用户名: 密码: 验证码:
沥青路面无机结合料冷再生基层疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在世界范围内的公路维修改造建设中,为了更好地利用旧路资源,减少对环境的破坏,沥青路面基层冷再生技术得到了越来越广泛的应用。然而,通过对应用基层冷再生技术的沥青路面调查分析结果表明,其使用寿命明显低于常规半刚性基层路面,随着应用交通量和车辆载重的增加,这一差异越发明显。
     常规新建沥青路面的疲劳寿命主要取决于面层沥青混凝土材料和基层材料在交通荷载以及环境因素综合作用下的疲劳性能,路面的使用寿命在《公路沥青路面设计规范》(JTG D50-2006)中给出了明确的规定,而对基层采用冷再生材料的沥青路面,在我国各类相关规范中均未对其疲劳性能提供明确的计算公式。由于原基层材料经过一定时期的各种自然与人为因素作用,重新作为基层材料的骨料或结合料,虽然在强度上能够满足规范中要求的最低限值,但其材料性能不同于新建路面的水泥或二灰稳定基层材料,因此,需要进一步研究其在交通荷载作用下的疲劳性能是否满足要求。深入研究冷再生基层材料的疲劳性能是科学使用冷再生技术的基础,也是在沥青路面设计、养护、管理当中必须明确的问题,具有重要的理论意义和应用价值。
     本文研究的重点是无机结合料(水泥)稳定冷再生基层材料的疲劳性能,为此开展了以水泥、二灰为结合料,RAP-BS型(由旧路面面层和基层材料组合而成)和RAP-S型(原路面层材料)两种类型冷再生基层的疲劳性能及相关路用性能试验研究。结合疲劳试验研究结果,建立了冷再生基层沥青路面结构疲劳力学模型。基于多层弹性体系理论以及断裂力学理论,分析了冷再生基层沥青路面结构的疲劳性能,提出了冷再生基层沥青路面疲劳设计参数,具体的研究内容包括以下几个方面:
     (1)冷再生基层材料路用性能试验研究。试验内容包括无侧限抗压强度试验、劈裂强度试验和回弹模量试验。结果表明:两种冷再生材料的无侧限抗压强度、劈裂强度及回弹模量基本满足《公路沥青路面再生技术规范》(JTG F41-2008)的相关要求。当水泥剂量达到5%时,试验中冷再生混合料的7天无侧限抗压强度满足规范中规定的各级公路底基层和二级及以下公路基层的技术要求,但不满足高速公路和一级公路基层的技术要求。
     (2)冷再生基层材料疲劳试验研究。选用传统的半刚性基层材料(非再生材料)不加新骨料的RAP-S型和RAP-BS型,按比例(10%-40%)加入新骨料的RAP-S型和RAP-BS型试件分别进行疲劳试验研究。结果表明:纯冷再生水泥稳定基层材料的疲劳性能劣于含20%碎石的冷再生水泥稳定基层材料,而含20%碎石的冷再生水泥稳定基层材料的疲劳性能又劣于含40%碎石的冷再生水泥稳定基层材料。在试验所用应力比范围内,添加碎石的冷再生材料疲劳性能优于纯冷再生水泥稳定基层材料,而且应力水平越高,两者疲劳寿命的差值越小。反之,两者的疲劳寿命差值越大。
     (3)基于典型路面结构层次理论和冷再生基层材料的基本力学参数,建立了冷再生基层沥青路面的多层弹性体系结构模型。采用有限元方法,分析了冷再生基层路面结构在车辆荷载作用下的力学响应规律。结果表明:冷再生基层沥青路面结构的疲劳破坏首先发生在基层的底面。不同类型基层的底面拉应力从大到小依次为,水泥稳定碎石基层、含40%碎石冷再生基层、含20%碎石冷再生基层和纯冷再生基层。
     结合材料温缩效应及相关参数,分析了北方地区不同路面结构在年气温变化影响下的温度应力变化规律。结果表明:虽然冷再生基层路面结构的应力受温度变化的影响不可忽略,但车辆荷载作用仍然是导致应力变化的主要因素。
     (4)利用冷再生基层材料疲劳试验的研究结果,建立了冷再生基层沥青路面的多层弹性体系结构疲劳力学模型。利用有限元分析结果并结合现行规范,建立了由材料容许拉应力和荷载作用次数表示的疲劳方程。考虑车辆荷载与温度耦合作用的影响,在疲劳方程中引入了温度疲劳修正系数以表征温度应力的影响。结果表明:所用基层材料的容许拉应力均随着荷载作用次数的增加而降低。水泥冷再生基层材料降低的速率要高于常规半刚性基层材料,这表明冷再生基层材料疲劳性能低于常规半刚性基层材料的疲劳性能。通过与试验路的对比分析可知,常规半刚性基层材料疲劳寿命是纯水泥冷再生基层材料疲劳寿命的2倍,考虑温度应力的冷再生基层路面的疲劳方程更加接近实际情况。
     (5)以断裂力学为基础,基于Forman公式,结合冷再生基层材料疲劳试验研究,建立了适用于冷再生基层材料的疲劳寿命方程。数值分析结果表明:初始裂缝及应力幅值的变化对疲劳寿命有较大的影响。随着初始裂缝或应力幅值的增大,疲劳寿命显著减小。利用Weibull分布建立的疲劳可靠度函数对冷再生材料疲劳寿命可靠度进行了计算分析。结果表明:仅在轻载交通下纯冷再生材料才能获得良好的疲劳可靠度,掺加一定比例的碎石可提高疲劳可靠性能。
     (6)提出了冷再生基层沥青路面疲劳设计指标。结合试验及理论研究结果,提出了冷再生基层沥青路面的疲劳设计指标,即采用基层底面拉应力作为控制冷再生基层疲劳寿命的指标比较合理。在给定合理的材料参数、荷载参数以及环境参数范围内,冷再生基层材料的疲劳性能能够满足设计要求。
In recent years, in order to make better use of resources of existed roads and reduce the impact to the environment, cold-recycled techniques for asphalt pavement bases have got more and more extensive application in highway maintenance and reconstruction in the world. However, the application in roads which used the cold-recycled techniques in the asphalt pavement base shows that its service life is obviously lower than that of the conventional semi-rigid pavement, and the differences will be more and more obvious with the increase of the traffic volume and vehicle loads.
     The fatigue life of a new asphalt pavement mainly depends on the fatigue property of both asphalt concrete materials on the surface and the base, under the action of comprehensive effect of traffic load and environmental factors, In the current bituminous road design standard of China (JTG D50-2006), it gives clear rules on the service life of the road, but no corresponding rules about the calculation formula can be found to calculate the fatigue property of asphalt pavements using cold recycled materials on road bases. Although the strength of base materials constituted by aggregates or binder meets the lowest limit according to the standard, its fatigue property under traffic loads needs to be further investigated to clearly understand whether it meets requirements because of absolute differences from cement or fly ash stabilized base materials in the new road. Therefore, it has important theoretical significances and application values since the deep reaearch on the fatigue property of cold recycled materials is the foundation of scientific use of the cold-recycled technology, and it is also a problem needed to be clear and solved in design and management as well as management of asphalt pavement.
     This dissertation focuses on the fatigue property of stable cold-recycled base materials with the inorganic binder (cement), and the experimental researchs about the fatigue property and the related road performance are performed. The two types of cold-recycled road bases, which are RAP-BS type (which is made of the surface and road base materials of the existed road) and RAP-S type (which is made of surface materials of the existed road) respectively, the cement and fly ash are used as binder in the test. The fatigue mechanics model of asphalt pavements with cold recycled materials is set up based on the fatigue test results. Based on the elastic multi-layer system theory and the fracture mechanic theory, the fatigue property was analyzed and the fatigue design parameters of asphalt pavements with cold-recycled materials was put forward and the main research contents are as follows:
     (1) The experimental study on the road performance about cold-recycled base materials was performed. The test contents included researches on the unconfined compressive strength, the cleavage strength and the resilient modulus. The experimental results showed that the unconfined compressive strength, the cleavage strength and the resilient modulus of both the two types of cold-recycled materials met the corresponding rules in standards about the recycled technology of asphalt pavements for highway (JTG F41-2008). When the dosage of cement reaches five percent, the unconfined compressive strength of cold-recycled mixture in seven days used in the test met the technical requirements of various highway bases and the road bases lowered than level two, but cannot meet that of the highway of level one, according to corresponding rules.
     (2) Fatigue property of cold-recycled base materials was developed. The fatigue tests were performed by using specimens with non-recycled traditional semi-rigid base materials, RAP-S type and RAP-BS type materials added little new aggregate and RAP-S type and RAP-BS type materials added new aggregate by the proportion of ten percent to forty percent, respectively. The test results showed that the fatigue property of the cement-stabilized base with pure cold recycled materials was not better than that contained twenty percent gravel, the fatigue property of cement-stabilized base with cold-recycled materials contained twenty percent gravel was lower than contained forty percent gravel. Within the range of the test stress ratio, the fatigue property of the cement-stabilized base with cold-recycled materials contained gravel is better than that with pure cold-recycled materials, and the higher the stress level was, the smaller the difference of the fatigue life between the two type materials was. Conversely, the larger the difference of the fatigue life between the two type materials was.
     (3) The structural model with elastic multi-layer system of the asphalt pavement was set up with cold-recycled base materials, based on levels of the typical asphalt pavement structure and the basic mechanical parameters of cold-recycled base materials. The mechanical response law of the pavement structure with cold-recycled base materials under the vehicle loads was analyzed, by using finite element method. According to vehicle load calculation results, the fatigue damage of the cold-recycled asphalt pavement occurred at the bottom of the base at the initial stage. The tensile stress at the bottoms of different types of base materials was arranged from big to small, in order of the cement-stabilized gravel base materials, cold-recycled base materials with forty percent gravel, cold-recycled base materials with twenty percent gravel and pure cold-recycled base materials. The temperature stress of different pavement structures was analyzed considering the influence of temperature changes during a year, based on the temperature shrinkage coefficient of the materials. Although the stress affected by temperature in the structure of cold-recycled pavement cannot be ignored, the main factor leading to the changes of stress was still vehicle load.
     (4) The fatigue model with elastic multi-layer system of asphalt pavement was also set up, based on the results of cold recycled base material fatigue test. Using the results of finite element analysis and combining with the current standards, the fatigue equation was established in terms of allowable tensile stress and load times. Considering vehicle and the coupling action of temperature, the modified coefficients of temperature were introduced which indicating the effects of temperature stress. The analysis results showed that the allowable stress of all of the base materials reduced along with the increase of load times. The reduced rate of cement-stabilized base with cold-recycled materials was higher than that of conventional semi-rigid base materials, which meant that conventional semi-rigid base materials was better than that of cement-stabilized base with cold-recycled materials in fatigue property. Through the comparison with experimental road, it can be found that the fatigue life of conventional semi-rigid base materials was as twice as the cement-stabilized base with pure cold-recycled materials, and the fatigue equation was closer to the real situations when considering the temperature stress.
     (5) Based on fracture mechanics and Forman formula, and combined with the tests of cold-recycled base materials, the fatigue equation was established for the application of cold-recycled base materials. Through the numerical analysis, it can be concluded that the initial cracks and the change of stress amplitude had a major influence on the fatigue life. The fatigue life significantly reduced with the increase of initial cracks or stress amplitude. The fatigue reliability function was established by using Weibull distribution, and the established model was used to calculate the reliability of fatigue life of cold-recycled materials. The results showed that the pure cold-recycled base materials can get good fatigue reliability only when it suffers light traffic load and the fatigue reliability can be improved by adding a percentage of gravel.
     (6) The fatigue design index of cold-recycled base asphalt pavements was analyed. The fatigue design index of asphalt pavements with cold-recycled base was put forward based on the results of experimental and theoretical researches. It was reasonable to make the bottom stress as an index to control the fatigue life of cold-recycled base. The fatigue properties of cold recycled materials can meet design requirements, when prameters of material, the loading, and the environmental influence were all in a reasonable range.
引文
[1]中华人民共和国交通运输部.2010年公路水路交通运输行业发展统计公报[R].2010年.
    [2]Messmer W. Asphalt Recycling Quantitative und Qualitive Ueberlegungen[J]. Strasse und Verkehr, 1990,5:12-17.
    [3]吕伟民,严家汲.沥青路面再生技术[M].北京:人民交通出版社,1989.
    [4]芦军.沥青路面老化行为与再生技术研究[D].西安:长安大学,2008年.
    [5]张金奎.泡沫沥青冷再生技术研究[J].中国公路,2009,5:60-61.
    [6]Epps J. A. Guidelines for Recycling Asphalt Pavements[J]. Journal of the Association of Asphalt Paving Technologists,1980:139-154.
    [7]Blumer M. Recycling aus der Sicht der Bemessung[J]. Strasse und Verkehr,1992,7:25-36.
    [8]Huffman, J.E. Update on Asphalt Concrete Recycling, Reclamation[J]. Better roads,1998,7:19-22.
    [9]日本道路协会.日本路面废料再生利用技术指南[M].北京:人民交通出版社,1990,25-27.
    [10]郑其华,晏杉.水泥稳定就地冷再生工艺在公路养护中的应用研究[J].公路交通科技(应用技术版),2010,68(8):48-51.
    [11]赵文光.国外道路就地冷再生机[J].筑路机械与施工机械化,1999,16(2):20-21.
    [12]美国沥青再生协会,深圳海川工程科技有限公司译.美国沥青再生指南[M].北京:人民交通出版社,2001.
    [13]Ramzi A., Taha Khalifa S Al-Jabri Ali S. Al-Harthy Tamer Al-Wahaibi. Development of Cementitious Materials from Wastes and By-Products Generated in Oman [J]. Journal of Materials Science and Engineering,2011,5 (4):411-416.
    [14]Taha Ramzi, Al-Harthy Ali, Al-Shamsi Khalid, et al. Cement Stabilization of Reclaimed Asphalt Pavement Aggregate of Road Bases and Subbascs[J]. Journal of Materials in Civil Engineering. 2002,14 (3):239-245
    [15]Taha Ramzi. Evaluation of Cement kiln Dust-Stabilized Reclaimed Asphalt Pavement Aggregate Systems in Road Bases[J]. Transportation Research Record,2003,2:11-17.
    [16]张波,王新育.沥青路面冷再生技术在G108大修工程中的应用研究[J].交通标准化,2008(9):147-149.
    [17]王延茹.沥青路面冷再生技术在沈营线上的应[J].北方交通,2010,3:18-20.
    [18]杨宇亮,孙立军,毛如麟,米惠君.回收旧沥青混合料冷拌再生技术的研究[J].公路交通科技,2002,19(6):38-40.
    [19]郑彦军.冷再生技术的研究及应用[D].天津:河北工业大学,2002.
    [20]王丽.水泥为添加剂的沥青路面冷再生技术的研究[D].天津:河北工业大学,2003.
    [21]王丽,魏连雨,刘奎颖.冷再生混合料力学性能试验研究[J].河北工业大学学报,2003,32(3):98-102.
    [22]郝合瑞.旧沥青路面材料冷再生技术研究[D].西安:长安大学,2004.
    [23]马君毅,郝合瑞,何义军等.水泥稳定旧沥青路面材料在道路基层中的应用[J].交通标准化,2005,5:52-55.
    [24]武建民,郝合瑞,马君毅等.沥青路面冷再生深度的确定[J].交通标准化,2007,10:112-115.
    [25]李强,马松林,王鹏飞.沥青路面冷再生混合料疲劳性能[J].交通运输工程学报,2004,4(1)7-10.
    [26]马君毅.冷再生旧沥青路面材料在基层中的应用研究[D].西安:长安大学,2005.
    [27]马君毅,谷志文,吉军鹏.水泥稳定沥青路面冷再生技术性能研究[J].中外公路,2008,28(2):40-43.
    [28]苌军英.二灰为添加剂的沥青路面冷再生基层技术研究[D].天津:河北工业大学,2005.
    [29]魏连雨,苌军英,陈朝霞.二灰稳定旧路面材料室内试验研究[J].河北工业大学学报,2005,34(4):69-73.
    [30]刘强,王民,郝增新.二灰作添加剂对废旧沥青混凝土路面完全冷再生的应用研究[J].公路,2009,7:329-332.
    [31]刘强.无机添加剂对聊城市废旧沥青路面完全冷再生的应用研究[D].长春:吉林大学,2006.
    [32]周洪飞.沥青路面现场冷再生基层技术的应用研究[D].长春:吉林大学,2006.
    [33]姚辉,李亮,应荣华等.采用贝雷法的冷再生混合料级配设计研究[J].公路交通科技,2011,28(1):7-12.
    [34]姚辉.沥青混合料冷再生技术研究[D].长沙:长沙理工大学,2007.
    [35]杨宁,侯相深.水泥稳定旧沥青面层和半刚性基层再生混合料的路用性能试验研究[C].第七届全国交通运输领域青年学术会议,2007.
    [36]杨宁.沥青路面全深度复拌式现场冷再生技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [37]赵亚兰,陈拴发.再生沥青混合料老化性能研究[J].中外公路,2011,31(1):181-184.
    [38]黄卫兵.二灰稳定冷再生混合料技术研究[D].西安:西安建筑科技大学,2007.
    [39]崔晓义.沥青路面冷再生技术在吉林省公路改建工程中的应用[D].长春:吉林大学,2007.
    [40]靳卫东,张弘强,戴文亭.关于回收混凝土再利用的研究[J].公路交通科技,2002,19(3)32-37.
    [41]刘蓓蓓.废旧沥青混合料再生技术应用于农村公路路面结构试验研究[D].扬州:扬州大学,2007.
    [42]刘晓娜.道路基层水泥稳定碎石结构材料的再生利用[D].成都:成都理工大学,2007.
    [43]张文浩,张科飞,陶卓辉.高性能乳化沥青厂拌冷再生技术研究[J].市政技术,2011,29(3)134-139.
    [44]张科飞.沥青路面就地冷再生技术研究[D].西安:长安大学,2008.
    [45]郝培文,邢傲雪,王宣懿.沥青路面全厚式再生技术[J].筑路机械与施工机械化,2010,27(1):16-20.
    [46]吴永平.就地热再生技术的发展与应用[J].中国公路,2004,20:144-146.
    [47]吴永平.沥青路面冷再生技术及其适用性[J].建筑机械化,2007,3:10-12.
    [48]范春娇.沥青路面就地冷再生技术研究[D].西安:长安大学,2008.
    [49]钟梦武,吴超凡,于永生等.掺加水泥的乳化沥青冷再生沥青混合料设计方法研究[J].公路,2008,(1):195-199.
    [50]吴超凡,黄开宇,于永生等.冷再生沥青混合料水稳定性试验研究[J].公路,2007,5:189-192.
    [51]吴超凡,曾梦澜,钟梦武等.乳化沥青冷再生混合料设计方法试验研究[J].湖南大学学报(自然科学版),2008,35(8):19-23.
    [52]吴超凡,曾梦澜,赵明华等.乳化沥青冷再生混合料路用性能试验研究[J].公路交通科技(学术版),2009,26(7):27-32.
    [53]舒森.陕西省旧沥青路面水泥稳定就地冷再生基层施工技术指南[M].北京:人民交通出版社,2010.
    [54]舒森,郭平.泡沫沥青厂拌冷再生技术在高速公路中的应用[J].筑路机械与施工机械化,2009,(1):46-49.
    [55]蒋应军,陈忠达,彭波等.密实骨架结构水泥稳定碎石路面配合比设计方法及抗裂性能[J].长安大学学报(自然科学版),2002,(4):9-12.
    [56]耿九光,陈忠达,李龙等.水泥-乳化沥青冷再生混合料配合比设计[J].长安大学学报(自然科学版),2009,29(1):10-14.
    [57]张西棉.地冷再生基层应用技术研究[D].西安:长安大学,2010.
    [58]苏晓艳.全深式就地冷再生路面基层质量控制[D].西安:长安大学,2010.
    [59]王真,何亮,张捷等.乳化沥青冷再生混合料疲劳性能试验研究[J].公路,2010,(12):160-163.
    [60]程志豪.二灰稳定基层RAP完全利用冷再生技术研究[D].西安:长安大学,2011.
    [61]刘涛.水泥冷再生基层技术研究[D].重庆:重庆大学,2011.
    [62]侯昭光.冷再生基层路面结构力学响应影响因素分析[J].重庆交通大学学报(自然科版),2011,30(1):44-47.
    [63]马松林,余礼昌,李雷.全深式冷再生材料温缩试验与分析[J].低温建筑技术,2011,(2)8-10.
    [64]唐娴,刘亚军.水泥就地冷再生基层施工应用研究[J].筑路机械与施工机械化,2011, (7)64-67.
    [65]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004.
    [66]贾侃.半刚性基层材料的疲劳特性研究[D].西安:长安大学,2008.
    [67]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003(2):18-25.
    [68]Christian Busc, Finn Thogcrsen, Anders Hcnrichscn. Development and Validation of a Mechanistic Recursive-incremental Deterioration Model for Cement Stabilized Base Courses[C]. Transportation Research Record:Journal of the Transportation Research Board,2006, (1974):128-137.
    [69]Judycki J. Comparison of Fatigue Criteria for Flexible and Semi-rigid Pavemcnts[C]. Proceedings of the 8th International Conference on Asphalt Pavements, Seattle,1997.
    [70]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社,1998.
    [71]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社,1999.
    [72]叶国铮.具有高抗剪稳定性的半刚性路面[J].中南公路工程,1986,(1):231-232.
    [73]叶国铮.水泥稳定砂砾的疲劳特性和优化设计[J].中国市政工程,1995,3(70):13-17.
    [74]沙爱民,张登良,计永明.无机结合料稳定级配砂砾的疲劳特性研究[J].土木工程学报,1993,26(1):68-73.
    [75]周浩,沙爱民.半刚性材料疲劳性能材料组成影响因素分析[J].武汉理工大学学报,2012,34(1):41-45.
    [76]蔺瑞玉,沙爱民.分形在半刚性基层材料抗压强度预估模型中的应用[J].武汉理工大学报,2011,(9):45-49.
    [77]贾侃,沙爱民,陆剑卿.半刚性基层材料的有效模量值[J].长安大学学报(自然科版),2009,29(1):15-19.
    [78]张海,马光超,张敏江,马静.级配碎石基层对沥青路面反射裂缝抑制机理分析[J].沈阳建筑大学学报,2011,27(2):247-252.
    [79]沙爱民,贾侃,陆剑卿等.半刚性基层材料动态模量的衰变规律[J].中国公路学报,2009,22(3):1-6.
    [80]刘忠根.半刚性基层材料室内试验研究[J].吉林建筑学院学报,2003,20(1):38-42.
    [81]曾石发,徐江萍.冷再生基层疲劳性能研究[J].公路交通科技,2007,24(3):39-42.
    [82]才华,方冉,林森.冷再生基层混合料疲劳试验研究[J].公路交通科技(应用技术版),2010(8):59-62.
    [83]潘学政,拾方治.泡沫沥青冷再生混合料疲劳性能的探讨[J].公路交通科技,2007,24(8)19-26.
    [84]朱磊.车辆超载对沥青路面影响及设计方法[J].交通科技与经济,2009,52(2):10-11.
    [85]公路沥青路面再生技术规范(JTG F41-2008) [S]北京:人民交通出版社,2008.
    [86]公路工程沥青及沥青混合料试验规程(JTJ052-2000)[S].北京:人民交通出版社,2000.
    [87]公路工程无机结合料稳定材料试验规程(JTGE51-2009) [S]北京:人民交通出版社,2009.
    [88]刘峰,李宇,黄云涌等.沥青混合料疲劳试验中两种控制模式的选择分析[J].中外公路,2005,25(4):192-195.
    [89]武建民.半刚性基层沥青路面使用性能衰变规律研究[D].西安:长安大学,2005.
    [90]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002.
    [91]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [92]韩子东.道路结构温度场研究[D].西安:长安大学,2001.
    [93]周生金.沥青路面荷载与温度棍合作用疲劳特性研究[D].西安:长安大学,2005.
    [94]郝大力.路面性能的评价与分析研究[D].西安:长安大学,2000.
    [95]徐世娘.混凝土断裂韧性的试验研究[J].水利学报,1982,6:61-66.
    [96]Neville A M. Some Aspects of the Strength of Concrete[J]. Civil Engineering (London),1959.
    [97]Kaplan M F. Crack Propagation and the Fracture of Concrete[J]. ACI Journal,1961.
    [98]王新友.混凝土断裂性能及其行为综合设计的实验与理论研究[D].上海:同济大学,1990.
    [99]高泉.混凝土断裂参数的测试方法及复合型裂纹断裂判据的试验研究[D].大连:大连理工大学,1992.
    [100]Shi Yan, Hai Zhang. Smart Vibration Control Analysis of Seismic Response Using MR Dampers in the Elevated Highway Bridge Structures[C]. SPIE v5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems,1053 (June 03,2005)
    [101]Workshop Notes. Application of Fracture Mechanics to Dam Engineering[C]. Switzerland, September,1990.
    [102]易成,沈世钊.疲劳裂纹扩展理论及其在混凝土疲劳性能研究中的应用[J].哈尔滨建筑大学学报,2000,33(5):20-24.
    [103]程育仁,缪龙秀,候炳麟.疲劳强度[M].北京:中国铁道出版社,1990.
    [104]王宏畅,黄晓明,傅智.半刚性基层表面裂缝影响因素[J].交通运输工程学报,2005,6:37-45.
    [105]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用[J].中国公路学报,1998,4:16-25.
    [106]岳福青,杨春风.半刚性基层沥青路面温缩裂缝的有限元分析[J].桂林工学院学报,2004,24(1):52-54.
    [107]王宏畅,黄晓明.高等级沥青路面基层底裂缝三维数值分析[J].公路交通科技,2005,22(12):1-4.
    [108]Liu H W. Crack Propagation in Thin Metal Sheet under Repeated Loading[J]. ASME Trans., Journal of Basic Engineering,1961,??:23-32.
    [109]Liu H W. Crack Propagation in Thin Metal sheet under Repeated Loading [D]. Univesity of Illinois, 1959.
    [110]卢喜经.混凝土疲劳断裂及其尺寸效应研究[D].大连:大连理工大学,2004.
    [111]田明伦,黄松梅,刘恩锡等.混凝土的断裂韧度[J].陕西机械学院学报,1982,(6):38-46.
    [112]徐世娘.混凝土断裂韧性的试验及分析[J].大连工学院水利学报,1982,(6):61-66.
    [113]蒋国宾.混凝土平面应变断裂韧性的试验研究[J].重庆交通学院学报,1986,3(18):105-113.
    [14]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981.
    [115]熊文勇.大体积混凝土初始裂缝原因分析及防治措施[J].陕西建筑,2006,12(11):135-136.
    [116]马静.水泥稳定冷再生基层沥青路面疲劳寿命研究[D].沈阳:沈阳建筑大学,2011.
    [117]黄晓明.沥青路面设计[M].人民交通出版社,2002.
    [118]Ang A.H-S.Ang. Symposium on Structural and Geoteehnical Mechanics[M]. University of Linoisat Urbana Champaign,1975.
    [119]邓学钧,黄晓明.路面设计原理与方法[M].北京:人民交通出版社,2001.
    [120]姚祖康.公路设计手册[M].北京:人民交通出版社,1999.
    [121]Brown S. F., Jones C. P. and Broderick B. V. Use of Non-woven Fabrics in Pavement Road Pavcmcnt[J]. Civil Engineering,1982,2:68-72.
    [122]Brown S. F., Thorn N. H. and Sanders P. J. A Study of Grid Reinforced Asphalt to Combat Reflection Cracking[C]. Association of Asphalt Paving Technologists Annual Meeting,2001.
    [123]赵海生.半刚性基层沥青路面力学性能分析[D].西安:长安大学,2010.
    [124]张悦.带残留层的冷再生基层沥青路面结构力学行为研究[J].北方交通,2011(3):12-15.
    [125]Dormon K. R. The Extension to Practice of a Fundamental Procedure for the Design of Flexible PavementsfC]. Proceedings of International Conference on the Structural Design of Asphalt Pavements, Ann Arbor,1962.
    [126]Shell International Petroleum Co. Ltd. Shell Pavement Design Manual-Asphalt Pavements and Overlays for Road Traffic[M]. London:Shell International Petroleum,1978.
    [127]Valkering C. P. and Stapel F. D. R. The Shell Pavement Design Method on a Personal Computer[C]. 7th International Conference on Asphalt Pavements, Nottingham,1992.
    [128]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003(3):18-24.
    [129]Uzan, J. Permanent Deformation bz Pavement Design and Evaluation[D]. Technion:Israel Institute of Technology,1982.
    [130]Huschek, S. Evaluation of Rutting due to Viscous Flow in Asphalt Pavements[C]. Proceedings of Fourth International Conference on the Structural Design of Asphalt Pavements,1977, v1:497-508.
    [131]AASHTO2000. AASHTO Designation TP7-00, Standard Test for Determining the Permanent Shear Strain and Stiffness of Asphalt Mixtures Using the Superpave Shear Tester (SST) [S],2000.
    [132]Harvey J., Guada I., Monismith C. L., Bejarano M. Repeated Simple Shear Test for Mix Design:A Summary of Recent Field and Accelerated Pavement Test Experience in California[C]. Proceedings of 9th International Conference on Asphalt Pavements, Copenhagen,2002.
    [133]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社,1988.
    [134]公路沥青路面设计规范(JTJ 014-97)[S].北京:人民交通出版社,1997.
    [135]公路沥青路面设计规范(JTG D50)[S].北京:人民交通出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700