM, May LJ, Michael AC. Detection of dopamine dynamics in thebrain [J]. Anal Chem,1988,60:769A-779A.
    [5] Phillips PE, Stuber GD, Heien ML, et al. Subsecond dopamine release promotescocaine seeking [J]. Nature,2003,422:614-618.
    [6] Chatraei F, Zare HR. A comparative study of the electrochemical characteristicsand simultaneous determination of dopamine, acetaminophen, and aspirin at aruthenium oxide nanoparticles modified glassy carbon electrode versus a bare one [J].Anal Methods,2012,4:2940-2947.
    [7] Nour El-Dien FA, Zayed MA, Mohamed GG, et al. Two spectrophotometricassays for dopamine derivatives in pharmaceutical products and in biological samplesof schizophrenic patients using copper tetramine complex and tri-iodide reagent [J]. JBiomed Biotechnol,2005,2005:1-9.
    [8] Cheng F-C, Shih Y, Liang Y-J, et al. New dual electrochemical detector formicrobore liquid chromatography determination of dopamine and serotonin in ratstriatum dialysates [J]. Journal of Chromatography B: Biomedical Sciences andApplications,1996,682:195-200.
    [9] Kalimuthu P, John SA. Simultaneous determination of ascorbic acid, dopamine,uric acid and xanthine using a nanostructured polymer film modified electrode [J].Talanta,2010,80:1686-1691.
    [10]Liu W, Li C, Tang L, et al. Nanopore array derived from l-cysteine oxide/goldhybrids: Enhanced sensing platform for hydroquinone and catechol determination [J].Electrochim Acta,2013,88:15-23.
    [11]Huang H, Liu X, Zhang X, et al. Fabrication of new magnetic nanoparticles(fe3o4) grafted multiwall carbon nanotubes and heterocyclic compound modifiedelectrode for electrochemical sensor [J]. Electroanalysis,2010,22:433-438.
    [12]Prasad BB, Kumar D, Madhuri R, et al. Sol-gel derived multiwalled carbonnanotubes ceramic electrode modified with molecularly imprinted polymer for ultratrace sensing of dopamine in real samples [J]. Electrochim Acta,2011,56:7202-7211.
    [13]Lupu S, Lete C, Marin M, et al. Electrochemical sensors based on platinumelectrodes modified with hybrid inorganic-organic coatings for determination of4-nitrophenol and dopamine [J]. Electrochim Acta,2009,54:1932-1938.
    [14]Wang HS, Li TH, Jia WL, et al. Highly selective and sensitive determination ofdopamine using a nafion/carbon nanotubes coated poly(3-methylthiophene) modifiedelectrode [J]. Biosens Bioelectron,2006,22:664-669.
    [15]Dong XC, Ma YW, Zhu GY, et al. Synthesis of graphene-carbon nanotube hybridfoam and its use as a novel three-dimensional electrode for electrochemical sensing[J]. J Mater Chem,2012,22:17044-17048.
    [16]Gholivand MB, Amiri M. Simultaneous detection of dopamine andacetaminophen by modified gold electrode with polypyrrole/aszophloxine film [J]. JElectroanal Chem,2012,676:53-59.
    [17]Chen S, Liu JW, Chen ML, et al. Unusual emission transformation of graphenequantum dots induced by self-assembled aggregation [J]. Chem Commun (Camb),2012,48:7637-7639.
    [18]Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomicallythin carbon films [J]. Science,2004,306:666-669.
    [19]Hu JG, Li FH, Wang KK, et al. One-step synthesis of graphene-aunps by hmtaand the electrocatalytical application for o-2and h2o2[J]. Talanta,2012,93:345-349.
    [20]Wang DH, Choi DW, Li J, et al. Self-assembled tio2-graphene hybridnanostructures for enhanced li-ion insertion [J]. ACS Nano,2009,3:907-914.
    [21]Wang Y, Li Y, Tang L, et al. Application of graphene-modified electrode forselective detection of dopamine [J]. Electrochem Commun,2009,11:889-892.
    [22]Lu J, Drzal LT, Worden RM, et al. Simple fabrication of a highly sensitiveglucose biosensor using enzymes immobilized in exfoliated graphite nanoplateletsnafion membrane [J]. Chem Mater,2007,19:6240-6246.
    [23]Lim CX, Hoh HY, Ang PK, et al. Direct voltammetric detection of DNA and phsensing on epitaxial graphene: An insight into the role of oxygenated defects [J]. AnalChem,2010,82:7387-7393.
    [24]Guo SJ, Wen D, Zhai YM, et al. Ionic liquid-graphene hybrid nanosheets as anenhanced material for electrochemical determination of trinitrotoluene [J]. BiosensBioelectron,2011,26:3475-3481.
    [25]Zhou M, Zhai YM, Dong SJ. Electrochemical sensing and biosensing platformbased on chemically reduced graphene oxide [J]. Anal Chem,2009,81:5603-5613.
    [26]Guo SJ, Wen D, Zhai YM, et al. Platinum nanoparticle ensemble-on-graphenehybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material forelectrochemical sensing [J]. Acs Nano,2010,4:3959-3968.
    [27]Liu W, Zhang J, Li C, et al. A novel composite film derived from cysteic acid andpdda-functionalized graphene: Enhanced sensing material for electrochemicaldetermination of metronidazole [J]. Talanta,2013,104:204-211.
    [28]Tung VC, Allen MJ, Yang Y, et al. High-throughput solution processing oflarge-scale graphene [J]. Nat Nanotechnol,2009,4:25-29.
    [29]Stankovich S, Piner RD, Chen XQ, et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16:155-158.
    [30]Liang YY, Wu DQ, Feng XL, et al. Dispersion of graphene sheets in organicsolvent supported by ionic interactions [J]. Adv Mater,2009,21:1679-1683.
    [31]Duca M, Figueiredo MC, Climent V, et al. Selective catalytic reduction atquasi-perfect pt(100) domains: A universal low-temperature pathway from nitrite ton2[J]. J Am Chem Soc,2011,133:10928-10939.
    [32]Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide [J]. J Am ChemSoc,1958,80:1339.
    [33]Lu T, Pan L, Li H, et al. Microwave-assisted synthesis of graphene–znonanocomposite for electrochemical supercapacitors [J]. J Alloys Compd,2011,509:5488-5492.
    [34]Murugan AV, Muraliganth T, Manthiram A. Rapid, facilemicrowave-solvothermal synthesis of graphene nanosheets and their polyanilinenanocomposites for energy strorage [J]. Chem Mater,2009,21:5004-5006.
    [35]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites: Microwaveirradiation synthesis and enhanced cycling and rate performances for lithium ionbatteries [J]. J Mater Chem,2010,20:5538-5543.
    [36]Hassan HMA, Abdelsayed V, Khder AERS, et al. Microwave synthesis ofgraphene sheets supporting metal nanocrystals in aqueous and organic media [J]. JMater Chem,2009,19:3832-3837.
    [37]Tuinstra F, Koenig JL. Raman spectrum of graphite [J]. J Chem Phys,1970,53:1126-1130.
    [38]Zhou Y, Zhang H, Xie H, et al. A novel sensor based on lapo4nanowiresmodified electrode for sensitive simultaneous determination of dopamine and uricacid [J]. Electrochim Acta,2012,75:360-365.
    [39]Xu H, Shao M, Chen T, et al. Magnetism-assisted assembled porous fe3o4nanoparticles and their electrochemistry for dopamine sensing [J]. MicroporousMesoporous Mater,2012,153:35-40.
    [40]Sheng ZH, Zheng XQ, Xu J-Y, et al. Electrochemical sensor based on nitrogendoped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosens Bioelectron,2012,34:125-131.
    [41]Rattanarat P, Dungchai W, Siangproh W, et al. Sodium dodecyl sulfate-modifiedelectrochemical paper-based analytical device for determination of dopamine levels inbiological samples [J]. Anal Chim Acta,2012,744:1-7.
    [42]Li J. Fabrication of poly(aspartic acid)-nanogold modified electrode and itsapplication for simultaneous determination of dopamine, ascorbic acid, and uric acid[J]. American Journal of Analytical Chemistry,2012,03:195-203.
    [43]Xiang QL, Guang FK, Ying C. A nafion and choline bi-layer modified carbonfiber electrode for in-vivo detection of dopamine in mouse cerebrum [J]. Chin J AnalChem,2008,36:157-161.
    [44]Ma W, Sun D-M. Simultaneous determination of epinephrine and dopamine withpoly(l-arginine) modified electrode [J]. Chin J Anal Chem,2007,35:66-70.
    [45]Deng X, Wang L, Zhang S, et al. Simultaneous determination of ascorbic acidand dopamine at electropolymerized manganese(iii)5-[o-(1-imidazole butoxy)phenyl]-10,15,20-triphenylporphrine chloride film-modified glass carbon electrode [J].Chin J Anal Chem,2006,34:637-641.