用户名: 密码: 验证码:
燃煤锅炉低NO_x燃烧实验及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电站燃烧产生的氮氧化物是一种十分有害的大气污染物,所以研究电站燃烧的氮氧化物排放的控制以及低NOx燃烧理论和技术有重要的意义。本文在实验及模拟研究基础上对浙能某电厂420t/h的锅炉进行低NOx燃烧器改造。
     在热重分析仪和沉降炉上进行了准混、大混和浙混的着火、燃烧、燃烬和NOx排放特性实验研究,三种煤样随升温速率的提高,煤样反应活性增强,燃烧过程更加剧烈,煤的燃烧特性得以改善;浙混煤燃烧过程的FTIR分析表明不同升温速率下气体释放基本相同,但提高升温速率会造成燃烧过程滞后,且污染物的析出更快;三个煤样的NO排放均随过量空气系数的增大而显著增大,准混和大混煤在空气系数α=0.85~1.15范围内时,过量空气系数的影响最为明显,而浙混煤在α=0.8-1.2范围内时过量空气系数的影响最为显著;燃烧温度升高时,无论是在氧化性气氛还是在还原性气氛下,煤样的NO生成量均增大;准混和大混煤在还原性气氛下均具有良好的还原烟气中NOx的性能,若采用空气分级或燃料分级燃烧技术控制NOx生成,一次燃烧区域或再燃区域的空气系数取0.85以下较好。
     应用密度泛函理论和簇模型方法研究NO在不同结构的纯碳和含氮焦炭表面的吸附特性,得到了吸附产物及吸附放热量/吸热量。由计算结果可知,NO在锯齿型结构碳表面吸附放热比在扶手型碳表面吸附放热多;对扶手型碳而言,NO在“空穴位”以side-on模式吸附形成六元环比在“外肩位”以side-on模式吸附形成四元环放热量要多;与吸附在焦炭氮表面相比,NO更倾向于吸附在纯碳表面;NO吸附在含氮焦炭表面时,N-N结合的吸附方式比N-O结合的吸附方式放热多。
     低NOx燃烧改造方案以SOFA空气分级燃烧技术为主,同时揉和主燃烧器区域CCOFA空气分级燃烧、低氧燃烧技术、偏转二次风(一、二次风大小切圆)技术等多项技术,来控制整个燃烧过程中NOx生成。改造前后通过数值模拟计算发现流场、温度场以及NO变化非常显著,满足改造要求。
     冷态实验结果表明,各层二次风及SOFA喷口配风均匀性良好,通过调节各层风门开度,可以保证锅炉燃烧器按设计的配风比例运行。
     热态实验表明,锅炉经过低NOx燃烧器改造后,锅炉运行稳定,主蒸汽压力、流量、温度等参数均可满足锅炉运行要求。锅炉NOx排放量介于223mg/Nm3-383mg/Nm3。
The nitrogen oxides(NOx) generated by the combustion in the power station is a very harmful atmospheric pollutants, so it is very important to investigate the method and principle to control nitric oxide. This PhD thesis is to research the low NOx burners transformation on a420t/h boiler of Zhejiang energy group.
     The ignition, combustion, burn out experiments of Zhunhu, Dahun and Zhehun coal were performed on the thermal gravimetric analyzer and drop tube furnace. The results showed that the coal reactivity enhanced with the increase of heating rate, and the combustion process became more intense. The combustion characteristic of the three coals can also be improved with the heating rate. The FTIR results of Zhehun coal showed that the gas release under different heating rates are basically same, but the enhancement of the heating rate can delay the combustion process and promote the pollutant generating. The NO emissions of the three coal increased with the increase of the excess air ratio, the most obvious impact of the excess air ratio was a=0.85~1.15for Zhunhun and Dahun coal and α=0.8~1.2for Zhehun coal. The NO production volume increases with the increase of the combustion temperature, either in an oxidizing atmosphere or in a reducing atmosphere. Zhunhun and Dahun coal performed a good reducing characteristic in a reducing atmosphere. The air coefficient should be0.85or less in the once burning or reburning areas if the air staging or fuel staging combustion technology was used.
     Applying the density functional theory and cluster modeling to study the NO adsorption characteristics under the different structures, such as pure carbon and nitrogen-containing coke surface. And get the adsorption product and adsorption heat release/absorption heat. The calculated results showed that the adsorption heat release in the Zigzag structure carbon surface is more than Armchair carbon surface. To the armchair carbon surface, the NO trends to adsorb in the empty site by side-on type to form hexatomic ring other than to adsorb in the outside shoulder site by side-on type to form four-membered ring. Compared to adsorb on the coke nitrogen surface, NO is more likely to adsorb on the pure carbon surface. When the NO was adsorbed on the nitrogen-containing coke surface, N-N type release more heat than N-O type.
     The rehabilitation program is focused on the SOFA air staged combustion technology, together with the CCOFA air staged combustion in the main burner region, low oxygen combustion technology, deflecting secondary air technology to control the NOx formation in the combustion process.
     Cold experimental results showed that the wind uniformity of all secondary air layers and SOFA were very good. By adjusting the layers of the throttle opening degree, the boiler burners could work under design.
     The thermal experiments show that after transformation of low NOx burners, boiler operation is stable, the main steam pressure, flow, temperature, and other parameters can meet the operational requirements of the boiler. The Boiler NOx emissions between223mg/Nm3-383mg/Nm3.
引文
[1]郭东明.硫氮污染物防治工程技术及其应用[M].北京:化学工业出版社、环境科学与工程技术出版中心,2001.
    [2]孙孝仁,孙怡玲.2020年世界能源前景.科技情报开发与经济,2000,Vol.10(2):15-16
    [3]时思.洁净煤技术是中国能源发展的必然选择[J].昆明冶金高等专科学校学报;2005,21(3);9-11
    [4]陈鹏.中国煤炭性质、分类和利用[J].化学工业出版社,北京;2001,10
    [5]庞名立.中外能源,2008,No.4,p123
    [6]从威,周凤起,康磊.我国能源发展现状及对“十二五”能源发展的思考[J].应用能源技术;2010,9:1-6
    [7]周凤起.发展低碳经济的国际动向与中国的低碳经济道路[J].环境保护与循环经济,2009,10:4-6.
    [8]张抗,梁慧.1999~2009年世界煤炭消耗量变化分析及启示[J].中外能源,2010,8:7-12.
    [9]冯郁青.盖纳特.重估中国在全球金融框架中的作用[N].第一财经日报,2009-05-28.
    [10]王秀奎.世界经济年鉴2009/2010[M].北京:《世界经济年鉴编辑委员会》编辑部,2010.
    [11]郭静,阮宜纶;大气污染控制工程;化学工业出版社;北京;2001,5
    [12]杨楠,王雪.氮氧化物污染及防治[J].环境保护与循环经济.2010,11:63-67.
    [13]贺吉明,张国斌.中国氮氧化物排放现状、趋势及控制对策[C].全国氮氧化物污染控制研讨会,2003.
    [14]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学.2003,3:47-50.
    [15]徐青,郑章靖,凌长明,李军.氮氧化物污染现状和控制措施[J].安徽农业科学.2010,29:16388-16391.
    [16]熊蔚立,黄伟,张国斌.火电厂氮氧化物(NOx)的危害和防治.湖南电力.2002,22:61-62.
    [17]魏复盛,胡伟,滕恩江,等.空气污染对人体简况影响研究的进展[J].世界科技研究与发展,2000,22(3):14-18.
    [18]国家环境保护总局,国家质量监督检验检疫总局.GB13223-2003中华人民共和国国家标准[M].北京:中国环境科学出版社,2003.
    [19]向军、邱纪华、熊友辉、孙学信,锅炉氨氧化物排放特性试验研究,中国电机工程学报,2000(20):80-84.
    [20]曾汉才,燃烧与污染。武汉:华中理工大学出版社,1992
    [21]刘霞,400t/h四角切匮煤粉锅炉分级燃烧技术降低NOx排放的研究与数值模拟[D],南京:东南大学硕士学位论文.2004
    [22]Zeldovish, J. The Oxidation of Nitrogen in Combustion and Explosion; Acta Physiochim; USSA,21,4,1964
    [23]钟秦;燃煤烟气脱硫脱硝技术及工程实例[M];北京,化学工业出版社;2002
    [24]姚明宇,刘艳华,车得福.氧对宜宾煤中燃料氮迁移特性的影响[J].燃料科学与技术,2004,10(4):336-340.
    [25]Yao Mingyu, Che Defu. Catalytic Effects of Minerals on NOX Emission from Coal Combustion [J]. Energy Sources, Part A.,2007,29:1005-1016.
    [26]C.P.Fenimore. Formation of Nitric oxide from Fuel Nitrogen in Ethylent Flames, Combustion and Flame,19,289(1972)
    [27]赵惠富;污染气体NOx的形成和控制[M];科学出版社;1993
    [28]朱全利.大型锅炉NOx生成机理及燃烧器火焰脱硝数值模拟的研究[D].武汉:华中理工大学博士学位论文,2001.
    [29]P.Glarborg, A.D.Jensen, J.E.Johnsson. Fuel nitrogen conversion in solid fuel fired systems[J]. Progress in Energy and Combustion Science,2003,29(2):89-113.
    [30]Shinji Kambara, Takayuki Takarada, Masaru Toyoshima, Kunio Kato. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel,1995,74(9):1247-1253.
    [31]刘银河,刘艳华,车得福,徐通模.煤中灰分和钠添加剂对煤燃烧中氮释放的影响[J].中国电机工程学报,2005,25(4):136-141.
    [32]Jennifer P. Spinti, David W. Pershing. The fate of char-N at pulverized coal conditions[J]. Combustion and Flame,2003135:299-313.
    [33]吴碧君.燃烧过程中氮氧化物的生成机理[J].电力环境保护.2003,19(4):9-12.
    [34]Derek G, Gavin et al, Factors in the conversion of fuel nitrogen to nitric and nitrous oxides during fluidized bed combustion, Fuel 1993,72,381
    [35]陈学俊,陈听宽.锅炉原理[M].2版.北京:机械工业出版社,1990.
    [36]范从振.锅炉原理[M].北京:水利电力出版社,1986.
    [37]张力.电站锅炉原理[M].重庆:重庆大学出版社,2009.
    [38]祁海鹰,李宇红,由长福,苑皎,徐旭常.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术.2002,8:17-22.
    [39]Gupta A K. Flame characteristis and challenges with high temperature air combusition[A]. proceedings of 2nd International Seminar on High Temperature Combusition in Industrial Furnace[C]. Stockholm, Sweden,2000,17-18.
    [40]新井纪男.燃烧生成物的发生与抑制技术.科学出版社,2001
    [41]Maier, H. et al. Effect of coal blending and particle size on NOx emission and burnout, Fuel,1994,73(9):1447.
    [42]Spliethoff, H. et al. Basic effect on NOx emission in air staging and reburning at a bench-scale test facility. Fuel.1996,75(5):560
    [43]Nakamura. M. et al. Demonstration test and particle studies on combustion technologies of micro-pulverized coal. International Conference on power engineering-97, Tokyo.1997,2:453.
    [44]刘茂省.煤粉空气分级和再燃技术机理、应用和模型研究[D].杭州:浙江大学博士学位论文.2009.
    [45]董利,李瑞扬.炉内空气分级低NOx燃烧技术[J].电站系统工程,2003,19(6):47-49.
    [46]Hartmut Spiethoff, Ulrich Greul, Helmut Rudiger, Klaus R.G.Hein. Basic effects on NOx emissions in air staging and reburing at a bench-scale test facility[J]. Fule, 1996,75(5):560-564.
    [47]C.K.Man, J.R.Gibbins, J.G.Witkampb, J.Zhang. Coal characterisation for NOx prediction in air-staged combustion of pulversed coals[J]. Fuel,2005,84:2190-2195.
    [48]曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造,2001,(1):1-11
    [49]唐志国,朱全利,唐必光,贾祥.空气分级燃烧降低NOx排放的实验研究[J].电站系统工程,2003,19(3):7-9.
    [50]王恩禄,罗永浩,彭玲,陆方,章明川.分级燃烧降低四角切向燃用低挥发分煤电站锅炉NOx的排放水平[J].热力发电,2004,(3):6-8,13.
    [51]吴碧君,刘晓勤.燃烧过程NOx的控制技术与原理.电力环境保护.2004,20:29-33.
    [52]Maly P M, Zamansky V M, Ho L et al. Alternative fule reburning[J]. Fuel.1999, 78:327-334.
    [53]Bilbao R, Millera A, Alzueta M U et al. Evaluation of the use of different hydrocarbon fuels for gas reburning[J]. Fuel.1997,76(14-15):1401-1407.
    [54]Shen B X, Yao Q, Xu X C. Kinetic model for natural gas reburning[J]. Fuel Processing Technology,2004, (85):1301-1315.
    [55]Bilbao R, Atzueta M U, Millem A et al. Experimental study and modelling of the bum out zone in the natural gas rebuming process[J]. Chemical Engineering Science,1995,50(16):2579-2587.
    [56]Nazeer W A, Jackson R E, Peart J A et al. Detailed measurements in a pulverized coal flame with natural gas rebuming[J]. Fuel,1999,78:689-699.
    [57]沈伯雄,姚强.天然气再燃脱硝的原理和技术[J].热能动力工程,2002,17(79):7-9.
    [58]Shen B X, Yao Q. Basic principles and technology of denitration through the rebuming of natural gas[J]. Journal of Engineering for Thermal Energy and power, 2001,17(19):7-9.
    [59]Smoot L D, Hill S C, Xu H. NOx control through rebuming[J]. Prog Energy Combust Sci,1998,24(5):385-408.
    [60]王恩禄,彭玲,罗永浩.天然气再燃降低燃煤电站锅炉NOx的排放水平[J].天然气工业,2005,25(3):171-173.
    [61]Y.Q Hu, N Kobayashi, M Hasatani. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio. Fuel.2001, 80(13):1851-1855.
    [62]S.Y. Ahn, S.M. Go, K.Y. Lee, T.H. Kim, S.I. Seo, G.M. Choi, D.J. Kim. The characteristics of NO production mechanism on flue gas recirculation in oxy-firing condition. Applied Thermal Engineering.2011,31(6-7):1163-1171.
    [63]J.-i Hayashi, T Hirama, R Okawa, M Taniguchi, H Hosoda, K Morishita, C.-Z Li, T Chiba. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed.2002,81(9): 1179-1188.
    [64]王贺岑,王炜,杨宏军.洛阳热电厂420t/h锅炉烟气再循环应用试验研究[J].中国电力,2001,34(1):16-17.
    [65]张建文,低NOx直流煤粉燃烧器设计简介,锅炉技术,2000(31):23-29
    [66]钟北京、徐旭常.低NOx煤粉燃烧器的设计原理,动力工程,1995(15):18-25
    [67]田子平.新型煤粉燃烧低NOx A-PM燃烧器[J].锅炉技术,1996,4:26-30.
    [68]张新育.撞击式浓淡燃烧器及弯管内气固多相流动特性的研究[D].杭州:浙江大学博士学位论文,1998.
    [69]范卫东、高继慧、林正春、孙绍增、吴少华、秦裕琨.百叶窗煤粉浓缩器内气固两相流动的试验和数值模拟研究.动力工程.1999,19(3),20-24.
    [70]苗长信、李凯、李建生.鳍片分离式浓淡燃烧器的开发与应用[J].热能动力工程.1997,12(6):448-451.
    [71]安恩科、苏夏、胡维国、汪颖新、张健、于娟、肖波.低NOx煤粉燃烧器的试验研究[J].锅炉技术.2005,36(1):43-48.
    [72]赵伶玲,周强泰.新型旋流燃烧器——花瓣燃烧器的研究与应用[J].中国电力,2005,38(11):31-34.
    [73]苏恒.PM型浓淡分离燃烧器结构优化试验研究[D].济南:山东大学硕士学位论文,2002.
    [74]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001.
    [75]祝天熙.硝酸尾气治理方法讨论[J].陕西化工,1997,5:8-10.
    [76]李晓东,杨卓如.国外氮氧化物气体治理的研究进展[J].环境工程,1996,14(6):34-39.
    [77]张文祥,贾明君,吴通好等.金属离子交换分子筛的NO的吸附性能.高 等化学学报,1997,18(12):1999-2003.
    [78]郭斌,马一太,任爱玲等.生物法净化含NOx尾气的研究[J].环境工程,2003,21(2):37-39.
    [79]何志桥,王家德.生物法处理Nox废气的研究进展[J].环境污染治理技术与设备,2002,3(9):59-62.
    [80]魏恩宗,林赫,高翔等.燃煤锅炉烟气NOx污染等离子体治理技术[J].环境污染治理技术与设备,2003,4(1):58-62.
    [81]Young Sun M, In Sik N. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal,2002,85: 87-97.
    [82]Krzyszt K, Michal Mlotek. Combined plasma-catalytic processing of nitrous oxide. Applied Catalysis B:Environmental,2001,30:233-245.
    [83]王智化,周俊虎,魏林生,温正城,岑可法.用臭氧氧化技术同时脱除锅炉烟气中NOx及S02的试验研究.中国电机工程学报.2007,27(11):1-5.
    [84]曲虹霞,钟秦.NH3选择性催化还原NOx的实验研究.南京理工大学学报,2002,26(1):68-71.
    [85]钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报,2000,24(1):68-71
    [86]Ronald M, Heck V. Catalytic abatement of nitrogen oxides stationary applications. Catalysis Today,1999,53:519-523.
    [87]Iwamoto M. Recent progress in novel catalytic removal of nitrogen monoxide. Catalysis Today,1994,22(1):583-596.
    [88]宣小平,姚强,岳长涛等.选择性催化还原法脱硝研究进展[J].煤炭转化,2002,25(3):26-32.
    [89]H. Gutberlet, B. Schallert. Selective catalytic reduction of nox from coal fired power plants. Catalysis Today.1993,16(22):207-235.
    [90]K Manfred, M. Giuseppe, E. Martin. Selective Catalytic Reduction of NO and NO2 at Low Temperature. Catalysis Today.2002,73(3):239-247.
    [91]D. B. Lukyanov, G. Sill, J. L. Ditri. Comparison of Catalyzed and Homogeneous Reduction of Hydrocarbons for Selective Catalytic Reduction of NOx [J]. Journal of Catalysis.1995,153(2):265-274.
    [92]M. Iwamoto. Reaction Mechanism of Selective Catalytic Reduction of Nitrogen Monoxide by Hydrocarbon. Journal of Catalysis.1994,36(2):135-155.
    [93]Luis J A, Francesco B, Guido B, et al. Characterization and Composition of Commercial V2O5-WO3-TiO2 SCR Catalysts. Applied Catalysis B:Enviromental, 1996,10:299-311.
    [94]Madia G, Elsener M, Koebel M, et al. Thermal stability of Vanadia-Tungsta-Titania Catalysts in the SCR catalysts. Applied Catalysis B: Enviromental,2002,39:181-190.
    [95]王建华,高翔,阎志勇,等.以多孔陶瓷为载体的V2O5-WO3-SiO2/TiO2催化剂上NH3选择性催化还原NO的实验研究.热能工程,2005,(1):11-15
    [96]Wang Zhihua, Zhou Junhu, Zhou Hao, Fan Jianren, Cen Kefa. Research for Low NOx Emission with Reburning and Ammonia Injection.28th International Technical Conference on Coal Utilization&Fuel Systems.2003.3 Florida, USA.
    [97]Wang Zhihua, Zhou Junhu, Zhou Hao, Cheng Jun, Fan Jianren, Cen Kefa. Low NOx Emission with Ammonia Injection during coal combustion. Proceeding of the International Conference on Power Engineering-03.2003,11,Kobe,Japan.
    [98]韩奎华.先进再燃脱硝优化试验与机理研究[D].济南:山东大学博士学位论文,2007.
    [99]王智化,周昊,周俊虎,樊建人,岑可法.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究.燃料化学学报,2004,32(1):48-53.
    [100]王智化,周俊虎,周昊,樊建人,岑可法.炉内高温喷射氨水脱除NOx机理及其影响因素的研究.浙江大学学报(工学版),2004,38(4):495-500.
    [101]Furrer J, Deuber H. Balance of NH3 and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant [J]. Waste Management,1998,18:417-422.
    [102]Miroslay R. Reduction of Nitrogen oxides in flue gases [J]. Environmental Pollution,1998,102(sl):685-689.
    [103]Peter G, Miller J A. Modeling the thermal De-NOx process in flow reactions, surface effects and nitrogen oxide formation [J]. International Journal of Chemical Kinetics,1994,20:421-436.
    [104]吕洪坤,杨卫娟,周俊虎等.化学计量比、雾化压力对电站锅炉SNCR脱硝的影响[J].化工学报,2008,59(11):2898-2903.
    [105]Oliva M.,Millera A.,Bilbao R. et al.Theoretical study of the influence of mixing in the SNCR process. Comparison with pilot scale data [J]. Chemical Engineering Science,2000,55(22):5321-5332.
    [106]吕洪坤,杨卫娟,周俊虎等.电站锅炉选择性非催化还原脱硝实验研究——还原区温度、尿素溶液喷射体积流量的影响[J].浙江大学学报(工学版),2009,43(9):1655-1660.
    [107]Becke A D. Density-Functional Thermochem istry.1. the Effect of the Exchange-Only Gradient Correction. Journal of Chemical Physics,1992,96, (3): 2155-2160.
    [108]Becke A D. Density-Functional Thermochemistry.2. the Effect of the Perdew-Wang Generalized-Gradient Correlation Correction. Journal of Chemical Physics,1992,97, (12),9173-9177.
    [109]Becke A D. Density-Functional Thermochemistry.3. the Role of Exact Exchange. Journal of Chemical Physics,1993,98, (7),5648-5652.
    [110]陈飞武,量子化学中的计算方法.科学出版社:北京,2008.
    [111]Foresman J B, Frisch A, Exploring Chemistry with Elec tronic Structure Methods,2nd ed. Gaussian, Pittsburgh, PA:1996.
    [112]Gonzalez C, Schlegel H B. Reaction-Path Following in Mass-Weighted Internal Coordinates. Journal of Physical Chemistry,1990,94, (14),5523-5527.
    [113]傅献彩,沈文霞,姚天扬,物理化学(第五版,下册).高等教育出版社:北京,2006.
    [114]赵学庄,罗渝然,臧雅茹,化学反应动力学原理(下册).高等教育出版社:北京,1990.
    [115]Miessen G, Behrendt F, Deutschmann O, Warnatz J. Numerical studies of the heterogeneous combustion of char using detailed chemistry. Chemosphere,2001,42, (5-7),609-613.
    [116]Perry S T, Hambly E M, Fletcher T H, Solum M S, Pugmire R J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilizati on. Proceedings of the Combustion Institute,2000,28, (2),2313-2319.
    [117]Kidena K, Murata S, Nomura M. A newl y proposed view on coal molecular structure integrating two concepts:Two phase and unipha se models. Fuel Processing Technology,2008,89, (4),424-433.
    [118]Fu X, Qin Y, Wang G G X, Rudolph V. Ev aluation of coal structure and permeability with the aid of geophysical logging technology. Fuel,2009,88, (11), 2278-2285.
    [119]Xie K-C, Li F, Feng J, Liu J. Study on the structure and reactivity of swollen coal. Fuel Processing Technology,2000,64, (1-2),241-251.
    [120]Xiang J-h, Zeng F-g, Liang H-z, Sun B-l, Zhang L, Li M-f, Jia J-b. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation. Journal of Fuel Chemistry and Technology,2011,39, (7),481-488.
    [121]Ibarra J, Murioz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry,1996,24, (6-7),725-735.
    [122]Chen N, Yang R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon,1998,36, (7-8), 1061-1070.
    [123]Kyotani T, Ito K, Tomita A, Radovi c L R. Monte Carlo simulation of carbon gasification using molecular orbital theory. Aiche Journal,1996,42, (8):2303-2307.
    [124]Thomas J M, Jones K M. Kinetic Anisotr opy in the Oxidation of Graphite. Journal of Nuclear Materials,1964,11, (2),236-239.
    [125]Frankcombe T J, Bhatia S K, Smith S C. Ab initio modelling of basal plane oxidation of graphenes and implications for mode lling char combustion. Carbon, 2002,40, (13),2341-2349.
    [126]Stein S E, Brown R L. Chemical Theory of Graphite-Like Molecules. Carbon, 1985,23,(1),105-109.
    [127]Stein S E, Brown R L. Pi-Electron Pr operties of Large Condensed Polyaromatic Hydrocarbons. Journal of the American Chemical Society,1987,109, (12):3721-3729.
    [128]Nakada K, Fujita M, Dresselhaus G, Dre sselhaus M S. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence. Physical Review B,1996, 54,(24),17954-17961.
    [129]Miyamoto Y, Nakada K, Fujita M. First-pr inciples study of edge states of H-terminated graphitic ribbons (vol 59, pg 9858,1999). Physical Review B,1999, 60,(23):16211-16211.
    [130]Klein D J, Bytautas L. Graphitic edges and unpaired pi-electron spins. Journal of Physical Chemistry A,1999,103, (26):5196-5210.
    [131]Zhu Z, Lu G Q, Finnerty J, Yang R T. Electronic structure methods applied to gas-carbon reactions. Carbon,2003,41, (4),635-658.
    [132]Pan Z J, Yang R T. Strongly Bonded Oxygen in Graphite-Detection by High-Temperature Tpd and Characterization. Industrial & Engineering Chemistry Research,1992,31, (12),2675-2680.
    [133]Sendt K, Haynes B S. Density func tional study of the chemisorption of O2 on the zig-zag surface of graphite. Combustion and Flame,2005,143, (4),629-643.
    [134]Sendt K, Haynes B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite. Journal of Physical Chemistry C, 2007,111, (14):5465-5473.
    [135]Sendt K, Haynes B S. Density f unctional study of the reaction of O2 with a single site on the zigzag edge of graphene. Proceed ings of the Combustion Institute, 2011,33, (2),1851-1858.
    [136]Kyotani T, Tomita A. Analysis of the re action of carbon with NO/N2O using ab initio molecular orbital theory. Journal of Physical Chemistry B,1999,103, (17), 3434-3441.
    [137]Montoya A, Truong T N, Sarofim A F. Application of density functiona 1 theory to the study of the reaction of NO with char-bound nitrogen during combustion. Journal of Physical Chemistry A,2000,104, (36),8409-8417.
    [138]Zhu Z, Lu G Q, Finnerty J, Yang R T. Electronic structure methods applied to gas-carbon reactions. Carbon,2003,41, (4),635-658.
    [139]Espinal J F, Truong T N, Mondragon F. Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing, ca rbonaceous materials. Carbon,2007, 45, (11),2273-2279.
    [140]Montoya A, Truong T N, Sarofim A F. Spin contamination in Hartree-Fock and density functional theory wavefunctions in modeling of adsorption on graphite. Journal of Physical Chemistry A,2000,104, (26),6108-6110.
    [141]Radovic L R. Active Sites in Graphene and the Mechanism of CO2 Formation in Carbon Oxidation. Journal of the American Chemical Society,2009,131, (47), 17166-17175.
    [142]Radovic L R, Silva-Tapia A B, Vallejos-B urgos F. Oxygen migration on the graphene surface.1. Origin of epoxide groups. Carbon,2011,49, (13),4218-4225.
    [143]Radovic L R, Suarez A, Vallejos-Burgos F, Sofo J O. Oxygen migration on the graphene surface.2. Thermochemistry of basal-plane diffusion (hopping). Carbon, 2011,49, (13),4226-4238.
    [144]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Gaussian 03, Revision D.01. Gaussian, Inc.:Wallingford CT,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700