用户名: 密码: 验证码:
车身碰撞安全的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国汽车工业的快速发展,我国民用汽车保有量也大幅增加,与此同时,全国每年发生的交通安全事故也在不断增多,甚至数项恶性交通事故引起了全国人民的强烈关注。但在我国目前的国情下,造成汽车事故频繁发生的根本性原因在可以预见的未来必然还将长期存在,也因此,对我国而言,道路交通事故实际上已经危害到了国家安全,进行汽车安全性研究,以提高司乘人员以及道路行人的安全指标就显得极为必要而且极为迫切。
     本文结合国家自然基金重点项目“冲压成形与模具设计的基础理论、计算方法和关键技术”、国家杰出青年基金项目“基于KBE的冲压模具CAD专家系统理论以及聚合物板成形理论与计算方法研究”和国家汽车电子产业化重大专项(批准号:No.2004-2563)研究项目,针对当前汽车碰撞安全领域中的被动安全技术和行人安全保障技术的部分关键技术开展了研究,主要内容及成果有:
     1)提出了一种双向参数化的设计优化过程,能够有效发挥CAD参数化和CAE参数化设计方法的优势,将每一次CAE分析结果实时反馈至覆盖件的CAD过程中,并实时动态显示车身零件的结构优化结果,可完成仿真分析对前期结构设计的方向驱动。这种方法不但可以用于车身的局部覆盖件设计,对其整体设计也有很好的效果,能够有效减少车身零件的设计周期,是未来车身设计领域的一种发展趋势。为了较好的展示双向参数化方法的使用,本章以某自主品牌汽车某车型的前横梁覆盖件的耐撞性优化设计为例,对整车车身骨架结构建立了参数化的有限元模型:以车身骨架结构的关键参数为设计变量,以覆盖件的轻量化设计为目标,以满足覆盖件的正面抗撞性为约束条件,建立整车的有限元优化模型;通过求解该优化模型,获得满足安全性要求,同时达到轻量化目的的设计参数。然后,根据优化得到的设计参数,建立整车碰撞模型,进行安全性和轻量化的实验验证。
     2)结合某车型的保险杠实际设计过程,对行人小腿保护技术进行了深入研究。首先根据当前保险杠的实际使用,提出了一种新型的保险杠结构,即:在保险杠前端用一个吸能缓冲板替换填充泡沫,让其充分吸收小腿碰撞能量;其次基于响应表面模型,提出了一种符合Euro-NCAP法规的保险杠与腿部冲击器的碰撞有限元模型,并进行了碰撞仿真与试验的验证;再次,对保险杠吸能板的设计,采用全因子试验设计方法对不同材料性能和板料厚度组合进行仿真计算,并对计算结果进行分析总结,得到优化的设计方案;最后结合基于行人小腿保护的保险杠吸能板开发过程,提出一种有效的保险杠设计优化流程,为汽车行业保险杠的优化设计形成有价值的参考。
     3)针对行人头部保护的发动机罩开发技术进行了研究。首先结合多刚体动力学的理论,分析了行人运动特性对自身保护的影响,给出了基于中国人特征的行人参数,从碰撞事例研究了汽车与行人碰撞过程中行人产生损伤的特征,获取了在此过程中各项影响元素的分布规律;
     通过分析发动机罩结构特点以及大量的碰撞仿真结果,总结了发动机罩区域中所有潜在碰撞点处的HIC值规律,证明了头部碰撞伤害值和发动机罩碰撞点与头部潜在二次碰撞点的距离、二次碰撞点处的材料屈服强度具有高度相关性,并总结出了相关性经验公式,为汽车车身设计者快速预测发动机罩板上各碰撞子分区的危险点提供了有力依据;根据该相关性公式,可在进行碰撞仿真计算和实车碰撞试验之前,根据发动机罩及其下部结构计算出HIC相对值大小的分布趋势图,找出各子区域内的“最危险点”,从而为仿真计算和实车试验提供有用参考。最后本文还通过实车试验验证,表明了该方法寻找危险点的可靠性。
     4)B柱零件是保障汽车侧面耐撞性的重要部件,在保证B柱零件轻量化的前提下,B柱零件仍需具有较好的耐撞性,基于此本文提出了基于轻量化的B柱零件满足耐撞性的优化设计方法,该设计方法对于目前的汽车轻量化设计过程具有一定的指导作用;本文建立了以整车碰撞过程为边界条件的局部子模型,并将子模型与整车模型进行了对比分析,使其可以作为整车模型优化计算的代理模型,从而大大减少仿真计算时间;提出了在子模型中采用热成形B柱外板对原始外板进行替换、去掉B柱加强内板的方案,并通过Optimus建立了B柱外板和内板厚度的优化流程,最终获取了符合工程实际需求的板材厚度匹配,可实现侧面结构减重4.64kg左右;将子模型的优化结果返回到整车模型中进行了优化结果验证,结果证明本文的优化设计方案是可行的。
With the rapid development of Chinese automobile industry, the number of civil vehicleownership has grown very much. At same time, the number of traffic accident happened inchina for every year has increased constantly. Several malignant accidents caused a strongfocus on by national people. Under the current situation in our country, the fundamentalcause of car accidents would inevitably exist for a long time in the foreseeable future.Therefore, road traffic accident has harm to national security. It was urgent that safety studyof vehicle in order to protect drivers and passengers.
     This research was based on the key project of national nature fund “the basic theory,calculation methods and key technology of Stamping and die design”, National outstandingyouth fund projects “Stamping die CAD based on KBE expert system theory and thepolymer plate shape theory and the calculation method for the research” and the majorproject of national automotive electronics industry. This research was focus on the keytechnology of passive safety and pedestrian protection. The main content and researchresults were followed as:
     1) A design and optimization method of two-way parameterized was proposed. Thismethod could bring advantage of design optimization whose main characteristics wasrealized parameterization of CAD and CAE. In this design optimization method, the result ofCAE analysis would been feedback to the CAD processing. The design optimization resultof car body parts was displayed in real time and could realize the function that the CAEanalysis guided the structure design early stage. This method could be used design ofauto-body panels not only part but also as a whole. This method could shorten the cycle ofparts design and would be the developing trend of future in the field of auto-body design. Inorder to display the function of the optimization method of two-way parameterize, using thecrashworthiness design optimization of front beam as example, Parameterized finite elementmodel of the vehicle body frame structure was constructed. With the key parameters ofvehicle body frame structure as design variable, the lightweight of the structure as object, thecrashworthiness of front impact as constraint, the design optimization model was constructed.Using the results of design optimization, the design parameters were obtained that they meet the requirements of crashworthiness and lightweight. According the obtained variables, thereal vehicle model was manufacture, and was been validation.
     2) Firstly, the pedestrian leg protection technology was researched with the designprocess of bumper as example. A new style bumper structure was designed according theactual usage of current bumper. In this new bumper, the filled foam was instead by a newenergy absorption buffer plate. This new style bumper could absorb energy fully. Secondly, anew impact finite element model was proposed based on the response surface model. Theimpact finite element model was validated by simulation and experiment. This finite elementmodel met the regulations of Euro-NCAP. Thirdly, the design optimization of absorb panelof bumper was carried out. With full factors design of experiment method, the combinationof different material property and thickness of panel was simulated. After the analysis ofresults, the final design scheme was determinate. Finally, based on the development processof absorb panel of bumper, a method of technological design optimization process of bumperwas proposed. This method could be referenced by the auto industry.
     3) The research about pedestrian head protection of auto-body engine hood was carriedout. Based on the theory of multi rigid body, the influence that pedestrian movementcharacteristics to its own protection. The pedestrian parameters based on Chinesecharacteristic were obtained. Through the impact examples, the injury characteristic ofpedestrian in impact between pedestrian and vehicle was researched. The distributionregularities of different influence factors was obtained. Through analysis of the feature ofengine hood structure and impact results, the distribution regularities of HIC value on theengine hood was obtained. It was been proved that HIC value was directly proportional tothe distance between engine hood impact position and second impact position. This relationwas same with material yield strength of second impact position. The correlation empiricalformula was summarized. This formula could be used as the basis of rapidly predictiondangerous position on the engine hood for auto-body designer. According this correlationformula, the trend diagram of relative HIC value could be calculated and the most dangerousposition in each domain could be obtained, before the impact simulation and experiment.These could be referenced by impact simulation and experiment later. Finally, the searchmost dangerous position method was validated by experiment and the result indicated thatthis method was reliable.
     4) The B pillar was the important part which guaranteed the side crashworthiness ofauto-body. In order to guarantee the crashworthiness and lightweight of B pillar at same time, a design optimization method was proposed. This method could be referenced by lightweightdesign in auto-body. The sub model was constructed using the motion of whole vehicleimpact process as the boundary conditions. Through the comparative analysis of sub andwhole model, the sub model could be used as the surrogate model of the whole. With the submodel, the time of simulation could be decreased. In the sub model, the original outer panelof B pillar was replaced by hot-formed panel, and the original inner reinforcing panel of Bpillar was no using. The design optimization model was constructed using software Optimus.The thickness of outer and inner panels was set as design variable. Through the designoptimization model, the thickness of panel that met the engineering needing was obtained.Comparing with the original panel structure, the weight of new structure decreased4.65kg.Then, the results of optimization were set back the whole model, and validation test wascarried out. The result of validation proved that the proposed design optimization methodwas feasible.
引文
[1]2010年我国汽车保有量突破7000万辆[EB/OL].中国高速公路网http://www.cngaosu.com/zhuanti/2010.5.31.
    [2]2011年全国共接报涉及人员伤亡道路交通事故21万余起[EB/OL].http://bbs.2500sz.com/bbs/thread-6463047-1-1.html.
    [3] Ray M. H, Hiranmayee K. Evaluating Human Risk in Side Impact Collision withRoadside Objects[C]. Transportation Research Record, Transportation ResearchBoard,2008.
    [4]朱西产.面向公众的汽车安全性评价方法及其对我国汽车工业的影响[J].INFATSProceedings,2005.10.
    [5]王兴宇,苏建,张立斌,等.车辆三维轮廓的光栅投影测量技术研究[J].公路交通科技,2009,vol(26):6,123-126.
    [6]黄世霖.汽车前沿观察[C].北京,2009.53.
    [7]王煊,李宏光,赵航.现代汽车安全[M].北京:人民交通出版社,1997.
    [8]顾力强,林忠钦.国内外汽车碰撞计算机模拟研究的现状及趋势[J].汽车工程,1999,21(1):1-9.
    [9]张志勇.ANSYS_LS_DYNA的车辆后防护装置碰撞仿真与优化设计[D].西华大学,2010,13-23.
    [10]孟凡忠.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985.
    [11]赵志杰.汽车耐撞性数值分析网格研究及应用[D].上海交通大学博士学位论文,2010.3.
    [12]杨华.汽车碰撞试验缓冲吸能装置的计算机仿真与试验研究[D].湖南大学硕士学位论文,2002.4.
    [13]王勖成,邵敏.有限元基本原理和数值方法(第二版).北京:清华大学出版社,1997.
    [14]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [15] Zhong Zhihua. Finite element Proceedure sofeontactim Pact Problems. OxfordUniversity Press,1993.
    [16] HallqulstJQ. LS-DYNA3D the oretieal manual.Liver more:Liver more SoftwareTeehnology Corporation,1998.
    [17]赵海鸥.LS-DYNA动力分析指南[M].北京:北京兵器工业出版社,2003.
    [18]李裕春,时党勇,赵远.ANSYS/LS-DYNA10.0基础理论与工程实践[M].北京:中国水利水电出版社,2006.
    [19]张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-176.
    [20]钟志华,张维刚,曹立波,等.汽车碰撞安全技术[M].北京:机械工业出版社,2003.
    [21] CRAIG K J, STANDER N, DOOGE D A,et al. Automotive crashworthiness designusing response surface-based variable screening and optimization[J].EngineeringComputations,2005,22(1-2):38-61.
    [22] YAMAZAKI K, HAN J. Maximization of the crushing energy absorption ofcylindrical shells[J]. Advances in Engineering Software,2000,31(6):425-432.
    [23]关于机动车碰撞时对行人及弱势道路使用者加强保护和减轻严重伤害的认证统一规定[P],2008.
    [24]汽车对行人的碰撞保护[P],2009.
    [25]佐腾武,吴关昌,陈倩译.汽车的安全.北京:机械工业出版社,1988.
    [26] BennettJA, et al.The Application of Optimization Teehniquesto Problems ofAutomotive Crash worthiness.SAE770608.
    [27]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.北京:高等教育出版社,1989.
    [28] TNO. MADYMO theory manual version6.2. Holland: TNO,2004.
    [29]黄世霖,张金换,王晓冬,等.汽车碰撞与安全.北京:清华大学出版社,2000.
    [30]张君媛.微型客车乘员约束系统参数优化与系统性能稳定性研究.博士学位论文.吉林大学,2003.
    [31]陈乐生,王以伦.多刚体动力学基础[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [32] Happee R., Wismans J. Pedestrian protection full-body simulations, dummy validation.Proceedings of the VDA Technical Congress, Frankfurt, Germany,1999.
    [33]郑秀媛,贾书惠.运动生物力学进展[M].北京:国防工业出版社,1998:204-248.
    [34] Depriester J., Perrin C., Serre T., et al. Comparison of several methods for realpedestrian accident reconstruction. Proceedings of the19th International Conferenceon the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June6-9,2005.
    [35] Eubanks J.J., Haight W.R. Pedestrian involved traffic collision reconstructionmethodology. SAE Paper No.921591,1992.
    [36] Rooij L. van, Meissner M., Bhalla K., et al. The evaluation of the kinematics of theMADYMO human pedestrian model against experimental tests and the influence of amore biofidelic knee joint. Proceedings of the5th MADYMO Users’ Meeting of theAmericas, Troy, Michigan, October,2003.
    [37] Kerrigan J.R., Drinkwater D.C., Kam C.Y., et al. Tolerance of the human leg and thighin dynamic latero-medial bending. International Journal of Crashworthiness,2004,9(6):607-623.
    [38] Duma S.M., Schreiber P.H., McMaster J.D., et al. Dynamic injury tolerances for longbones of the female upper extremity. Journal of Anatomy,1999,194:463-471.
    [39] ERSO.Annual Statistical Report2006. European Commission: European Road SafetyObservatory,2006.
    [40] Wismans J.S.H.M., Janssen E.G., Beusenberg M., et al. Injury biomechanics.Netherlands: Eindhoven University of Technology,1994.
    [41] Neal M.O., Kim H. S., Wang J.T. and et al. Development of LS-DYNA FE models forsimulating EEVC pedestrian impact. Proceedings of the18th International Conferenceon the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May19-22,2003.
    [42] NHTSA.Traffic Safety Facts2003. USA: Department of Transportation NationalHighway Traffic Safety Administration,2004.
    [43] Viano C., King A.I., Melvin J.W., et al. Injury biomechanics research: an essentialelement in the prevention of trauma. Journal of Biomechanics,1989,22(5):403-417.
    [44]赵子琴,陈玉川,张益鹄,等.法医病理学(第三版).北京:人民卫生出版社,2004.
    [45] Happer A., Araszewski M., Toor A., et al. Comprehensive analysis method forvehicle/pedestrian collision.SAE Paper No.2000-01-0846,2000.
    [46] Searle, J.A., Searle, A.The trajectories of pedestrians, motorcycles, motorcyclists, etc.,following a road accident, SAE Paper No.831622,1983.
    [47] Fricke, L.B. Traffic Accident Reconstruction, USA: Northwestern Traffic Institute,1999.
    [48]倪晓宇,刘英.协同CAE系统及其实现方法[J].机械工程学报,2006,42(8):71-77.
    [49]郑国君.车身覆盖件成形仿真软件平台若干新技术研究[D].吉林:吉林大学,2009.
    [50] HU Ping,GONG Kejia,BAO Yidong. Physical value mapping algorithm of mesh infine cae analysis of automobile body structure[J]. Chinese Journal ofMechanicalEngineering,2005,(3):338-341.
    [51] WEI Wei, FENG Yixiong, TAN Jianrong. Product model evolvement andconfiguration knowledge reuse method[J]. Chinese Journal of MechanicalEngineering,2009,(6):856-861.
    [52]丁祎,胡平,董军,等.车门玻璃升降器智能化软件的开发及其关键技术[J].ChineseJournal of Mechanical Engineering,2006,42(6):106-111.
    [53]靳春宁,胡平,陶海龙,等.基于知识工程及面向制造设计的车身部件设计方法和技术[J].吉林大学学报(工学版),2006,36(4):548-553.
    [54] ZHANG Shijie,SONG Laigang. Knowledge and xml based capp system[J]. ChineseJournal of Mechanical Engineering,2006,(3):344-347.
    [55]李向荣,王凯,刘志新,等.汽车发动机罩儿童行人保护安全性仿真研究[J].汽车工程,2010,32(1):56-59.
    [56]崔凯译.BRENT B.W. Tcl/TK编程权威指南[M].北京:中国电力出版社,2002.
    [57] MICHAEL P. Personal Knowledge[M]. Chicago:University of Chicago Press,1958.
    [58]刘波.知识驱动的车身结构设计方法研究及相关软件开发[D].吉林:吉林大学,2006.
    [59]张树壮,罗浩,方滨兴,等.一种面向网络安全检测的高性能正则表达式匹配算法[J].计算机学报,2010,10:1976-1986.
    [60]马瑞民,马永生,张方舟.VBA访问远程数据库及长数据类型的方法[J].计算机应用,2001,2:1-2.
    [61]罗静,杨静,张贝克.基于VBA的可扩展专家控制系统的研究[J].计算机应用,2006,12:3043-3046.
    [62] Tarak Gandhi, Mohan Manubhai Trivedi.Pedestrian Protection Systems. Issues, Survey,and Challenges[J]. IEEE Transactions on intelligent transportation systems,2007,8(3):413-430.
    [63] L.Havasi, Z.Szlávik, T.Szirányi. Pedestrian detection using derived third-ordersymmetry of legs.in Proc. Int. Conf. Comput. Vis.Graph.,2004.
    [64] S.Munder, D.M.Gavrila.An experimental study on pedestrian classification.IEEE Trans.Pattern Anal. Mach. Intell., vol.28, no.11,pp.1863–1868, Nov.2006.
    [65] Y H Han and Y W Lee, Optimization of Bumper Structure for Pedestrian Lower LegImpact[J]. SAE2002World Congress, Detroit, Michigan,2002.
    [66] Gao Weimin, Wang Hongyan.“A research on finite element modeling for the impact ofpedestrian's lower leg”. Automotive Engineering,2010,32(5):413-417.(In Chinese)
    [67]高卫民,王宏雁.行人小腿碰撞有限元建模方法的研究[J].汽车工程,2010,32(5):413-417.
    [68]任露泉.试验设计及其优化[M].北京:科学出版社,2009.
    [69]任露泉.回归设计及其优化[M].北京:科学出版社,2009.
    [70] Y H Han and Y W Lee.“Optimization of Bumper Structure for Pedestrian Lower LegImpact”.SAE2002World Congress, Detroit, Michigan,2002.
    [71]李董辉,童小娇.数值最优化算法与理论[M].北京:科学出版社,2010.
    [72] S.Munder, D.M.Gavrila.“An experimental study on pedestrian classification. IEEETrans”. Pattern Anal. Mach. Intell., vol.28, no.11,pp.1863–1868, Nov.2006.
    [73] C. Kerkeling, J. Schafer, and G.-M. Thompson,“Structural hood and hinge conceptsfor pedestrian protection,” in Proc.17th Int. Tech. Conf.ESV, Amsterdam, TheNetherlands, Jun.4–7,2001.
    [74]张轶川,苗强,朱西产,等.行人头部碰撞子模型适用性的研究[J].汽车工程,2010,32(3):223-227.
    [75] Greg Welch, Gary Bishop. An Introduction to the Kalman Filter[C].SIGGRAPH2001.
    [76]黄世霖,张金换,王晓东.汽车碰撞与安全[M].北京:清华大学出版社,2000.
    [77] Rikard Fredriksson, Yngve H land, Jikuang Yang. Evaluation of A New PedestrianHead Injury Protection System With A Sensor In The Bumper And Lifting Of TheBonnet’s Rear Edge[C]. Proceedings of the17th International Conference on theEnhanced Safety of Vehicles (ESV), Amsterdam, Holland, June4-7,2001.
    [78]李向荣,王凯,等.汽车发动机罩儿童行人保护安全性仿真研究[J].汽车工程,2010,32(1):56-59.
    [79]张维刚,邹正宽,王祥.侧面碰撞中B柱侵入速度及变形模式对乘员损伤影响的研究.湖南大学学报(自然科学版),2009,36(8):29-32.
    [80] K.Uduma,Jiaping Wu,Sukbhir Bilkhu etal. Door Interior Trim Safety EnhancementStrategies for the SID-IIS Dummy.In: Proc. of SAE World Congress. USA,2005,1-9
    [81] Marian Bosch-Rekveldt,Gabriella Griotto,Michiel van Ratingen et al. Head ImpactLocation,Angle and Velocity during Side Impact: A Study Based on Virtual Testing. In:Proc. of SAE World Congress. Paper number2005010290. USA,2005,1-13
    [82]程秀生.模拟汽车侧面碰撞的人体骨盆损伤的试验研究.汽车,1998,20(5):266-271.
    [83] M Redhe, L Nilsson. A method to determine structural sensitivities in vehiclecrashworthiness design[J]. International Journal of Crashworthiness,2002,7(2):179-190.
    [84] M Redhe, L Nilsson. Using space mapping and surrogate models to optimize vehiclecrashworthiness design[A]. Mistree9th AIAA/ISSMO.
    [85] Redhe M,Forsberg J,Jansson T,et al.Using the response surface methodology and theD-optimality criterion in crashworthiness related problems[J].Struct MultidisciplOptim,2002,24(1):185-194.
    [86] Etman LFP,Adriaens J,van Slagmaat M,Schoofs A.Crashworthiness design usingmultipoint sequential linear programming[J]. Struct Optim,1997,12(1):222-228.
    [87]钟志华.汽车耐撞性分析的有限元法[J].汽车工程,1994,16(1):1-6.
    [88]贾宏波,黄金陵,李掌宇,王中校,谷安涛.车身碰撞仿真技术在红旗轿车车身开发中的应用[J].汽车工程,1998,20(5):257-261.
    [89]张金换,王晓冬,黄世霖.汽车安全气袋系统的研究[J].清华大学学报(自然科学版),1997,37(11):69-72.
    [90]裘新,黄存军,张金换,黄世霖.汽车正撞的数值模拟及实验验证[J].清华大学学报(自然科学版),1999,39(2):102-105.
    [91]朱平,张宇,葛龙,林忠钦.基于正面耐撞性仿真的轿车车身材料轻量化研究[J].机械工程学报,2005,41(9):207-211.
    [92]林逸,孙立清,李宏光,朱西产.汽车_乘员三维多体系统碰撞仿真研究[J].汽车工程,1999,21(4):206-211.
    [93]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2002,22(2):85-89.
    [94]马永春,陈思忠,居囊.非承载式车身正面碰撞的数值分析[J].2000,22(2):81-84.
    [95]邓兆祥,胡玉梅,王攀,等.客车耐撞性结构优化设计[J].机械工程学报,2005,41(11):217-220.
    [96]邬诚君.基于虚拟试验的轿车正面碰撞安全性分析[J].同济大学学报(自然科学版),2006,34(9):1242-1246.
    [97] Li Nan, Gao We, Dai Yi. Optimization Design of Car Body Structure Based on ImplicitParametric Model[J]. Automotive Engineering,2008,30(10):857-860.
    [98] CRAIG K J, STANDER N, DOOGE D A. Automotive crashworthiness design usingresponse surface-based variable screening and optimization[J]. EngineeringComputations,2005,22(1-2):38-61.
    [99] WEI LIU, YUYING YANG. Multi-objective optimization of an auto panel drawing dieface design by mesh morphing[J]. Computer-Aided Design,2007,39:863-869.
    [100] WANG YUGUO, WEI YUANPING, et al. Addendum and Binder Surface Design forAutomotive Panel Drawing Die[J]. Journal of ShangHai JiaoTong University,1999(2),33.
    [101] LIU YULIN, GONG KEJIA, et al. A parametric method to design addendum surfacefor automotive panel[J]. Chinese Journal of Computational Mechanics.2007(8),24.
    [102] GONG KEJIA, HU PING. Method for Generating Additional Surface in Die FaceDesign of Automotive Panel [J]. Journal of Jilin University (Engineering andTechnology Edition),2006(1),36.
    [103] M. Kamal, Analysis and simulation of vehicle to barrier impact [J], SAE Paper700414.
    [104]薛梁,姜正旭,林忠钦.汽车碰撞仿真中连接失效的模拟[J].机械科学与技术,2000,19(2).
    [105]陈晓东,张劲.基于行人碰撞小腿保护的汽车保险杠研究.汽车技术,2009(12),37-39.
    [106]刘春盟,泡沫铝吸能特性及其在汽车保险杠中的应用研究[D],2011,哈尔滨工业大学,硕士论文.
    [107] Thomas F, Macl A, Johu F W. Pedestrian Head Impact Against the Central Hood ofMotor Vehicles-Test Procedure and Results, SAE902315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700