Z0206细菌多糖的结构分析及其对小鼠糖脂代谢的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在课题组前期筛选、驯化得到一株耐硒高产多糖Enterobacter cloacaeZ0206菌株,深层发酵获得Z0206细菌多糖,并初步探索了其免疫调节、抗氧化、抗病毒等生物学功能的基础上,采用离子交换层析、凝胶渗透层析等现代分离纯化技术,得到Z0206细菌多糖的主要组分;建立了高效液相色谱(HPLC)定量分析多糖中丙酮酸含量和气相色谱-质谱联用同步分析多糖中单糖和糖醛酸组成的方法,同时结合核磁共振波谱、光谱等技术对Z0206细菌多糖主要组分的结构进行了鉴定;然后以自发性Ⅱ型糖尿病KKAy小鼠为模型,研究了Z0206细菌多糖及其纯化多糖对KKAy小鼠糖脂代谢的调节作用,并在基因和蛋白水平上揭示了Z0206细菌多糖对糖脂代谢影响的分子机制。主要研究内容及结果如下:
     1.反相高效液相色谱(RP-HPLC)定量分析丙酮酸含量方法的建立及Z0206细菌多糖中丙酮酸单元的测定
     结合Sevage去和酶法脱蛋白、H2O2脱色、水透析、冷冻干燥以及柱层析等方法对Z0206细菌多糖(CEPS)进行纯化后获得其酸性多糖EPS.该多糖EPS经高效凝胶色谱仪(HPGPC)检测,其分子量约为110KDa.
     在此基础上,本试验采用核磁共振波谱(NMR)、电喷雾-四极杆-飞行时间串联质谱(ESI-Q-TOF-MS)等技术确定了EPS结构中含有丙酮酸单元;采用反相高效液相色谱(RP-HPLC)考察不同的酸水解条件以及不同的定容体积等样品前处理条件下的丙酮酸出峰情况,最终确定多糖完全酸水解条件为3M三氟乙酸(TFA)、120℃下水解5h。水解液定容体积为100mL;定容后的酸水解物经过滤后采用RP-HPLC直接分析其中的丙酮酸,酸水解物经C18色谱柱分离、紫外检测器检测(λ=215nm)、外标法定量。结果表明:EPS中丙酮酸含量为7.64%,该方法线性范围0.0025~0.5g/L,标准曲线相关系数r>0.999;检出限(3倍信噪比)达0.05mg/L;加标回收率为100.2%~101.6%。该方法用于分析细菌多糖、黄芪多糖等多糖类物质的丙酮酸含量专属性良好,为多糖类物质中丙酮酸的定量分析提供了新方法。
     2.气相色谱-质谱联用(GC-MS)同时测定单糖和糖醛酸含量方法的建立及Z0206细菌多糖的单糖组成和糖醛酸含量分析
     在采用反相高效液相色谱确定了EPS中丙酮酸含量的基础上,本试验进一步建立了GC-MS同时测定多糖中单糖和糖醛酸含量的方法,并对EPS的单糖组成和糖醛酸含量进行了分析。将EPS的完全酸水解物进行氮气吹干,采用乙硫醇-三氟乙酸和醋酐-吡啶体系先后对其中的单糖和葡萄糖醛酸进行衍生;电子轰击电离源质谱(EI-MS)解析葡萄糖醛酸酸衍生物质谱裂解途径,并证实葡萄糖醛酸在该体系下得到了有效地衍生化;以木糖为内标,采用GC-MS定量分析该多糖酸水解物中单糖和糖醛酸衍生物发现:该多糖糖链由岩藻糖、葡萄糖、葡萄糖醛酸和半乳糖组成,其相对物质的量比为1.95:1.0:1.13:2.82;中性糖比例与糖醇乙酸酯化分析岩藻糖、葡萄糖和半乳糖的相对物质的量比(2.02:1.0:2.84)接近;糖醛酸咔唑法与该方法分析糖醛酸含量分别为15.23%和16.51%。结果表明新建立的衍生方法及GC-MS同时定量分析多糖酸水解物中单糖和糖醛酸的方法快速、方便。
     3.Z0206细菌多糖的结构鉴定及其重复单元的分析
     在分析测定了EPS的丙酮酸含量、单糖组成和糖醛酸含量的基础上,进一步开展了Z0206细菌多糖的确切化学结构鉴定及重复单元分析的研究。EPS完全酸水解物衍生物测定结果表明:该EPS由L-岩藻糖、D-葡萄糖、D-半乳糖、D-葡萄糖醛酸和丙酮酸组成,其相对物质的量近似为2:1:3:1:1。以上结果结合高碘酸氧化、Smith降解和甲基化等化学分析,发现该多糖由1,4-连接的岩藻糖、1,3,4-连接的岩藻糖、1,3-连接的葡萄糖,1,3-连接的半乳糖,1,4-连接的半乳糖和1,4,6-连接的端基半乳糖组成,其中丙酮酸取代了该端基半乳糖4,6位羟基。
     采用Bio-Gel P2凝胶色谱柱分离、电喷雾电离质谱(ESI-MS)检测馏分,纯化多糖EPS部分酸水解产物,获得一个寡糖—六糖;ESI-MS分析六糖分子量和系列寡糖可能的线性连接;结合多糖组成成分分析、单糖构型分析、糖苷键的键型分析和核磁共振一维、二维波谱分析,推断出该六糖结构。并确定了多糖的结构是以1,3-β-D-半乳糖残基、1,4-β-D-半乳糖残基、2个1,4-a-L-岩藻糖残基为主链,并在其中的一个1,4-连接的岩藻糖残基的O-3位有p-D-葡萄糖残基取代,而1,4-p-D-葡萄糖醛酸残基又取代了该p-D-葡萄糖残基O-3位羟基,同时丙酮酸取代了4,6位羟基的1,4,6-a-D-半乳糖残基取代了1,4-β-D-葡萄糖醛糖残基O-4位羟基。多糖以上述结构为重复单元组成。
     4.Z0206细菌多糖对Ⅱ型糖尿病KKAy小鼠糖脂代谢的影响研究
     在建立了HPLC测定多糖中丙酮酸含量,GC-MS同时测定多糖中单糖和糖醛酸含量的方法,解析了Z0206细菌多糖主要组分的化学结构的基础上,本实验进一步以自发性Ⅱ型糖尿病KKAy小鼠为模型,从表观变化、组织形态、血液生化指标等方面探讨了Z0206细菌多糖(CEPS)及其纯化多糖(PEPS)对糖脂代谢的影响。试验分为正常对照组(C57/BL)、糖尿病模型组(Model)、Z0206细菌多糖组(CEPS)和Z0206纯化多糖组(PEPS)组,多糖组以10mg/mL分别连续灌胃42天,糖尿病模型组连续灌胃等量的去离子水。研究结果表明:与糖尿病模型组相比,在给药后的14天、28天及42天,CEPS和PEPS均可显著降低KKAy小鼠的体重(P<0.05),提高KKAy小鼠的葡萄糖耐量(P<0.05),并降低小鼠的空腹血糖浓度和血清胰岛素水平(P<0.05),从而抑制小鼠的肥胖、缓解胰岛素抵抗和提高小鼠的糖耐受能力;组织形态观察结果显示:CEPS和PEPS均能通过缓解肝脏细胞和胰岛细胞的肿胀、变性,减少脂滴形成和增加肝脏糖原含量,从而保护肝脏和胰腺组织结构的完整性,并有效缓解肝脏的脂肪变性;生化指标结果表明:CEPS和PEPS均能通过提高小鼠肝脏已糖激酶活力(P<0.05),降低血清总胆固醇、甘油三酯、低密度脂蛋白水平(P<0.05)和游离脂肪酸含量(P<0.05),同时降低小鼠谷丙转氨酶和谷草转氨酶的含量(P<0.05),从而增加葡萄糖在体内的酵解,改善脂代谢紊乱和修复肝脏损伤。以上结果综合表明两种多糖能改善Ⅱ型糖尿病小鼠的胰岛素抵抗症状,保护胰腺功能,增加体内糖原合成和葡萄糖的酵解起到降血糖作用;同时能缓解肝脏损伤,减少脂肪变性,改善机体脂代谢紊乱起到降血脂作用。但是,两种多糖对于小鼠的糖脂代谢影响没有差异。
     5.Z0206细菌多糖对Ⅱ型糖尿病KKAy小鼠胰岛素分泌及其肝脏糖脂代谢影响的作用机制研究
     在研究了Z0206细菌多糖对糖尿病KKAy小鼠表型、组织形态及生理生化指标影响的基础上,本试验进一步从分子水平开展了Z0206细菌多糖(CEPS)及其纯化多糖(PEPS)对KKAy小鼠胰岛功能和肝脏糖脂代谢影响的作用机制研究。试验重点分析了两种多糖CEPS和PEPS对KKAy小鼠胰腺功能相关基因,肝脏中糖代谢相关酶类和脂肪代谢相关酶类的基因或蛋白表达的影响。胰岛功能结果表明:两种多糖均能通过提高KKAy小鼠胰脏中沉默信息调节因子1(Sirtl)和腺苷酸活化蛋白激酶(AMPK)的蛋白表达,降低线粒体解偶联蛋白2(UCP2)的蛋白表达,改善KKAy小鼠胰腺β细胞功能,抑制因胰岛素抵抗引起的胰岛素代偿分泌增加;糖转运和糖代谢结果表明:细菌多糖能显著提高肝脏中葡萄糖转运蛋白2(Glut2)的蛋白表达水平,增加糖酵解关键酶葡萄糖激酶(GK)的mRNA表达量,同时降低糖异生关键酶葡萄糖6磷酸酶(G6PC)的mRNA表达量,从而增加肝脏对血糖的摄取,促进葡萄糖在肝脏的酵解并减少糖异生作用;脂肪代谢结果表明:多糖能提高肝脏中脂肪分解相关基因激素敏感性脂肪酶(HSL).脂肪甘油三酯水解酶(ATGL)及脂肪酸p氧化限速酶CPT-1α的mRNA表达水平,同时降低脂肪合成相关基因脂肪酸合成酶(FAS)的mRNA表达水平,从而促进肝脏中脂肪的分解并抑制脂肪在肝脏的蓄积;以上结果综合表明,Z0206细菌多糖可以通过增加肝脏对血糖的摄取和利用并抑制糖异生过程起到降血糖作用;同时可以通过AMPK和Sirtl途径促进脂肪的氧化分解并抑制脂肪沉积,从而起到脂代谢调节作用。但是,两种多糖对胰岛素分泌及其肝脏糖脂代谢影响没有差异。
In our previous study, Enterobacter cloacae Z0206, a selenium-tolerant bacterial strain, was screened and acclimated. It was found to produce large amounts of exopolysaccharides (Z0206exopolysaccharides; CEPS) through fermentation, and the Z0206exopolysaccharides were found to possess immunostimulatory properties and antioxidation as well as growth improvement effects when applied to animals. In the present study, another acid exopolysaccharide (EPS) was prepared through deproteinization, decolorization and dialysis as well as column chromatography. The HPLC and GC-MS methods were established to analyze constituents in the EPS. On basis of the above analyses, a combination of chemical and ESI-MS as well as NMR analyses was established to elucidate the stuctrue of the EPS. Besides, KKAy mouse was used as experimental animal model. The diabetic mice were received CEPS and the purified exopolysaccarides (PPES) through salting out method in aqueous suspension daily by oral administration for a period of42days. In addition, the glucose and lipid metabolism in the animals was also studied. Lastly, the effects of CEPS and PEPS on glucose and fat metabolisms in liver and insulin secretion were studied. The primary results are as follows:
     1. Establishment a RP-HPLC method to quantify the pyruvate in a Z0206polysaccharide EPS
     A novel high molecular weight (110KDa) exopolysaccharide (EPS) produced by Z0206strain was isolated by column chromatography. The pyruvyl groups of the polysaccharide were identified by ultraviolet (UV) spectra, nuclear magnetic resonance (1H NMR,13C NMR) spectra, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) and reversed-phase high-performance liquid chromatography (RP-HPLC). To measure the pyruvyl groups, the microbial polysaccharide was hydrolyzed using3M TFA at120℃and subsequently analyzed by isocratic RP-HPLC and UV detection at215nm. Results showed that linear range for the pyruvate was from0.0025g/L to0.5g/L with the detection limit (signal-to-noise ratio of3) of0.05mg/L and the recovery rate ranged from100.2%to101.6%. The new method provided an option to analyze pyruvate content in acid hydrolysatcs of crude polysaccharides without complex pre-treatment.
     2. Establishment a GC-MS method to determine the neutral sugars and uronic acid constituents in a Z0206polysaccharide EPS
     The EPS was acid hydrolyzed followed by the subsequent derivatization using ethanethiol-trifluoroacetic acid and acetic anhydride-pyridine systems sequentially. Our findings differ from the previous reports that the glucuronic acid was obtained through effective derivatization. The neutral sugars and glucuronic acid were analyzed using gas chromatography-mass spectrometry (GC-MS) with xylose as an internal standard. The EPS was found to be composed of fucose, glucose, glucuronic acid and galactose, with the relative molar ratio of1.95:1.0:1.13:2.82. The neutral sugars ratio was similar to the relative molar ratio for fucose, glucose and galactose of2.02:1.0:2.84through alditol acetates determined by GC. The percentages of glucuronic acid analyzed using either the carbazole and sulfuric acid method or the above method were15.23%and16.51%, respectively. These results indicated that it was practicable to use the derivatization method and GC-MS to quantitatively analyze neutral sugars and glucuronic acid simultaneously in that polysaccharide. For GC-MS analysis, the procedure was developed for the simultaneous determination of the derivatives in25min, and was performed using an HP-5MS column. Molecular ion peaks were observed in the electron ionization (El) mass spectra. The fragmentation mechanism for glucuronic acid derivative was discussed in detail.
     3. Stuctural elucidation of a Z0206polysaccharide EPS and the repeat unit
     Complete hydrolysis of the EPS followed by gas chromatography mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) analyses showed that the EPS is composed of L-fucose, D-glucose, D-galactose, D-glucuronic acid and pyruvic acid in the approximate molar ratio of2:1:3:1:1. Partial acid hydrolysis of the purified EPS followed by gel permeation chromatography (GPC) yielded a hexasaccharide. A combination of chemical analysis coupled with mass spectrometry and1D and2D NMR spectroscopy applied to the oligosaccharide showed that the EPS comprised a heptasaccharide repeating unit.
     4. Effect of Z0206polysaccharides on the glucose and lipid metabolism in KKAy diabetic mice
     With the established RP-HPLC and GC-MS methods for pyruvate, and neutral sugars, uronic acid constituents and chemical structure, respectively, the effects of CEPS and PEPS on the glucose and fat metabolisms were studied to addrss changes, the morphology and blood biochemical paramenters using the spontaneously type II diabetes KKAy mice. Experiment groups were allocated to normal control group (C57/BL), diabetes group (Model), Z0206bacterial polysaccharide group (CEPS) and Z0206purified polysaccharide group (PEPS). As CEPS were administered to KKAy diabetic mice for a period of42days, the body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), serum insulin, blood lipds, liver function and morphology of liver, pancreas and kidney were observed. The results showed that the body weight significantly (P<0.05) decreased in CEPS and PEPS treated animals after14,28and42days of treatment. The administration of CEPS and PEPS in KKAy mice caused a significant enhancement (P<0.05) in the OGTT, whereas a significant reducement (P<0.05) was shown in the FBG level and serum insulin concentration, indicating that EPS could suppress the obesity phenomenon and alleviate insulin resistance; Morphology observation shows that EPS possessed significantly protective effects in the integrity of the organizational structure of the liver and pancreas and formation of steatosis in liver by decreasing the swelling and degeneration of the liver cells and pancreatic islet cells as well as ameliorating the liver glycogen; The biochemical parameter results showed that EPS could enhance the activity of hexokinase (HK) in liver, reduce the total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) and FFA concentration, at the same time significantly decrease (P<0.05) the AST and ALT levels in liver, thus increaseing glycolysis of glucose in the body, improving lipid metabolism disorders and repairing liver damages. The above results suggested that CEPS could improve insulin resistance and protect the pancreatic function, increasing the glycogen synthesis and glycolysis in type Ⅱ diabetic mice; it also could alleviate not only liver damages but also steatosis and further improve fat metabolic disorders. But there is no significant difference between CEPS and PESP in its effect on glucose and lipid metabolisms.
     5. The effects of Z0206polysaccharides on insulin secretion, glucose and fat metabolisms in KKAy diabetic mice liver
     On the basis of the previous four experiments, this experiment was conducted further to study the effects of CEPS and PEPS on glucose and fat metabolisms in liver and insulin secretion. RT-PCR was used to analyse mRNA expression of G6PC, GK, HSL, ATGL, FAS and CPT-la in the liver, and Western blot was used to analyse protein expression of AMPK, Sirtl and Glut2in the liver and AMPK, Sirtl and UCP2in the pancreas. The results of pancreas showed that after supplementation of CEPS or PEPS, SirTl and AMPK protein expressions were increased, as UCP2protein expression was reduced, which means that function of β cell was improved and the compensatory secretion of insulin caused by insulin resistance was also increased. The results of glucose transportation and metabolism showed that with CEPS or PEPS supplementation, Glut2protein and GK mRNA expressions were improved while G6PC gene expression was significantly (P<0.05) decreased, which demonstrated that the glucose uptake and glycolysis in the liver was increased while the gluconeogenesis was reduced; The results of fat metabolism showed that HSL, ATGL and CPT-la gene expression and AMPK, Sirtl protein expressions were increased in the liver of KKAy mice, while FAS gene expression were significantly decreased. Our results clearly demonstrated that with CEPS or PEPS supplementation, glucose transportation and gluconeogenesis were reduced in the liver of diabetic KKAy mice, which could lower the blood glucose level; lipolysis and fatty acid (3oxidation were increased while lipogenesis was reduced through AMPK and Sirtl pathway, which could alleviate the fat accumulation in the liver of diabetic KKAy mice. But there is no significant difference between CEPS and PESP in its effect on glucose and lipid metabolisms.
引文
Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A.H., Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science,2001, 291(5513):2613-2616.
    Agrawal, P.K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry,1992,31(10):3307-3330.
    Algire, C., Amrein, L., Zakikhani, M., Panasci, L., Pollak, M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocrine related cancer,2010,17(2):351-360.
    Altman, E., Smirnova, N., Li, J.J., Aubry, A., Logan, S.M. Occurrence of a nontypable Helicobacter pylori strain lacking Lewis blood group O antigens and DD-heptoglycan: evidence for the role of the core a 1,6-glucan chain in colonization. Glycobiology,2003, 13(11):777-783.
    American diabetes association. Diagnosis and classification of diabetes mellitus.2012,35(S1): 60-71.
    Arena, A., Gugliandolo, C., Stassi, G., Pavone, B., Iannello, D., Bisignano, G., Maugeri, T.L. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72:Antiviral activity on immunocompetent cells. Immunology letters,2009,123(2):132-137.
    Arnous, A., Meyer, A.S. Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food and bioproducts processing, 2008,86(2):79-86.
    Arsenijevic, D., Onuma, H., Pecqueur, C., Raimbault, S., Manning, B.S., Miroux, B., Couplan, E., Alves-Guerra, M.C., Goubern, M., Surwit, R., Bouillaud, F., Richard, Collins, D.S., Ricquier, D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics,2000,26(4):435-439.
    Assifi, M.M., Suchankova, G., Constant, S., Prentki, M., Saha, A.K., Ruderman, N.B. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. American Journal of Physiology - Endocrinology and Metabolism,2005,289(5):794-800.
    Attie, A.D., Kastelein, J.P., Hayden, M.R. Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. Journal of lipid research,2001, 42(11):1717-1726.
    Banerjee, P.N., Bhatt, S. Structural studies of a new acidic polysaccharide of apricot seeds. Natural product research,2007,21(6):507-521.
    Baumann, H., Tzianabos, A.O., Brisson, J.R., Kasper, D.L., & Jennings, H.J. Structural elucidation of two capsular polysaccharides from one strain of bacteroides fragilis using high-resolution NMR.spectroscopy. Biochemistry,1992,31:4081-4089.
    Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G.,Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, G., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Le Couteur, D., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature,2006,444(7117): 337-342.
    Bebault, G.M., Choy, Y.M., Dutton, G.G.S., Funnell, N., Stephen, A.M., Yang, M.T. Proton magnetic resonance spectroscopy of Klebsiella capsular polysaccharides. Journal of bacteriology,1973,113(3):1345-1347.
    Ben, S.R., Chaari, K., Besbes, S., Ktari, N., Blecker, C., Deroanne, C., Attia, H. Optimisation of xanthan gum production by palm date (Phoenix dactylifera L.) juice by-products using response surface methodol. Food chemistry,2010,121:627-633.
    Bilan, M.I, Vinogradova, E.V., Shashkov, A.S., Usov, A.I. Structure of a highly pyruvylated galactan sulfate from the Pacific green alga Codium yezoense (Bryopsidales, Chlorophyta), Carbohydrate research,2007,342:586-596.
    Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydrate Research,2002,337(8):719-730.
    Bischof, M.G., Bernroider, E., Krssak, M., Krebs, M. Hepatic glycogen metabolism in type 1 diabetes after long-term near normoglycemai. Diabetes,2002,51(1):49-54.
    Boden, G., Shulman, G.I. Free fatty acids in obesity and type 2 diabetes:defining their role in the development of insulin resistance and beta-cell dysfunction, European journal of clinical investigation,2002,32:14-23.
    Bordone, L., Guarente, L. Calorie restriction, SIRT1 and metabolism:understanding longevity. Nature Reviews Molecular Cell Biology,2005,6(4):298-305.
    Bordone, L., Motta, M.C., Picard, F., Robinson, F.A., Jhala, U.S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, EJ., Lin, S.J., Guarente, L. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLos biology,2006, 4(2):210-220.
    Carling, D., Zammit, V.A., Hardie, D.G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Letters,1987, 223(2):217-222.
    Cescutti, P., Kallioinen, A., Impallomeni, G., Toffanin, R., Pollesello, P., Leisola M., Eerikainen, T. Structure of the exopolysaccharide produced by Enterobacter amnigenus. Carbohydrate research,2005,340(3):439-447.
    Chai, W., Piskarev, V., Lawson, A.M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Analytical chemistry,2001,73:651-657.
    Chaki, T., Kakimi, H., Shibata, A., Baba, T. Detection of alginate oligosaccharides from mollusks. Bioscience, Biotechnology, and Biochemistry,2006,70(11):2793-2796.
    Chan, T.W.D., Tang, K.Y. Analysis of a bioactive (3-(1→3) polysaccharide (Curdlan) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid communications in mass spectrometry,2003,17(9):887-896.
    Cheetham, N.W.H., Punruckvong, A. An HPLC method for the determination of acetyl and pyruvyl groups in polysaccharides, Carbohydrate polymers,1985,5:399-406.
    Chen, X., Jin, J., Tang, J., Wang, Z., Wang, Z., Lin, L. Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicas. Carbohydrate Polymers,2011,83:749-754.
    Choy, Y.M., Dutton, G.G.A. The structure of the capsular polysaccharide from klebsiella K-Type 21. Canadian journal of chemistry,1973,51(2):198-207.
    Ciucanu, I., Kerek, F. Rapid and simultaneous methylation of fatty and hydroxy fatty acids for gas—liquid chromatographic analysis. Journal of chromatography A,1984,284:179-185.
    Clarke, S.D., Jump, D.B. Regulation of gene transcription by polyunsaturated fatty acids. Progress in lipid research,1993,32(2):139-149.
    Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H.S., Frevert, E. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell metabolism,2006,3(6): 403-416.
    Cummins, C.S., Hall, P. Acetate and Pyruvate in Cell Wall Polysaccharides of Propionibacterium acnes, P. avidum, and P. granulosum. Current microbiology,1986,14: 61-63.
    Curvall, M., Lindberg, B., Lonngren, J., Nimmich, W. Structural studies of the capsular polysaccharide of Klebsiella type 28. Carbohydrate Research,1975,42(1):95-105.
    Defronzo, R.A., Bondonna, R.C., Ferrannnini, E. Pathogenesisof NIDDM:a balance overview. Diabetes Care,1992,15:318-367.
    Diani, A.R., Sawada, G.A., Zhang, N.Y., Wyse, B.M., Connell, C.L., Vidmar, T.J., Conell, M.A. The KKAy Mouse:A Model for the rapid development of glomerular capillary basement membrane thickening. Journal of vascular research,1987,24:297-303.
    Dische, Z. A new specific color reaction of hexuronic acids. Journal of biological chemistry, 1947,167:189-198.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. Colorimetric Method for Determination of Sugars and related substances. Analytical chemistry,1956,28:350-356.
    Eleonora, A., Natalia, S., Jianjun, L., Annie, Aubry., Susan, M.L. Occurrence of a nontypable Helicobacter pylori strain lacking Lewis blood group O antigens and DD-heptoglycan: evidence for the role of the core a 1,6-glucan chain in colonization. Glycobiology,2003, 13(11):777-783.
    Erion, D.M., Yonemitsu, S., Nie, Y., Nagai, Y., Gillum, M.P., Hsiao, J.J., Iwasaki, T., Stark, R., Weismann, D., Yu, X.X., Murray, S.F., Bhanot, S., Monia, B.P., Horvath, T.L., Gao, Q., SamueL, V.T., Shulman, G.I. Sirtl knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proceedings of the national academy of sciences of the United States of America,2009,106(27): 11288-11293.
    Evans, L.R., Linkder, E.A., Impallomeni, G. Structure of succinoglycan from an infectious strain of Agrobacterium radiobacter. International journal of biological macromolecules,2000,27: 319-326.
    Flier, J.S. Obesity wars:molecular progress confronts an expanding epidemic. Cell,2004, 116(2):337-350.
    Foretz, M., Ancellin, N., Andreelli, F., Saintillan, Y., Grondin, P., Kahn, A., Thorens, B., Vaulont, S., Viollet, B. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes,2005,54(5): 1331-1339.
    Foster, C.E., Martin, T.M., Pauly, M., Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) Part I:Lignin. Journal of visualized experiments,2010,37:1.
    Freitas, F., Alves, V.D., Torres, C.A.V., Cruz, M., Sousa, I., Melo, M.J., Ramos, A.M., Reis, M.A.M. Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate polymers,2011,83(1):159-165.
    Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and biophysical research communications,2000,273(2):793-798.
    Fumelli, P., Romagnoli, F., Carlino, G., Fumelli, C., Boemi, M. Diabetes mellitus and chronic heart failure. Archives of gerontology and geriatrics,1996,23(3):277-281.
    Gaidhu, M.P., Anthony, N.M., Patel, P., Hawke, T.J., Ceddia, R.B. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet:role of ATGL, HSL, and AMPK. American journal of physiology cell physiology,2010,298(4): C961-971.
    Garegg, P.J., Jansson, P.E., Lindberg, B., Lindh, F. Lonngren, J. Configuration of the acetal carbon atom of pyruvic acid acetals in some bacterial polysaccharides, Carbohydrate research,1980,78(1):127-132.
    Gerritsen, G.C. The Chinese hamster as a model for the study of diabetes mellitus. Diabates, 1982,31:14-23.
    Gerwig, G.J., Kamerling, J.P., Vliegenthart, J.F.G. Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary g.l.c. Carbohydrate research,1979, 77(1):1-7.
    Glombitza, K.W. Mahran, G.H., Mirhom, Y.W., Michel, K.G., Motawi, T.K. Hypoglycemicand antihyperglycemic effect of aizyphusspina-christi in rats. Planta medica,1994,60(3): 244-247.
    Goldberg, R.B. Lipid disorders in diabetes. Diabetes care,1981,4(5):561-572.
    Goldstein, B.J., Scalia, R. Adiponectin:A novel adipokine linking adipocytes and vascular function. The Journal of clinical endocrinology and metabolism,2004,89(6):2563-2568.
    Hallstrom, A., Carlsson, A., Hillered, L., Ungerstedt, U. Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. Journal of pharmacological methods,1989, 22(2):113-124.
    Hama, Y., Nakagawa, H., Kurosawa, M., Sumi, T., Xia, X., Yamaguchi, K. A gas chromatographic method for the sugar analysis of 3,6-anhydrogalactose-containing algal galactans. Analytical biochemistry,1998,265(1):42-48.
    Hardie, D.G. Minireview:the AMP-activated protein kinase cascade:the key sensor of cellular energy status. Endocrinology,2003,144(12):5179-5183.
    He, J., Kelley, D.E. Muscle glycogen content in type 2 diabetes mellitus. American journal of physiology endocrinology and metabolism,2004,287(5):1002-1007.
    Heidelberger, M., Dudman, W.F., Nimmic, M. Immunochemical Relationships of Certain Capsular Polysaccharides of Klebsiella, Pneumococci and Rhizobia. The journal of immunology,1970,104(6):1321-1328.
    Henquin, J.C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes,2000,49(11):1751-1760.
    Hou, G.J., Li, C.N., Liu, S.N., Huan, Y., Liu, Q., Sun, S.J., Li, L.Y., Hou, S.C., Shen, Z.F. Long-term treatment with EXf, a peptide analog of Exendin-4, improves β-cell function and survival in diabetic KKAy mice. Peptides,2013,40:123-132.
    Hu, C., Kong, Q., Yang, D., Pan, Y. Isolation and structural characterization of a novel galactomannan from Eremurus anisopterus (Ker. et Kir) Regel roots. Carbohydrate polymers,2011,84(1):402-406.
    Hu, T., Li, C., Zhao, X., Li, G., Yu, G., Guan, H. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydrate research,2013,373:53-58.
    Ikegami, H., Fujisawa, T., Ogihara. T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony:genetic susceptibility shared between two types of diabetes. Har Journal,2004,45(3):268-277.
    Iwatsuka, H., Shino, A., Suzuoki, Z. General survey of diabetic features of yellow KK mice. Endocrinologia japonica,1970,17(1):23-35.
    Jia, W., Zhang, J.S., Jiang, Y., Zheng, Z.Y., Zhan, X.B., Lin, C.C. Structure of oligosaccharide F21 derived from exopolysaccharide WL-26 produced by Sphingomonas sp. ATCC 31555. Carbohydrate polymers,2012,90(1):60-66.
    Jin, M.L., Wang, Y.M., Xu, C.L., Lu, Z.Q., Huang, M., Wang, Y.Z. Preparation and biological activities of an exopolysaccharide produced by Enterobacter cloacae Z0206. Carbohydrate polymers,2010,81:607-611.
    Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia,2003,46(1):3-19.
    Kakuda, T., Sakane, I., Takihara, T., Ozaki, Y., Takeuchi, H., Kuroyanagi, M. Hypoglycemic effect of extracts from Lagerstroemia speciosa L. leaves in genetically diabetic KK-Ay mice. Bioscience, Biotechnology, and Biochemistry,1996,60(2):204-208.
    Kamon, J., Yamauchi, T., Muto, S., Takekawa, S., Ito, Y., Hada, Y., Ogawa, W., Itai, A., Kasuga, M., Tobe, K., Kadowaki, T. A novel IKK beta inhibitor stimulates adiponectin levels and ameliorates obesity-linked insulin resistance. Biochemical and Biophysical Research Communications,2004,323(1):242-248.
    Kato, M., Higuchi, N., Enjoji, M. Reduced hepatic expression of adipose tissue triglyceride lipase and CGI-58 may contribute to the development of non-alcoholic fatty liver disease in patients with insulin resistance. Scandinavian journal of gastroenterology,2008,43(8): 1018-1019.
    Kiho, T., Tsujimura, Y., Sakushima, M., Usui, S., Ukai, S. Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku zasshi,1994,114(5):308-315.
    Kiho,T., Morimoto, H., Kobayashi, K., Usui, S., Ukai, S., Aizawa, K., Inakuma, T. Effect of a Polysaccharide (TAP) from the Fruiting Bodies of Tremella aurantia on Glucose Metabolism in Mouse Liver. Bioscience, Biotechnology, and Biochemistry,2000,64: 417-419.
    Kim, W.H., Lee, J.W., Suh, Y.H., Lee, H.J., Lee, S.H., Oh, Y.K., Gao, B., Jung, M.H. AICAR potentiates ROS production induced by chronic high glucose:roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal,2007,19(4):791-805.
    Kohno, M., Suzuki, S., Kanaya, T., Yoshino, T., Matsuura, Y., Asada, M., Kitamura, S. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydrate polymers,2009,77(2):351-357.
    Kondakova, A.N., Bystrova, O.V., Shaikhutdinova, R.Z., Ivanov, S.A., Dentovskaya, S.V., Shashkov A.S., Knirel,Y.A., Anisimov, A.P. Structure of the O-polysaccharide of Yersinia pseudotuberculosis O:2b. Carbohydrate Research,2009,344:405-407.
    Krssak, M., Brehm, A., Bernroider, E., Anderwald, C., Nowotny, P., Dalla, M.C., Cobelli, C., Cline, G.W., Shulman, G.I., Waldhausl, W., Roden, M. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes,2004,53(12):3048-3056.
    Leontein, K., Linaberg, B., Lonngren, J. Assignment of absolution of sugars by g.l.c of their acetylated glycosides formed from chiral alcohols. Carbohydrate research,1978,62(2): 359-362.
    Li, C., Gao, Y., Li, M., Shi, W., Liu, Z. Effect of Laminaria japonica polysaccharides on lowing serum lipid and anti-atherosclerosis in hyperlipemia quails. Zhong yao cai,2005,28(8): 676-679.
    Li, X., Zhang, S., Blander, G., Tse, J.G., Krieger, M., Guarente, L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Molecular cell,2007,28(1):91-106.
    Li, X.L., Zhou, A.G., Han,Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro. Carbohydrate polymers,2006,66(1): 34-42.
    Liong, M.T. Probiotics:A Critical Review of Their Potential Role as Antihypertensives, Immune Modulators, Hypocholesterolemics, and Perimenopausal Treatments. Nutrition reviews, 2007,65(7):316-328.
    Liu, C.H., Li, X.D., Li, Y.H., Feng, Y., Zhou, S., Wang, F.S. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food chemistry,2008,110(4):807-813.
    Liu, M., Wu, K., Mao, X., Wu, Y., Ouyang, J. Astragalus polysaccharide improves insulin sensitivity in KKAy mice:Regulation of PKB/GLUT4 signaling in skeletal muscle. Journal of ethnopharmacology,2010,127:32-37.
    Mao, X.Q., Wu,Y., Wu, K., Liu, M., Zhang, J.F., Astragalus polysaccharide reduces hepatic endoplasmic reticulum stress and restores glucose homeostasis in a diabetic KKAy mouse model. Acta Pharmacologica Sinica,2007,28(12):1947-1956.
    McGarry, J.D., Appetite control:Does leptin lighten the problem of obesity? Current Biology, 1995,5:1342-1344.
    McGarry, J.D., Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. European journal of biochemistry,1997,244(1):1-14.
    Meier, H., Yerganian, G. Spontaneous diabetes mellitus in Chinese hamster (Cricetulus griseus). Findings in the offspring of diabetic parents. Diabetes,1961,10:12-18.
    Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nature clinical practice endocrinology and metabolism,2009,5:150-159.
    Moynihan, K.A., Grimm, A.A., Plueger, M.M., Bernal-Mizrachi, E., Ford, E., Cras-Meneur, C., Permutt, M.A., Imai. S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell metabolism,2005,2(2): 105-117.
    Muoio, D.M., Seefeld, K., Witters, L.A., Coleman, R.A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle:evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochemical journal,1999, 338 (Pt 3):783-791.
    Nakamura, H., Tamura, Z. Fluorometric determination of pyruvic acid and. alpha.-ketoglutaric acid by high performance liquid chromatography. Analytical chemistry,1979,51(11): 1679-1683.
    Nakamura, M., Yamada, K. Studies on a diabetic (KK) strain of the mouse. Diabetologia,1967, 3:212-221.
    Norihide, Y., Massayuki, H., Shihomi, H., Eri, Y., Massayuki, B., Ritsuko, H., Katsuko, S., Akihiko, K., Sadaaki, K., Susumu, S. A novel rat model of type 2 diabetes:The Zucker fatty diabetes mellitus ZFDM rat. Journal o f diabetes research.2013,1-9.
    Ou, Y., Lin, L., Yang, X.G., Pan, Q., Chen, X.D. Antidiabetic potential of phycocyanin:Effects on KKAy mice. Pharmaceutical biology,2013 (http://informahealthcare.com/doi/abs/10.3109/13880209.2012.747545)
    Papaioannou, V. E., Gardner. RL. Effects of diapause on lethal yellow (Ay/Ay) mouse embryos. Journal of experimental zoology,1992,263:309-315.
    Paul, A. Nonalcoholic fatty liver disease. The new England journal of medicine,2002,346: 1221-1231.
    Perry, M.B., Maclean, L.L. The structure of the polysaccharide produced by Proteus vulgaris (ATCC 49990). Carbohydrate research,1994,253:257-263.
    Perticone, F., Ceravolo, R., Candigliota, M., G Ventura, Iacopino, S., Sinopoli, F., Mattioli, P.L Obesity and body fat distribution induce endothelial dysfunction by oxidative stress. Diabetes,2001,50(1):159-165.
    Pick, A., Clark. J., Kubstrup, C., Levisetti. M., Pugh, W., Bonner-Weir, S., Polonsky, K.S. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes,1998,47(3):358-364.
    Pitthard, V., Finch, P. GC-MS analysis of monosaccharide mixtures as their diethyldithioacetal derivatives:Application to plant gums used in art works. Chromatographia,2001,53: 317-321.
    Price, N.P.J. Acylic sugar derivatives for GC/MS analysis of 13C-Enrichment during carbohydrate metabolism. Analytical chemistry,2004,76(22):6566-6574.
    Raghavan, V.A., Garber, A.J. Postprandial Hyperglycemia. Type 2 Diabetes Mellitus,2008, 97-113.
    Raguenes, G., Cambon-Bonavita, M.A., Lohier, J.F., Biosset, C., Guezennec, J. A novel highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp Current microbiology,2003:46:448-452.
    Ratto, M., Verhoef, R., Suihko, M.L., Blanco, A., Schols. H.A., Voragen, A.G.J., Wilting, R., Siika-aho, M., Buchert, J. Colanic acid is an exopolysaccharide common to many enterobacteria isolated from paper-machine slimes. Journal of industrial microbiology and biotechnology,2006,33(5):359-367
    Rau, U., Kuenz, A., Wray, V., Nimtz, M., Wrenger, J., Cicek, H. Production and structural analysis of the polysaccharide secreted by Trametes (Coriolus) versicolor ATCC 200801. Applied microbiology and biotechnology,2009,81:827-837.
    Reimer, M.K., Ahren, B. Altered β-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Science,2002,51:138-143.
    Richard, F., Helm, Z.H., Devin, E., Heidi, L., William, P., Malcolm, P. Structural Characterization of the Released Polysaccharide of Desiccation-Tolerant Nostoc communeDRH-1. Journal of bacteriology,2000,182(4):974-982.
    Rigas, D.A., Osgood, E.E. Purification and properties of the phytohemagglutinin of Phaseolus vulgaris. Journal of biological chemistry,1955,212:607-616.
    Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and Sirtl. Nature,2005, 434(7029):113-118.
    Rodgers, J.T., Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12861-12866.
    Rosenson, R.S., Otvos, J.D., Freedman, D.S. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the pravastatin limitation of atherosclerosis in the coronary arteries (PLAC-I) trial. The American journal of cardiology,2002,90(2):89-94.
    Ruderman, N., Prentki, M. AMP kinase and malonyl-CoA:targets for therapy of the metabolic syndrome. Nature reviews drug discovery,2004,3(4):340-351.
    Ruiz-Matute, A.I., Hernandez-Hernandez, O., Rodriguez-Sanchez, S., Sanzb, M.L Martinez-Castrob, I. Derivatization of carbohydrates for GC and GC-MS analyses. Journal of chromatography B,2011,879:1226-1240.
    Saha, A.K., Schwarsin, A.J., Roduit, R., Masse, F., Kaushik, V., Tornheim, K., Prentki, M., Ruderman, N.B. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-l-beta-D-ribofuranoside. The journal of biological chemistry,2000,275(32):24279-24283.
    Sandier, S., Andersson, A.K., Barbu, A. Novel experimental strategies to prevent the development of typl diabetes mellitus. Upsaa journal of medical sciences,2000,105(2): 17-34.
    Sawardeker, J.S., Sloneker, J.H., Jeanes, A., Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Analytical chemistry,1965,37(12): 1602-1604.
    Scamparini, A., Mariuzzo, D., Fujihara, H., Jacobusia, R., Vendruscolo, C. Structural studies of CV-70 polysaccharide. International Journal of Biological Macromolecules,1997,21(1-2): 115-121.
    Schriemer, D.C., Li, L. Mass discrimination in the analysis of polydisperse polymers by MALDI time-of-flight mass spectrometry.1. Sample prepahration and desorption/ionization issues. Analytical Chemistry,1997,69(20):4169-4175.
    Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., Cantley, L.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science,2005,310(5754):1642-1646.
    Shulman, G.I. Cellular mechanisms of insulin resistance. Journal of clinical investigation,2000, 106:171-176.
    Silva Xavier, Gda., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S.K., Rutter, G.A. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochemical journal,2003,371 (Pt 3):761-774.
    Smith, I.H., Symes, K.C., Lawson, C.J., Morris, E.R. Influence of the pyruvate content of xanthan on macromolecular association in solution. International journal of biological macromolecules,1981,3(2):129-134.
    Smith, J.J., Quintero, E.J., Geesey, G.G. A sensitive chromatographic method for the detection of pyruvyl groups in microbial polymers from sediments. Microbial ecology,1990,19: 137-147.
    Staub, A.B. Methods in Carbohydrate Chemistry,1965.
    Sun, Y., Han, X., Saito, S., Horimoto, K., Zhou, H., Functional networks in diabetes-progression by comparison of gene expression in three tissues of Goto-Kakizaki rats. Current bioinformatics,2013,8:63-71.
    Sutherland, I.W. Microbial polysaccharides from gram-negative bacteria. International dairy journal,2001,11:663-674.
    Sweeley, C.C., Bentley, R., Makita, M. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances.1963,85(16):2497-2507.
    Takeo, T., Unno, T., Kinugasa, H., Yayabe, F., Motoyama, M. The chemical properties and functional effects of polysaccharides dissolved in green tea infusion. Journal of the japanese society for food science and technology,1998,45(4):270-272.
    Tang, Z.H., Gao, H.W., Wang, S., Wen, S.H., Qin, S. Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International journal of biological macromolecules,2013 (http://dx.doi.org/10.1016/j.ijbiomac.2013.03.048).
    Tong, H.B., Liang, Z.Y., Wang, G.Y. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L. Carbohydrate polymers, 2008,71:316-323.
    Tsuboi, T., da Silva Xavier, G., Leclerc, I., Rutter, G.A.5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. The journal of biological chemistry, 2003,278(52):52042-52051.
    Verhoef, R., De, W. P., Schols, H.A., Ratto, M., Siika-Aho, M., Voragen, A.G.J. Structural elucidation of the EPS of slime producing Brevundimonas vesicularis sp isolated from a paper machine. Carbohydrate research,2002,337(20):1821-1831.
    Woranovicz, S.M., Gorin, P.A.J., Marcellij, M.P., Torri, G. Iacomini, M., Structural studies on the galactomannans of lichens of the genus cladonia. Lichenologist,1997,29(5):471-481.
    Wu, Y., Hu, N., Pan, Y., Zhou, L., Zhou, X. Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium. Carbohydrate research,2007,342(6):870-875.
    Xin, H., Tian, J.W., Yu, Z.Q., Duan, D.L., Liu, F.X., Deng, W., Liu, W., Guo, Y.L. Laminaria japonica Polysaccharide Reduces Lipids and Leptin Levels in Hyperlipedemic Mice. Journal of Medicine and Clinical Sciences,2013,2(2):22-26.
    Xu, C.L., Wang, Y.Z., Jin, M.L., Yang, X.Q. Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresource technology,2009,100(6):2095-2097.
    Xu, F., Gao, Z., Zhang, J., Rivera, C.A., Yin, J., Weng, J., Ye, J. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/-mice:a role of lipid mobilization and inflammation. Endocrinology,2010,151(6):2504-2514.
    Yun Y.B., Brand, J., Montgomery, R. Pyruvated galactose and oligosaccharides from Erwinia chrysanthemi Ech6 extracellular polysaccharide. Carbohydrate research,2001,331(1): 59-67.
    Zhang, H., Wang, Z.Y., Zhang, Z., Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydrate polymers, 2011,84(1):638-648.
    Zhang, H., Wang, Z.Y., Zhang, Z., Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydrate polymers, 2011,84(1):638-648.
    Zhu, H., Yalcin, T., Li, L. Analysis of the Accuracy of Determining Average Molecular Weights of Narrow Polydispersity Polymers by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 1998,9(4):275-281.
    Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., Zechner, R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004, 306(5700):1383-1386.
    陈尚文,胡谦.高效液相色谱法测定食品中有机酸.色谱,1993,11(3):175-177.
    陈英红,姜瑞芝,罗浩铭,王颖,高其品.高效液相色谱法建立银耳多糖特定图谱的研究.药物分析杂志,2012,32(1):136-139.
    陈智慧,史梅,王秋香,张晓红.用凯氏定氮法测定食品中的蛋白质含量.新疆畜牧业,2008,5:22-24.
    丛媛媛.新疆胀果甘草多糖的分离纯化、结构分析和生物活性研究.博士学位论文,新疆医科大学,2008.
    催昊.苦瓜多糖和芦荟多糖的降血糖作用及其机理的研究.博士学位论文,山东师范大学,2003.
    董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究及开发,1995,7(2):60-65.
    杜卓民.使用组织学技术(第二版).北京:人民卫生出版社,1998.
    樊怡欣.四种茶类对自发性2型糖尿病KKAy小鼠降糖作用的比较研究.硕士学位论文,北京中医药大学,2011.
    冯丹,张新国.糖尿病的动物模型.武警医学,2007,18:384-386.
    高娃,于德水,刘佳宁,戴肖东,韩增华.桦褐孔菌子实体多糖提取研究.生物技术,2012,22(2):70-73.
    高先富,高年发,韩英素,张现青,杨枫.发酵液中丙酮酸的HPLC法检测的研究.天津轻工业学院学报,2003,18(3):10-12.
    高星烨,杨鑫,董爱军,蒙奇,王静,张华,张英春,马莺,丁怡.红松松塔Z0206细菌多糖酶法脱蛋白工艺的研究.中国甜菜糖业,2010,1:13-16.
    顾亚萍,钱和.茶叶多糖纯度鉴定及结构分析的研究进展.食品研究与开发,2008,29(7):166-171.
    郭怀忠,姜文月,杜智昊,庞晓敏,王秋玲.1-苯基-3-甲基-5-吡唑啉酮衍生中药寡糖的毛细管区带电泳分离.色谱,2011,29(3):254-258.
    韩秋菊,马宏飞.海参多糖的提取与纯化研究.安徽农业科学,2012,40(14):8071-8074.
    郝桂堂,陈尚卫,朱松,尹鸿萍,戴军,曹玉华.对氨基苯甲酸衍生化高效液相色谱法分 析多糖中的单糖及糖醛酸组成.色谱,2007,25(1):75-79.
    何陵湘.麦冬多糖降血糖作用的药效学观察.中国实用医药,2007,2:48-50.
    黄晓波,赵良启.细菌胞外多糖的研究和应用,山西化工,2006,26(1):11-13.
    孔庆胜,王彦英,蒋滢.南瓜多糖的分离、纯化及其降血脂作用.中国生化药物杂志,2000,21:130-132.
    李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用.天然产物研究与开发,2005,17(4):523-526.
    李波,许时婴.难溶于二甲亚砜多糖的甲基化方法研究.天然产物研究与开发,2004,16(3):207-209.
    李布青,张惠玲,舒庆玲.中低档绿茶中茶多糖的提取及降血糖作用.茶叶科学,1996,16:67-72.
    李芳,李世刚,唐永莉,向正宗,陈燕.资木瓜多糖的提取和含量测定.安徽农业科学,2012,40(29):14197-14198.
    李静,连宾,胡鹏刚.细菌多糖及其在食品工业中的应用,食品科学,2006,27(4):255-259.
    李坤,宋海燕,关媛媛,张丽萍,董春丽.ob/ob鼠骨骼肌组织中SPARC的表达及临床意义.哈尔滨医科大学学报,2011,45(6):520-526.
    李丽清,韩俊杰,苏辉.紫外分光光度法测定大米中微量元素硒的含量.环境科学与管理,2012,37(1):147-149.
    李娜,张周.Ⅱ型糖尿病KK-Ay/Ta小鼠部分生物学特性分析.上海交通大学学报(农业科学版),2009,27:71-75.
    李朋伟,张景亚,仝艳,殷鹏辉,王宪龄.菊花多糖提取工艺研究.安徽农业科学,2012,40(6):3586-3587.
    李铁林,吴昌贤,张燕霞.糖和糖醇的气相色谱研究Ⅱ糖腈乙酰酯衍生物气相色谱分析的改进.分析化学,1981,10(5):272-275.
    梁静娟,庞宗文,王松柏,詹萍,马丽,白先放.红树林海洋细菌PLM4抑制肿瘤细胞生长活性多糖的纯化及结构分析.热带海洋学报,2008,27(1):52-56.
    梁秋云.仙人掌果多糖抗高血压、高血脂和糖尿病及其机制的研究.博士学位论文,广西医科大学,2008.
    廖洪梅,戴玲,魏晓飞,王志远,张凯.单糖乙酰化条件的优化.理化检验-化学分册,2008, 44(5):441-443.
    林叶,陈丽娇,吴成业.浒苔多糖降血脂活性的研究.江西农业学报,2012,24:136-138.
    凌凤俊,Axel Kornerup Hansen,林德贵.谷蛋白对NOD小鼠糖尿病的发生及其肠道菌群影响的研究.中国兽医杂志,2006,42(5):19-2062.
    刘成梅,万芮,涂宗财,付桂明.百合多糖脱蛋白方法的研究,食品科学,2002,23(1):89-90.
    刘奇.高产胞外多糖嗜酸乳杆菌筛选、发酵条件优化及多糖结构分析.硕士学位论文,华中农业大学,2008.
    刘如林,李志明,施贻君,衡斌.黄原胶中丙酮酸含量的研究.微生物学杂志,1989,4:1-6
    刘天龙,许剑琴.多糖现代研究及应用进展,中国兽医杂志,2004,40(3):24-26.
    刘伟,付中民,杨文超,缪晓青.山茶蜂花粉多糖对四氧嘧啶致小鼠糖尿病的降血糖作用研究.蜜蜂杂志,2009,2:4-6.
    刘延吉,祝寰宇.沙棘多糖脱蛋白工艺的优化研究,河南农业科学,2008,3:84-87.
    刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用.食品与药品,2007,9(08):39-43.
    罗傲霜,淳泽,葛绍荣,罗傲雪,范益君,刘鹏,彭文景.迭鞘石斛多糖降血糖作用研究.应用与环境生物学报,2006,12:334-337.
    罗琼,李瑾玮,张声华.枸杞多糖-X组分对糖尿病家兔降血糖的效果.营养学报,1997,19:173-177.
    罗玺,唐庆九,张劲松,周帅,吴迪,刘艳芳,王琪,乔彦茹,杨焱,赵明文.灵芝多糖树脂法脱色工艺优化.食品科学,2011,32(16):5-10.
    马宝瑕,陈新,邓军娥.中药多糖研究进展.中国医院药学杂志,2003,23(6):360-362.
    马洪波,宋春梅,张岚,葛红娟.桑叶多糖的碱性提取及含量测定.安徽农业科学,2011,39(3):1367-1369.
    聂凌鸿,宁正祥.活性多糖的构效关系.林产化学与工业,2003,23(4):89-94.
    聂少平,黄丹菲,殷军艺,谢明勇.食物中多糖组分的结构表征与活性功能研究进展,中国食品学报,2011,11(9):46-57.
    皮朝琼,真义才,蔡珊兰,皮建辉.金樱子多糖对药物性肝损伤小鼠血脂代谢的影响.怀化学院学报,2011,30:36-38.
    乔来艳.噬菌体聚糖酶及其酶解产物的化学及生物学研究初探.硕士学位论文,中国海洋 大学,2009.
    钦传光,黄开勋,徐辉碧.泥鳅多糖对实验性糖尿病小鼠血糖血脂的影响.中国生化药物杂志,2002,16:124-127.
    谭周进,谢达平.多糖的研究进展,食品科技,2002,3:10-12.
    田婷,马向华,沈捷.2型糖尿病动物模型研究概况.医学综述,2011,17(6):905-908.
    田小芸,董敏,赵志刚,许龙祥,刘彪,郭联庆,恽时锋.自发性糖尿病小鼠C57BL/KsJ-db/db某些脏器组织病理学观察.实验动物科学,2011,28(1):18-20.
    王桂兰,凌沛.细菌胞外多糖提取分离技术研究进展,食品与药品,2010,12(5):217-219.
    王金霞,赵峡,于广利,李广生,郝翠.柱前衍生高效液相色谱法分析海洋褐多糖药物的糖醛酸组成.分析化学,2009,37(5):648-652.
    王晶晶,冯颖,生依灵.无梗五加果多糖脱蛋白工艺的优化.中国农学通报,2012,28(24):306-310.
    王黎明,夏文水.茶多糖降血糖机制的体外实验.食品与生物技术学报,2010,29:354-358.
    王鹏.新型胞外多糖产生菌Phyllobacterium sp.nov.921F及其多糖结构的研究.博士学位论文,中国海洋大学,2008.
    王谦,贾德贤,娄金丽,苏玮莲,郝钰,黄启福,郭健,陈旺.2型糖尿病动物模型KKAy小鼠肝、肾的病变.中国实验动物学报,2008,16(4):241-243.
    王晓梅,张忠山,张晶晶.木瓜多糖的提取、纯化与鉴定.安徽农业科学,2011,39(12):7085-7087.
    王艳梅,李智恩,牛锡珍,张虹,张全斌.孔石莼多糖降血脂活性的初步研究.中国海洋药物,2011,22:33-35.
    王艳荣,钱荣立,马晓伟.实验性糖尿病大鼠肝糖原合成酶活性的改变.北京医科大学学报,1998,30:6-48.
    王泽文,冷凯良,孙伟红,翟毓秀,邢丽红,苗钧魁.柱前衍生高效液相色谱法分析海带岩藻聚糖的单糖及糖醛酸组成.分析科学学报,2011,27(1):26-30.
    吴亚林.几种天然生物活性多糖的化学研究.博士学位论文,浙江大学,2007
    辛梅华,李明春,徐金瑞,孙多先.反相高效液相色谱测定酸雨中的甲酸、乙酸、丙酸等.环境工程,2003,(21)1:57-59.
    徐春兰.Enterobacter cloacae Z0206富硒多糖的制备、结构分析及其主要生物学功能研究. 博士学位论文,浙江大学,2008.
    徐桂云,陈汝贤,常理文.用毛细管气相色谱法测定多糖中单糖的组成.分析测试学报,2000,19(3):71-73.
    徐瑾,张凌怡, 张庆合,李彤,王风云,张维冰,张玉奎.单糖的柱前衍生化高效液相色谱及胶束电动毛细管色谱分析的对比研究.色谱,2003,21(4):363-366.
    燕航,钟耀广,王淑琴,刘长江.香菇子实体多糖分离纯化的研究.食品研究与开发,2006,27(8):61-63.
    羊雪芹,靳明亮,徐春兰,单体中,汪以真.Z0206细菌富硒多糖对小鼠的免疫调节作用.农业生物技术学报,2009,17(5):815-819.
    杨竟,刘敏,郭丽梅.油松花粉多糖分离纯化及初步结构鉴定.食品研究与开发,2010,31(8):95-98.
    杨丽艳,黄琳娟,王仲孚,曹春阳,孙文基.山茱萸酸性多糖FCP5-A的分离纯化与结构表征.高等学校化学学报,2008,29(5):936-940.
    杨明,王本详,金玉莲,王岩,崔志勇.人参多糖降血糖和肝糖原的作用.中国药理学报,1990,11(6):520-524.
    殷涌光,韩玉珠,丁宏伟.动物多糖的研究进展,食品科学,2006,27(3):256-262.
    于秋英,刘翠俐.莼菜多糖蛋白体降低小鼠血脂作用的研究.中国公共卫生学报,1997,16:85-86.
    于亚静.可溶性胞外多糖PS202的发酵动力学、分离纯化及其结构修饰的研究.硕士学位论文,广西大学,2007.
    于彦伟,奚宁宁,刘丽珠,李晶洁,王博,曲秀.重组脂联素对ob/ob小鼠糖尿病心肌微血管病变的影响医学综述.哈尔滨医科大学学报,2010,44(2):117-120.
    张红锋,王煜非.枸杞多糖对四氧嘧啶损伤的大鼠胰岛细胞的保护作用.细胞生物学杂志,2005,27:173-177.
    张惟杰.复合多糖生化研究技术[M].上海科学技术出版社,1987.
    张小芳,段小群,卢曦,梁成钦,肖胜军.青钱柳多糖对提昂尼奥并小鼠血糖水平和一线组织形态的影响.华夏医学,2010,23:15-17.
    张怡,曾红亮,曾绍校,林雨菲,郑宝东.金柑多糖酶法脱蛋白工艺的研究.热带作物学报,2012,33(1):166-170.
    张忠泉,陈百泉,许启泰.山药多糖对大鼠血糖及胰岛释放影响的研究.上海中医药杂志,2003,37:52-53.
    赵峡,付海宁,于广利,王金霞,李小军,管华诗.固相酸解法制备古糖酯寡糖及其电喷雾质谱分析.高等学校化学学报,2008,29(7):1344-1348.
    周国华,于国萍.黑木耳多糖降血脂作用的研究.现代食品科技,2005,21:46-48.
    朱晓君,安辛欣,顾丽,胡秋辉.超声辅助同时提取条斑紫菜多糖及藻胆蛋白工艺的优化.食品科学,2008,29(5):241-244.
    邹丰,欧阳静萍,毛先睛.黄芪多糖对遗传性糖尿病小鼠肝糖原含量的影响.微循环学杂志,2007,17:12-14.