介孔氧化物半导体的制备及其化学传感特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业化进程的加快,人们所使用和接触的气体越来越多,工业生产和室内装修所使用的有机挥发性气体(VOCs,如丙酮、甲醛、苯和甲苯等);煤矿瓦斯和家庭燃气等易燃易爆气体(如H_2、CH_4、CO);固定燃烧装置和汽车尾气排放的有毒有害气体(如NO_x、NH_3、H_2S、SO_2、Cl_2)等不仅污染环境、影响生态平衡,而且严重危害人类的健康。因此,要求对这些气体成分进行检测、报警的领域也日益扩大。水蒸气作为一种特殊的气体,可谓无处不在,从航空航天、气象预报、温室种植到日常家庭生产和生活活动都与水蒸气(湿度)密切相关。因此,开发出具有高灵敏、高选择、快速响应、小型化的气体和湿度传感器是人类迫切需要解决的问题。半导体型化学传感器兼具以上优点,而受到学术界和产业界的广泛关注。半导体型化学传感器是以氧化物半导体为敏感材料,基于待测气体与敏感元件之间的相互作用,引起电特性变化来测量气体浓度的。现阶段研究表明,开发和设计具有多孔结构、大比表面积的氧化物半导体,是改善化学传感特性的有效方案之一。
     介孔材料具有管状、蠕虫状、球形等孔道结构,增加了材料的比表面积,而且还具有孔道大小均匀可调、表面易于功能化修饰、极强的吸附能力等显著的优点。因此,介孔材料作为一种新型高科技材料,广泛应用于化学传感器、催化剂、吸附剂、光电器件等重要的领域。
     面向高性能化学传感器的构建,考虑到介孔材料所具有的优点,如果能把氧化物半导体这一类典型敏感材料介孔化,将会对传感器的化学敏感特性有所提高。本文采用硬模板法合成有序的介孔氧化物半导体以及对其进行修饰,进而探讨它们对几种典型气体(挥发性有机气体CH_3COCH_3、易燃易爆气体H_2、大气污染物NO_2)和湿度(H_2O)的敏感特性,并对反应机理进一步阐释。
     第二章,以二维六方介孔二氧化硅SBA-15为硬模板,通过纳米浇铸的方法合成具有介孔结构的SnO_2。通过对材料表征,可以得知采用硬模板法合成的介孔SnO_2具有有序的介孔孔道结构、高的热稳定性,而且比采用沉淀法合成的纳米颗粒SnO_2表现出更高的比表面积和孔体积。以两种类型SnO_2为敏感材料制作传感器,对挥发性有机气体丙酮进行气敏性能测试,发现具有介孔结构的SnO_2比普通的纳米颗粒SnO_2具有更高的灵敏度。其主要原因是介孔SnO_2敏感材料具有的有序孔道结构有利于目标气体在敏感材料内部进行扩散;高的比表面积能在敏感体表面提供更多的活性位点,从而导致目标气体更容易在其表面进行反应。
     在成功合成介孔SnO_2的基础上,第三章将结合贵金属掺杂的方法提高其对典型的可燃性气体氢气的敏感性能。以介孔SBA-15为硬模板,通过纳米浇铸法成功合成了有序的介孔SnO_2和Pd/SnO_2。分别采用直接原位法和间接浸渍法对介孔SnO_2进行贵金属Pd掺杂,探讨掺杂方法对敏感材料结构以及对H_2敏感特性的影响。结果表明,通过直接原位掺杂法比通过间接浸渍掺杂法制得的敏感材料对氢气的灵敏度更高。直接掺钯法合成的介孔Pd/SnO_2传感器具有高灵敏、低检测下限、快速响应等良好的气敏特性,这与敏感材料的多孔性、高比表面积以及掺杂剂Pd的状态密切相关。
     一般来说,气体分子在三维结构材料比在二维结构材料中的扩散效果更好。在上两章研究的基础上,第四章进一步利用三维立方的介孔二氧化硅KIT-6作为硬模板,通过纳米浇铸的方法合成介孔铁掺杂的三氧化二铟(Fe-doped In2O_3)。它具有高比表面积、周期性排列的有序介孔孔道结构以及结晶良好的孔壁。基于介孔Fe-doped In2O_3传感器对具有强烈刺激性和腐蚀性的大气污染物NO_2气体具有良好的敏感特性。介孔Fe-doped In2O_3敏感材料优异的气体敏感特性除了源于其较高的比表面积和孔体积之外,与铁掺杂能提高对NO_2的吸附能力密切相关。
     以上几章的研究已经表明,采用纳米浇铸法合成的结晶性良好的介孔氧化物半导体是一种极具潜力的气体敏感材料。由于介孔材料具有优异的物理和化学性质,同样也可以作为湿度传感材料。第五章,以SBA-15为硬模板,通过纳米浇铸法合成了介孔钙钛矿型LaFeO_3。以介孔LaFeO_3为敏感材料制作了陶瓷湿度传感器,并对其湿敏特性进行测试。结果表明,测试频率在10Hz条件下,当相对湿度从11%变化到98%时阻抗变化超过5个数量级,在整个湿度区域内显示了高的灵敏度、快的响应时间、低的湿滞和良好的长期稳定性。介孔LaFeO_3比普通的体相材料LaFeO_3具有更优异的湿度敏感特性。通过复阻抗谱图(能斯特谱图)对湿度传感器的敏感机制进行了研究。
     本论文系统地研究了硬模板法制备介孔氧化物半导体以及对其化学传感特性研究。确立一些典型介孔氧化物半导体的制备方法,对其化学传感特性进行测试。结果表明,介孔氧化物半导体比普通纳米颗粒材料具有更优异的气敏和湿敏特性,为构筑高性能的化学传感器提供了途径。
In recent years, the rapid development of industrialization, various types of gasare frequently used. Volatile organic gases (VOCs, such as C2H5OH, CH_3COCH_3,HCHO), flammable or explosive gases (such as H_2, CH_4, CO); toxic and harmfulemissions (such NO_x、NH_3、H_2S、SO_2、Cl_2) not only pollute the environment, but alsohave seriously harm to human health. Requirements detection of these gascomponents are also increasing. Water vapor as a special kind of gas, play a vital rolein numerous fields, such as environmental monitoring, food processing industries,medicine, meteorology and research labs. All nature processes are closely related towater vapor (humidity). Therefore, the development of high sensitivity, fast response,low detection limit, high selectivity, portable gas and humidity sensors are urgentissue to be solved.
     Mesoporous materials with tubular, worm-like and spherical pore structure, havehigh surface area, large pore volume, uniform pore diameter, easy surfacefunctionalization and strong adsorption capacity, rendering the unique materials usefulin wide spectrum of fields. They are widely used in catalysts, adsorbents,optoelectronic devices, and other important areas.
     Mesoporous metal oxides are also considered promising candidates in thedevelopment of chemical sensors. In this paper, several mesoporous metal oxideshave been successfully synthesized by hard template method to detect several typical gas (CH_3COCH_3, H_2, NO_2) and humidity (H_2O), and the sensing mechanism is furtherto be discussed.
     The ordered mesoporous SnO_2have been successfully synthesized viananocasting method using the hexagonal mesoporous SBA-15as template. A study ontheir gas sensing properties for CH_3COCH_3reveals that the sensor utilizingmesoporous SnO_2displays swift response and recovery rate, and much highersensitivity to CH_3COCH_3compared to those based on nanoparticle SnO_2viaprecipitation technique. It is supposed that the outstanding gas sensing properties ofmesoprous SnO_2sensor synthesized by hard template is arisen from the large surfacearea and high porosity, which lead to highly effective surface reaction between thetarget gas molecules and the surface active sites in mesoporous SnO_2sensor.
     The ordered mesoporous SnO_2and Pd/SnO_2have been successfully synthesizedvia nanocasting method using the hexagonal mesoporous SBA-15as template. Astudy on their gas sensingproperties for H_2reveals that the sensor utilizing Pd/SnO_2via direct synthesis method displays swift response and recovery rate and much highersensitivity to H_2compared to those based on mesoporous SnO_2and Pd/SnO_2viaimpregnation technique. It is supposed that the outstanding gas sensing properties ofPd/SnO_2sensor synthesized by direct synthesis method is arisen from the largesurface area, high activity and well dispersion for Pd additive, as well as high porosity,which lead to highly effective surface reaction between the target gas molecules andthe surface active sites in Pd/SnO_2.
     The utilization of mesoporous KIT-6silica as a hard template has turned out to bea versatile tool for the synthesis of mesoporous Fe-doped In2O_3in the nanocastingprocess. It exhibits high specific surface area, oredered periodically arrangedmesopores structure with well crystalline walls and high thermal stability. The productis a promising material for application as gas sensor, since its excellent physical andchemical properties. The Gas sensing measurements reveal significantly increasedsensitivity response to NO_2gas in comparison with the mesoporous pure In2O_3. It issupposed that the outstanding gas sensing properties of the mesoporous Fe-dopedIn2O_3sensor is attributed to higher specific surface area and the pore volume. Besides, Fe species loaded on the sensor is effective to adsorb NO_2gas on the surface, which isalso beneficial to the sensitive response of the sensor.
     Mesoporous LaFeO_3was successfully synthesized via the nanocasting methodby using SBA-15as a replica matrix. A ceramic humidity sensor based on themesoporous LaFeO_3was fabricated and evaluated. Humidity sensing measurementsreveal that impedance greatly changes by more than five orders magnitude when therelative humidity varies from11%to98%at10Hz, and it also displays high response,fast response time, low hysteresis and long-time stability in the entire humidity region.The sensing mechanism of humidity sensors was interpreted by the compleximpedance spectra (Nyquist plot). Furthermore, the sensor based on the mesoporousLaFeO_3displays the higher response compared with that of bulk LaFeO_3prepared bythe sol–gel method. It can be concluded that thus-obtained mesoporous LaFeO_3is anexcellent material for application as humidity sensor because of their high surfacearea and pore volume with mesoporous structure.
     In the paper, we have fabricated of mesoporous oxide semiconductor and studiedof chemical sensing properties. The results show that the mesoporous oxidesemiconductor sensing materials display more excellent gas and humidity sensingperformence than that of nanoparticles sensing materials. It provides a new strategy tobuild excellent chemical sensors.
引文
[1] Brauer P. über eine Methode zur Lichtsummenmessung an Mischphosphoren mitgemischtem Leuchtstoff [J]. Zeitschrift für Physik,1939,114:245–250.
    [2] Seiyama T, Kato A. A new detector for gaseous components using semiconductorthin film [J]. Anal. Chem.,1962,34(11):1502–1503.
    [3] Shaver P J. Activated tungsten oxide gas detectors [J]. Appl. Phys. Lett.,1967,11(8):255–257.
    [4] Meixner H, Lampe U. Metal oxide sensors [J]. Sens. Actuators B,1993,33:198–202.
    [5] Hierlemann A. Higher-Order Chemical Sensing [J]. Chem. Rev.,2008,108:563–613.
    [6] Tricoli A, Righettoni M and Teleki A. Semiconductor Gas Sensors: Dry Synthesisand Application [J]. Angew. Chem. Int. Ed.,2010,49:7632–7659.
    [7] Comini E. Metal oxide nano-crystals for gas sensing [J]. Analytica Chimica Acta2006,568:28–40.
    [8] Gurlo A. Nanosensors: towards morphological control of gas sensing activity.SnO2, In2O3, ZnO and WO3case studies [J]. Nanoscale,2011,3:154–165.
    [9] Eranna G, Joshi B C, Runthala D P. Oxide materials for development of integratedgas sensors-a comprehensive review [J]. Crit. Rev. Solid State Mater. Sci.,2004,29(3–4):111–188.
    [10] Kolmakov A, Klenov D O and Lilach Y. Enhanced gas sensing by individualSnO2nanowires and nanobelts functionalized with Pd catalyst particles [J]. Nano Lett.,2005,5(4):667–673.
    [11] Fergus J W. Perovskite oxides for semiconductor-based gas sensors [J]. Sens.Actuators B,2007,123:1169–1179.
    [12] Lin H, Jang M and Suslick K S. Preoxidation for Colorimetric Sensor ArrayDetection of VOCs [J]. J. Am. Chem. Soc.,2011,133(42):16786–16789.
    [13] Righettoni M, Tricoli A and Pratsinis S E. Si:WO3Sensors for Highly SelectiveDetection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis [J]. Anal.Chem.,2010,82:3581–3587.
    [14] Hübert T, Boon-Brett L, Black G, Banach U. Hydrogen sensors–A review [J].Sens. Actuators B,2011,157:329–352.
    [15] Yamazoe N. Toward innovations of gas sensor technology [J]. Sens. Actuators B,2005,108:2–14.
    [16] Stetter J. Penrose W and Yao S. Sensors, Chemical Sensors, ElectrochemicalSensors, and ECS [J]. Journal of The Electrochemical Society,2003,150:11–16.
    [17] Lee J H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview [J]. Sens. and Actuators B,2009,140:319–336.
    [18] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V,Wisitsoraat A, Tuantranont A, Phanichphant S. Semiconducting metal oxides assensors for environmentally hazardous gases [J]. Sens. Actuators B,2011,160:580–591.
    [19] Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors [J].Catalysis Surveys from Asia,2003,7:63–75.
    [20] Yamazoe N. New approaches for improving semiconductor gas sensors [J]. Sens.Actuators B,1991,5:7–19.
    [21] Morrison S R. Semiconductor gas sensors [J]. Sens. Actuators B,1982,2:329–341.
    [22] Morrison S R. Selectivity in semiconductor gas sensors [J]. Sens. Actuators B,1987,12:425–440.
    [23] Nanis L, Advani G. Effect of sorbed oxygen on tin oxide conductance [J]. Int. J.Electron.,1982,52:345–349.
    [24] Gergintschew Z, Forster H, Kositza J, Schipanski D. Two-dimensionalnumberical simulation of semiconductor gas sensors [J]. Sens. Actuators B,1995,26:170–173.
    [25] G pel W. Solid-state chemical sensors: atomistic models and research trends [J].Sens. Actuators,1989,16:167–193.
    [26] Tiemann M. Porous Metal Oxides as Gas Sensors,[J]. Chem. Eur. J.,2007,13:8376–8388.
    [27] Shimizu Y, Jono A, Hyoo T, Egashira M. Preparation of large mesoporous SnO2power for gas sensor application [J]. Sens. Actuators B,2005,108:56-61.
    [28] Zhao J, Wang W, Liu Y, Ma J, Li X, Du Y and Lu G. Ordered mesoporousPd/SnO2synthesized by a nanocasting route for high hydrogen sensing performance,[J]. Sens. Actuators B,2011,160:604–608.
    [29] Tesfamichael T, Ponzoni A, Ahsan M, Faglia G. Gas sensing characteristics ofFe-doped tungsten oxide thin films [J]. Sens. Actuators B,2012,168:345–353.
    [30] Wang Y, Brezesinski T, Antonietti M and Smarsly B, Ordered Mesoporous Sb-,Nb-, and Ta-Doped SnO2Thin Films with Adjustable Doping Levels and HighElectrical Conductivity [J]. ACS Nano,2009,6:1373–1378.
    [31] Yamazoe N, Shimizu Y. Humidity sensors: principles and applications [J]. Sens.Actuators,1986,10:379–398.
    [32] Zhao J, Liu Y, Li X, Lu G, You L, Liang X, Liu F, Zhang T, Du Y. Highlysensitive humidity sensor based on high surface area mesoporous LaFeO3prepared bya nanocasting route [J]. Sens. Actuators B,2013,181:802–809.
    [33] T. Nltta. Ceramic Humidity Sensor [J]. Ind. Eng. Chem. Prod. Res. Dev.1981,20:669–674.
    [34] Traversa E. Ceramic sensors for humidity detection: the state-of-the-art andfuture developments [J]. Sens. Actuators B,1995,23:135–156.
    [35] Chou K, Lee T, Liu F. Sensing mechanism of a porous ceramic as humiditysensor [J]. Sens. Actuators B,1999,56:106–111.
    [36] Rittersma Z M, Splinter A, B decker A, Benecke W. A novelsurface-micromachined capacitive porous silicon humidity sensor [J]. Sens. ActuatorsB,2000,68:210–217.
    [37] IUPAC Manual of Symbols and Terminology, appendix2, Part1, Colloid andSurface Chemistry [J]. Pure Appl. Chem.1972,31:578.
    [38] Cronstedt A F. Akad. Hankl. Stockholm,1756,18:120–130.
    [39] Bain M. Zeolit catalysis principles and application, CRC press, Florida,1990.
    [40] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Orderedmesoporous sieves synthesized by template mechanism [J]. Nature,1992,359(6397):710–712.
    [41] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic Triblock andStar Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc.,1998,120(24):6024–6036.
    [42] Lu A and Schüth F. Nanocasting: A Versatile Strategy for CreatingNanostructured Porous Materials [J]. Adv. Mater.,2006,18:1793–1805.
    [43] Wu Z and Zhao D. Ordered mesoporous materials as adsorbents [J]. Chem.Commun.,2011,47:3332–3338.
    [44] Wan Y. and Zhao D. On the Controllable Soft-Templating Approach toMesoporous Silicates [J]. Chemical Reviews,2007,107(7):2821-2860.
    [45] Hoffmann F, Cornelius M, Morell J and Fr ba M. Silica-Based MesoporousOrganic–Inorganic Hybrid Materials [J]. Angew. Chem. Int. Ed.,2006,45:3216–3251.
    [46] Prim A, Pellicer E, Rossinyol E, Peiró F, Cornet A and Morante J R. A NovelMesoporous CaO-Loaded In2O3Material for CO2Sensing [J]. Adv. Funct. Mater.,2007,17:2957–2963.
    [47] Lai X, Li X, Geng W, Tu J, Li J, and Qiu S, Ordered Mesoporous Copper Oxidewith Crystalline Walls [J]. Angew. Chem. Int. Ed.,2007,46:738–741.
    [48] Jiao F, Hill A H, Harrison A, Berko A, Chadwick A V and Bruce P G. Synthesisof Ordered Mesoporous NiO with Crystalline Walls and a Bimodal Pore SizeDistribution [J]. J. Am. Chem. Soc.,2008,130:5262–5266.
    [49] Kim H and Cho J. Hard templating synthesis of mesoporous and nanowire SnO2lithium battery anode materials [J]. J. Mater. Chem.,2008,18:771–775.
    [50] Jiao F and Bruce P G. Mesoporous Crystalline β-MnO2–a Reversible PositiveElectrode for Rechargeable Lithium Batteries [J]. Adv. Mater.,2007,19:657–660.
    [51] Shi Y F, Wan Y, Zhao D Y. Ordered mesoporous non-oxide materials [J].Chemical Society Reviews,2011,40(7):3854–3878.
    [52] Knox J H, Kaur B and Millward G R. Structure and performance of porousgraphitic carbon in liquid chromatography [J]. Journal of Chromatography A,1986,352:3–25.
    [53] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sievesvia Template-Mediated Structural Transformation [J]. The Journal of PhysicalChemistry B,1999,103(37):7743–7746.
    [54] Jun S, Joo S H, Ryoo R. Synthesis of new, nanoporous carbon with hexagonallyordered mesostructure [J]. J Am Chem Soc,2000,122:10712–3.
    [55] Tian B, Liu X, Yang H, Xie S, Yu C, Tu B, Zhao D. General synthesis of orderedcrystallized metal oxide nanoarrays replicated by microwave-digested mesoporoussilica [J]. Adv. Mater.,2003,15:1370–1374.
    [56] Ren Y, Ma Z, Qian L, Dai S, He H, Bruce P G. Ordered Crystalline MesoporousOxides as Catalysts for CO Oxidation [J]. Catal Lett,2009,131:146–154.
    [57] Roggenbuck J and Tiemann M. Ordered Mesoporous Magnesium Oxide withHigh Thermal Stability Synthesized by Exotemplating Using CMK-3Carbon,[J]. J.Am. Chem. Soc.,2005,127,1096–1097.
    [58] Yue W,Zhou W. Crystalline mesoporous metal oxide [J] Progress in NaturalScience,2008,18:1329–1338.
    [59] Bagshaw S A, Pinnavaia T J. Mesoporous alumina molecular sieves [J]. Angew.Chem. Int. Ed.,1996,35:1102–1105.
    [60] Shan Z, Jansen J C, Zhou W, Maschmeyer T. Al-TUD-1, stable mesoporousaluminas with high surface areas [J]. Applied Catalysis A: General,2003,254:339–343.
    [61] Yang H, Shi Q, Tian B, Lu Q, Gao F, Xie S, Fan J, Yu C, Tu B, and Zhao D.One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium OxideNanowire Arrays from Mesostructured Frameworks [J]. J. Am. Chem. Soc.,2003,125:4724–4725.
    [62] Shon J, Kim H, Kong S S, Hwang S H, Han T H, Kim J M, Pak C, Doo S andChang H. Nano-propping effect of residual silicas on reversible lithium storage overhighly ordered mesoporous SnO2materials [J]. J. Mater. Chem.,2009,19:6727–6732.
    [63] Tian B Z, Liu XY, Solovyov L A. Facile synthesis and chamcterization of novelmesoporous and mesorelief oxides with gyrodial structures [J]. J Am Chem Soc,2004,l26(3):865–875.
    [64] Wang Y Q, Yang C M, schmidt W. Weakly ferromagnetic ordered mesoporousCo3O4synthesized by nanocasting from vinylfunctionalized cubic Ia3d mesoporoussilica [J]. Adv. Mater.,200517(1):53–56.
    [65] Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via asolid-liquid route [J]. Chem Mater.,2007,19(9):2359–63.
    [66] Jiao F, Jumas J C, Womes M. Synthesis of ordered mesoporous Fe3O4andgamma-Fe2O3with crystalline walls using post-template Reduction/oxidation [J]. JAm Chem Soc,2006,128(39):12905–9.
    [67] Zhang Z, Zuo F and Feng P. Hard template synthesis of crystalline mesoporousanatase TiO2for photocatalytic hydrogen evolution [J]. J. Mater. Chem.,2010,20:2206–2212.
    [68] Rossinyol E, Arbiol J, Peim F. Nanostructured metal oxides synthesized by hardhard template method for gas sensing applications [J]. Sens. Actuators B,2005,109(1):57–63.
    [69] Zhu K K, Yue B, Zhou W Z. Preparation of three dimensional chromium Oxideporous singIe crystals template by SBA-15[J]. Chem Commun,2003,1:98–9.
    [70] Dickinson C, Zhou W Z, Hodgkins R P. Formation mechanism of poroussingle-crystal Cr2O3and CO3O4templated by mesoporous silica [J]. Chem Mater,2006,18(13):3088–5.
    [71] Wagner T, Haffer S, Weinberger C, Klaus D and Tiemann M. Mesoporousmaterials as gas sensors [J]. Chem. Soc. Rev.,2013,42:4036–4053.
    [72] Ren Y, Ma Z and Bruce P G. Ordered mesoporous metal oxides: synthesis andapplications [J]. Chem. Soc. Rev.,2012,41:4909–4927.
    [73] Shimizu Y, Hyodo T, Egashira M. Mesoporous semiconducting oxides for gassensor application [J]. Journal of the European Ceramic Society,2004,24:1389–1398.
    [74] Hyodo T, Abe S, Shimizu Y, Egashira M. Gas-sensing properties of orderedmesoporous SnO2and effects of coatings thereof [J]. Sens. Actuators B,2003,93:590–600.
    [75] Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, CornetA, Morante J R, Leonid A. Solovyov, Tian B, Bo T and Zhao D. Synthesis andCharacterization of Chromium-Doped Mesoporous Tungsten Oxide for Gas-SensingApplications [J]. Adv. Funct. Mater.,2007,17:1801–1806.
    [76] Waitz T, Wagner T, Sauerwald T. Ordered Mesoporous In2O3: Synthesis byStructure Replication and Application as a Methane Gas Sensor [J]. Adv Funct Mater,2009,19:653–661.
    [1] Righettoni M, Tricoli A, and Pratsinis S E. Si:WO3Sensors for Highly SelectiveDetection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis [J]. Anal.Chem.,2010,82:3581–3587.
    [2] S Tian, Y Gao, D Zeng. Effect of Zinc Doping on Microstructures andGas-SensingProperties of SnO2Nanocrystals [J]. J. Am. Ceram. Soc.,2012,95(1):436–442.
    [3] R C Biswal. Pure and Pt-loaded gamma iron oxide as sensor for detection of subppm level of acetone [J]. Sens. Actuators B,2011,157:183–188.
    [4] Choi S, Lee I, Jang B, Youn D, Ryu W, Park C O and Kim I. Selective Diagnosisof Diabetes Using Pt-Functionalized WO3Hemitube Networks As a Sensing Layer ofAcetone in Exhaled Breath [J]. Anal. Chem.,2013,85:17921796.
    [5] Shimizu Y, Jono A, Hyoo T, Egashira M. Preparation of large mesoporous SnO2power for gas sensor application [J]. Sens. Actuators B,2005,108:56–61.
    [6] Sakai G, Baik N S, Miura N, Yamazoe N. Gas sensing properties of tin oxide thinfilm fabricated from hydrothermally treated nanoparticles dependence of CO and H2response on film thickness [J]. Sens. Actuators B,2001,77:116–121.
    [7] Kim H, Cho J. Hard templating synthesis of mesoporous and nanowire SnO2lithium battery anode materials [J]. J. Mater. Chem.,2008,18:771–775.
    [8] Wurzinger O, Reinhardt G. CO-sensing properties of doped SnO2sensors inH2-rich gases [J]. Sens. Actuators B,2004,103:104–110.
    [9] Zhao Q, Gao Y, Bai X. Facile synthesis of SnO2hollow nanospheres andapplications in gas sensors and electrocatalysts [J]. Eur. J. Inorg. Chem.,2006,8:1643–1648.
    [10] Huang J, Matsunaga N, Shimanoe K, Yamazoe N. Nanotubular SnO2templatedby cellulose fibers: synthesis and gas sensing [J]. Chem. Mater.,2005,17:3513–3518.
    [11] Moon C S, Kim H R, Auchterlonie G. Highly sensitive and fast responding COsensor using SnO2nanosheets [J]. Sens. Actuator B,2008,131:556–564.
    [12] Hyodo T, Nishida N, Yasuhiro S, Egashira M. Preparation and gas-sensingproperties of thermally stable mesoporous SnO2[J]. Sens. Actuators B,2002,83:209–215.
    [13] Waitz T, Becker B, Wagner T, Sauerwald T, Tiemann M. Ordered nanoporousSnO2gas sensors with high thermal stability, Sens. Actuators B,2010,150:788–793.
    [14] Wagner T, Haffer S, Weinberger C, Klaus D and Tiemann M. Mesoporousmaterials as gas sensors [J]. Chem. Soc. Rev.,2013,42:4036–4053.
    [15] Ren Y, Ma Z and Bruce P G. Ordered mesoporous metal oxides: synthesis andapplications [J]. Chem. Soc. Rev.,2012,41:4909–4927.
    [16] Rossinyol E, Prim A, Pellicer E, Arbiol J. Synthesis and characterization ofchromium-doped mesoporous tungsten oxide for gas-sensing applications [J]. Adv.Funct. Mater.,2007,17:1801–1806.
    [17] Rossinyol E, Arbiol J, PeiróF, Cornet A, Morante J R, Tian B, Bo T, Zhao D.Nanostructured metal oxides synthesized by hard template method for gas sensingapplications [J]. Sens. Actuators B,2005,109:57–63.
    [18] Zhao D Y, Huo Q S, Feng J L, Stucky G D. Nonionic triblock and star diblockcopolymer and oligomeric surfacant syntheses of highly ordered, hydrothermallystable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120:6024–6036.
    [19] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Stucky G D. Triblockcopolymer syntheses of mesoporous silica [J]. Science,1998,279:548–552.
    [1] Hübert T, Boon-Brett L, Black G, Banach U. Hydrogen sensors–A review [J]. Sens.Actuators B,2011,157:329–352.
    [2] Giang H T, Duy H T, Ngan P Q, Thai G H, Thu D T A, Thu D T. Hydrocarbon gassensing of nano-crystalline perovskite oxides LnFeO3(Ln=La, Nd and Sm)[J]. Sens.Actuators B,2011,158:246–251.
    [3] Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors,[J].Catalysis Surveys from Asia,2003,7:63–75.
    [4] Vaishampayan M V, Deshmukh R G, Mulla I S. Influence of Pd doping onmorphology and LPG response of SnO2[J]. Sens. Actuators B,2008,131:665–672.
    [5] Tsang S C, Bulpitt C D A, Mitchell P C H, Ramirez-cuesta A J. Some new insightsinto the sensing mechanism of palladium promoted Tin (IV) oxide sensor [J]. J. Phys.Chem. B,2001,105:5737–5742.
    [6] Hotovy I, Huran J, Siciliano P, Capone S, Spiess L, Rehacek V. Enhancement ofH2sensing properties of NiO-based thin films with a Pt surface modification [J]. Sens.Actuators B,2004,103:300–311.
    [7] Epifani M, Arbiol J, Pellicer E, Comini E, Siciliano P, Faglia G, Morante J R.Synthesis and gas-sensing properties of Pd-doped SnO2nanocrystals. A case study ofa general methodology for doping metal oxide nanocrystals [J]. Cryst. Growth Des.,2008,8:1774–1778.
    [8] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, StuckyG D. Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores [J]. Science,1998,279:548–552.
    [9] Quek X Y, Tang Q H, Hu S Q, Yang Y H. Liquid phase trans-stilbene epoxidationover catalytically active cobalt substituted TUD-1mesoporous materials (Co-TUD-1)using molecular oxygen [J]. Appl. Catal. A2009,361:130–136.
    [10] Yin F X, Ji S F, Wu P Y, Zhao F Z, Li C Y. Deactivation behavior of Pd-basedSBA-15mesoporous silica catalysts for the catalytic combustion of methane [J]. J.Catal.,2008,257:108–116.
    [11] Ueishi M, Taniguchi M, Tanaka H, Kimura M, Nishihata Y, Mizuki J, KobayashiT.[J]. Appl. Catal. B,2005,57:267.
    [12] Shen Y, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N. Microstructure andH2gas sensing properties of undoped and Pd-doped SnO2nanowires [J]. Sens.Actuators B,2009,135:524–529.
    [13] Diaz R, Arbiol J, Cirera A, Sanz F, Peiro F, Cornet A, Morante J R. Electrolessaddition of catalytic Pd to SnO2nanopowders [J]. Chem. Mater.,2001,13:4362–4366.
    [14] Shimizu Y, Jono A, Hyoo T, Egashira M. Preparation of large mesoporous SnO2power for gas sensor application [J]. Sens. Actuators B,2005,108:56–61.
    [15] Sakai G., N.S. Baik, N. Miura, N. Yamazoe, Gas sensing properties of tin oxidethin film fabricated from hydrothermally treated nanoparticles dependence of CO andH2response on film thickness [J]. Sens. Actuators B,2001,77:116–121.
    [1] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V,Wisitsoraat A, Tuantranont A, Phanichphant S. Semiconducting metal oxides assensors for environmentally hazardous gases [J]. Sens. Actuators B,2011,160:580–591.
    [2] Matsumi Y, Murakami S-I, Kono M, Takahashi K. High-sensitivity instrument formeasuring atmospheric NO2[J]. Anal. Chem.2001,73:5485–5493.
    [3] Cho N G, Yang D J, Jin M-J, Kim H-G, Tuller H L, Kim I-D. Highly sensitiveSnO2hollow nanofiber-based NO2gas sensors [J]. Sens. Actuators B,2011,160:1468–1472.
    [4] Ohira S-I, Dasgupta P K, Schug K A. Fiber optic sensor for simultaneousdetermination of atmospheric nitrogen dioxide, ozone, and relative humidity [J]. Anal.Chem.,2009,81:4183–4191.
    [5] Wagner T, Kohl C, Morandi S, Malag C, Donato N, Latino M, Neri G, Tiemann M.Photoreduction of Mesoporous In2O3: Mechanistic Model and Utility in Gas Sensing[J]. Chem. Eur. J.,2012,18:8216–8223.
    [6] Buonsanti R, Pick T E, Krins N, Richardson T J, Helms B A and Milliron D J.Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled MesoporousArchitectures [J]. Nano Lett.,2012,12:38723877.
    [7] Hyodo T, Inouea H, Motomuraa H, Matsuoa K, Hashishinb T, Tamakib J,Shimizua Y, Egashira M. NO2sensing properties of macroporous In2O3-basedpowders fabricated by utilizing ultrasonic spray pyrolysis employingpolymethylmethacrylate microspheres as a template [J]. Sens. Actuators B,2010,151:265–273.
    [8] Epifani M, Comini E, Arbiol J, Pellicer E, Siciliano P, Faglia G, Morante J R.Nanocrystals as very active interfaces: ultrasensitive room-temperature ozone sensorswith In2O3nanocrystals prepared by a low-temperature sol-gel process in acoordinating environment [J]. J. Phys. Chem. C,2007,111:13967–13971.
    [9] Waitz T, Wagner T, Sauerwald T, Kohl C-D, Tiemann M. Mesoporous materials insensing: morphology and functionality at the meso-interface. Adv. Funct. Mater.,2009,19:653–661.
    [10] Prim A, Pellicer E, Rossinyol E, Peiró F, Cornet A, Morante R J. A novelmesoporous CaO-loaded In2O3material for CO2sensing [J]. Adv. Funct. Mater.,2007,17:2957–2963.
    [11] Kim S J, Hwang I S, Choi J K, Kang Y C, Lee J H. Enhanced C2H5OH sensingcharacteristics of nano-porous In2O3hollow spheres prepared by sucrose-mediatedhydrothermal reaction [J]. Sens. Actuators B,2011,155:512–518.
    [12] Liewhirana C, Tamaekong N, Wisitsoraat A, Tuantranont A, Phanichphant S.Ultra-sensitive H2sensors based on flame-spray-made Pd-loaded SnO2sensing films[J]. Sens. Actuators B,2013,176:893–905.
    [13] Melde B J, Johnson B J. Mesoporous materials in sensing: morphology andfunctionality at the meso-interface [J]. Anal Bioanal Chem,2010,398:1565–1573.
    [14] Shimizu Y, Kanazawa E, Takao Y, Egashira M. Modification of H2-sensitivebreakdown voltages of SnO2varistors with noble metals [J]. Sens. Actuators B,1998,52:38–44.
    [15] Yamazoe N, Sakai G, and Shimanoe K. Oxide semiconductor gas sensors [J].Catalysis Surveys from Asia,2003,7:63–75.
    [16] Tesfamichaela T, Ponzonib A, Ahsana M, Faglia G. Gas sensing characteristics ofFe-doped tungsten oxide thin films [J]. Sens. Actuators B,2012,168:345–353.
    [17] Ueda A, Yamada Y, Kobayashi T. Novel catalysts having NOx-adsorption sitesfor the selective oxidation of ethane [J]. Applied Catalysis A: General,2001,209:391–399.
    [18] Kleitz F, Choi S H and Ryoo R. Cubic Ia3d large mesoporous silica: synthesisand replication to platinum nanowires, carbon nanorods and carbon nanotubes [J].Chem. Commun.,2003,2136–2137.
    [19] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+and Fe3+ions in oxidematerials [J]. Applied Surface Science,2008,254:2441–2449.
    [20] Hu X, Yu J C, Gong J, Li Q, and Li G. α-Fe2O3Nanorings Prepared by aMicrowave-Assisted Hydrothermal Process and Their Sensing Properties [J]. Adv.Mater.,2007,19:2324–2329.
    [21] Hoa N D, Quy N V, Kim D. Nanowire structured SnOx–SWNT composites: highperformance sensor for NOxdetection [J].Sens. Actuators B,2009,142:253–259.
    [22] Bai S, Zhang K, Luo R, Li D, Chen A and Liu C C. Low-temperaturehydrothermal synthesis of WO3nanorods and their sensing properties for NO2[J]. J.Mater. Chem.,2012,22:12643–12650.
    [1] Dellwo U, Keller P, Meyer J-U. Fabrication and analysis of a thick-film humiditysensor based on MnWO4[J]. Sens. Actuators A,1997,61:298–302.
    [2] Yamazoe N, Shimizu Y. Humidity sensors: principles and applications [J]. Sens.Actuators,1986,10:379–398.
    [3] Rittersma Z M, Splinter A, B decker A, Benecke W. A novelsurface-micromachined capacitive porous silicon humidity sensor [J]. Sens. ActuatorsB,2000,68:210–217.
    [4] Chou K S, Lee T K, Liu F J. Sensing mechanism of a porous ceramic as humiditysensor [J]. Sens. Actuators B,1999,56:106–111.
    [5] Nltta T. Ceramic Humidity Sensor [J]. Ind. Eng. Chem. Prod. Res. Dev.,1981,20:669–674.
    [6] Traversa E. Ceramic sensors for humidity detection: the state-of-the-art andfuture developments [J]. Sens. Actuators B,1995,23:135–156.
    [7] Su P G, Shiu C C. Electrical and sensing properties of a flexible humidity sensormade of polyamidoamine dendrimer-Au nanoparticles [J]. Sens. Actuators B,2012,165:151–156.
    [8] Hawkeye M M, Brett M J. Optimized colorimetric photonic-crystal humiditysensor fabricated using glancing angle deposition [J]. Adv. Funct. Mater.,2011,21:3652–3658.
    [9] Yeo T L, Sun T, Grattan K T V. Fibre-optic sensor technologies for humidity[J].and moisture measurement [J]. Sens. Actuators A,2008,144:280–295.
    [10] Wiederhold P R. Water vapor measurement-methods and instrumentation, MarcelDekker,1997.
    [11] Tellis J C, Strulson C A, Myers M M, Kneas K A. Relative humidity sensorsbased on an environment-sensitive fluorophore in hydrogel films [J]. Anal. Chem.,2011,83:928–932.
    [12] Morimoto T, Nagao M, Tokuda F. The relation between the amounts ofchemisorbed and physisorbed water on metal oxides [J]. J. Phys. Chem.,1969,73:243–248.
    [13] Kulwicki B M. Humidity sensors [J]. J. Am. Ceram. Soc.,1991,74:697–706.
    [14] Cheng B, Tian B, Xie C, Xiao Y, Lei S. Highly sensitive humidity sensor basedon amorphous Al2O3nanotubes [J]. J. Mater. Chem.,2011,21:1907–1912.
    [15] Shimizu Y, Arai H, Seiyama T. Theoretical studies on the impedance-humiditycharacteristics of ceramic humidity sensors [J]. Sens. Actuators,1985,7:11–22.
    [16] Fergus J W. Perovskite oxides for semiconductor-based gas sensors [J]. Sens.Actuators B,2007,123:1169–1179.
    [17] Voorhoeve R J H, Johnson D W, Remeika J P, Gallagher P K. Perovskite oxides:materials science in catalysis [J]. Science,1977,195:827–833.
    [18] Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature,1992,358:136–138.
    [19] Crumlin E J, Ahh S J, Lee D, Mutoro E, Biegalski M D, Christen H M, Yang S H.Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3-delta perovskite thin films forsolid oxide fuel cells, J. Electrochem. Soc.,2012,159:219–225.
    [20] Wang J, Wu F Q, Shi K H, Wang X H, Sun P P. Humidity sensitivity ofcomposite material of lanthanum ferrite/polymer quaternary acrylic resin [J]. Sens.Actuators B,2004,99:586–591.
    [21] Zhao S, Sin J K O, Xu B, Zhao M, Peng Z, Cai H. A high performance ethanolsensor based on field-effect transistor using a LaFeO3nano-crystalline thin-film as agate electrode [J]. Sens. Actuators B,2000,64:83–87.
    [22] Toan N N, Saukko S, Lantto V. Gas sensing with semiconducting perovskiteoxide LaFeO3[J]. Physica B,2003,327:279–282.
    [23] Aono H, Traversa E, Sakamoto M, Sadaoka Y. Crystallographic characterizationand NO2gas sensing property of LnFeO3prepared by thermal decomposition ofLn–Fe hexacyanocomplexes, Ln[Fe(CN)6]·nH2O, Ln=La, Nd, Sm, Gd, and Dy [J].Sens. Actuators B,2003,94:132–139.
    [24] Rivas I, Alvarez J, Pietri E, Pérez-Zurita M J, Goldwasser M R. Perovskite-typeoxides in methane dry reforming: Effect of their incorporation into a mesoporousSBA-15silica-host [J]. Catal. Today,2010,149:388–393.
    [25] Song P, Wang Q, Zhang Z, Yang Z. Synthesis and gas sensing properties ofbiomorphic LaFeO3hollow fibers templated from cotton [J]. Sens. Actuators B,2010,147:248–254.
    [26] Vázquez-Vázquez C, Kógerler P, López-Quintela M A. Preparation of LaFeO3particles by sol–gel technology [J]. J. Mater. Res.,1998,13:451–456.
    [27] De Lima R. K C, Batista M S, Wallau M, Sanches E A, Mascarenhas Y P,Urquieta-González E A. High specific surface area LaFeCo perovskites–Synthesis bynanocasting and catalytic behavior in the reduction of NO with CO [J]. Appl. Catal. B:Environ,2009,90:441–450.
    [28] Su H, Jing L, Shi K, Yao C, Fu H. Synthesis of large surface area LaFeO3nanoparticles by SBA-16template method as high active visible photocatalysts [J]. JNanopart Res,2010,12:967–974.
    [29] Nguyen S V, Szabo V, Trong D, Kaliaguine S. Mesoporous silica supportedLaCoO3perovskites as catalysts for methane oxidation [J]. Micropor. Mesopor. Mater.,2002,54:51–61.
    [30] Deng J, Zhang L, Dai H, Au C T. In situ hydrothermally synthesized mesoporousLaCoO3/SBA-15catalysts: High activity for the complete oxidation of toluene andethyl acetate [J]. Applied Catalysis A: General,2009,352:43–49.
    [31] Qu W, Wlodarski W, Meyer J. Comparative study on micromorphology andhumidity sensitive properties of thin-film and thick-film humidity sensors based onsemiconducting MnWO4[J]. Sens. Actuators B,2000,64:76–82.
    [32] Ocakoglu K, Okur S. Humidity sensing properties of novel rutheniumpolypyridyl complex [J]. Sens. Actuators B,2010,151:223–228.
    [33] Faia P M, Furtado C S, Ferreira A J. Humidity sensing properties of a thick-filmtitania prepared by a slow spinning process [J]. Sens. Actuators B2004,101:183–190.
    [34] Faia P M, Furtado C S. Ferreira A J. AC impedance spectroscopy: a newequivalent circuit for titania thick film humidity sensors [J]. Sens. Actuators B,2005,107:353–359.
    [35] Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms [J].Sensor Lett.,2005,3:274–295.
    [36] Anderson J H, Parks G A. The electrical conductivity of silica gel in the presenceof adsorbed water [J]. J. Phys. Chem.,1968,72:3662–3668.
    [37] Yeh Y C, Tseng T Y, Chang D A. Electrical properties of TiO2-K2Ti6O13porousceramic humidity sensor [J]. J. Am. Ceram. Soc.,1990,73:1992–1998.
    [38] Ernsberger F M. The nonconformist ion,[J]. J. Am. Ceram. Soc.1983,66:747-750.
    [39] Bauerle J E. Study of solid electrolyte polarization by a complex admittancemethod [J]. J. Phys. Chem. Solids,1969,30:2657–2670.
    [40] Gu H, Su X, Loh K P. Electrochemical Impedance sensing of DNA hybridizationon conducting polymerfilm-modified diamond [J]. J. Phys. Chem. B,2005,109:13611–13618.
    [41] Gusmano G, Montesperelli G, Traversa E. Microstructure and electricalproperties of MgAl2O4thin films for humidity sensing [J]. J. Am. Ceram. Soc.1993,76:743-750.
    [42] Christensen P, Hammett A. Techniques and mechanisms in electrochemistry,Springer, Netherlands1994.