用户名: 密码: 验证码:
天津及附近海域海岸带生态系统健康评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,海岸带生态系统健康整体评价成为国际众多学者的研究焦点,寻找综合评价海岸带生态健康的工具已成为生态学领域最重要的争论议题。对生态系统健康研究的最终目的是希望通过研究,识别生态系统在何种阈值下能够保持其内部自组织性,对外界干扰具有恢复能力,采取相应的管理措施,使退化的生态系统恢复其结构和功能的完整性,更好的为人类提供服务,实现人类社会的可持续发展。
     生态系统健康评价方法主要可分为两大类,即生态指标法和综合指标体系法。生态指标法从识别生态系统自身状况角度出发,所使用的评价指标均为描述生态系统固有结构和功能的指标。综合指标体系法是从人类的角度出发,将人类健康、社会、经济等多种指标相结合,构成综合指标体系,根据指标体系评价生态系统健康。在本项研究以海岸带生态系统为研究对象,使用生态指标法和综合指标体系法两类方法评价海岸带生态系统健康。
     本项研究第二章中使用层次分析法、灰色聚类法两种生态系统健康综合评价方法,比较不同方法的生态系统健康评价结果,寻找能够整体评价海岸带生态系统健康的更好方法。层次分析综合评价法和灰色聚类综合评价法都属于综合指标体系评价法,其将多种类别指标综合,得出海岸带生态系统健康整体评价结果。研究表明,层次分析法得出的天津海岸带生态系统2007年处于亚健康状态;灰色聚类综合评价法,通过水质指标、沉积物指标、生态指标、综合指标的评价,对1997年黄渤海多地区的生态系统健康评价结果同单因子指数法的评价结果差异不显著,两方法之间具有一致性。研究表明灰色聚类法可以用于海岸生态系统健康综合评价
     第三章研究中使用天津海岸带生态系统作为研究实例,使用不同层次的多样性指标(包括Shannon信息指数、Pielou均匀度指数、Simpson优势度指数、Margalef丰度指数),基于物种生物量和多度的指标(K-优势度曲线、ABC曲线、W-统计值),聚类分析、NMDS三种多变量分析法,以及生态能质和比生态能质两种热动力学指标,研究目标区域生态系统结构和功能在时空尺度具体变化,与此同时对现有生态指标各自适用范围进行研究,通过其各自评价应用效果比较,挑选具有代表性的、能够较为全面反映生态系统健康状况的生态指标,寻找具有有效性的系统水平评价指标。
     通过2005年~2007年实测数据计算,研究结果表明天津海域海岸带生态系统状况,在时间尺度呈现显著年际变化,同时伴随着底栖群落优势物种明显演替现象;在空间尺度,位于南北两端的大港电厂和大神堂地区生态状况较好,中部的其他地区及最南部的大港油田受到一定程度的干扰,部分站位生态状况较差。对生态指标的适用性研究表明,(a)多样性指标多数情况具有较好的指示作用,但不能够完全准确反映生态系统实际状况;(b)基于物种生物量和多度指标评价结果同实际情况不相符合;(c)多变量分析结果能够真实反映生态系统物种组成在时空尺度的相似程度,群落优势物种的种类及其演替趋势;(d)能质和比能质指标能够从系统中贮存能量的系统功能方面,以及整体物种平均进化水平的系统结构方面真实反映目标区域的生态状况,并通过其变化趋势指示目标区域受到的干扰类型,研究结果能够真实反映目标区域的实际生态状况。
Recently, coastal ecosystem health assessment is one of the hotspots in ecology research field, and to find comprehensive assessment tools of coastal ecological quality is the most important issues. The aim of ecosystem health research is to keep ecosystem self-organization and resilience. And managers and decision makers could take the corresponding measures to manage and restore degraded ecosystems, and also to achieve sustainable development of human society.
     Ecosystem health assessment methods can be divided into two categories, ecological indicator method and comprehensive indicator method. Ecological indicators method is concerned with ecosystem status, by using ecosystem structure and ecosystem function indicators. Comprehensive indicator method focuses on the benefits of human being, which combine multiple indicators including human health, social, and economic indicators etc., to consist comprehensive indicator system to evaluate ecosystem health. In this study, coastal ecosystem was used as research objective.
     AHP and grey clustering method were applied for ecosystem health assessment. The orientation was to find an optimized method for coastal ecosystem health assessment, by comparing the results under different methods mentioned above. Both AHP and grey clustering method are included in comprehensive indicator method, which is combined with a number of varied indicators to assess costal ecosystem health. According to the study results, Tianjin costal ecosystem was in the situation of sub-health in year 2007, while AHP was applied. Grey clustering method was applied to Yellow sea and Bohai sea, by assessing water quality index, sediment quality index, ecological index and comprehensive index based on year 1997. A conclusion can be made, that grey clustering method and single pollution index lead to a consistency, as the difference between results during the ecosystem health assessment was not significant. This proved that grey clustering method is suitable to be applied for costal ecosystem assessment.
     Tianjin costal ecosystem was taken as example, by applying different level of ecological indicators, such as Shannon index, Pielou evenness index, Simpson index and Margalef richness index, which are diversity index; also Bray-Curtis cluster analysis, PCA, NMDS, which are multivariate analysis methods; and K-dominance curve, ABC curve, W-statictic, which are based on biomass and abundance; in addition, exergy and specific exergy, which are thermodynamic index. All ecological indicators assessments were carried out under corresponding circumstances. Some ecological indicators were selected, which were able to reflect ecosystem health situation representatively and all-sided. At the same time, some indicators were found which were significant and systematical for the assessment.
     The results of 2005 to 2007 indicate that the ecological status of Tianjin coastal area, has significant interannual variation with succession of dominice species of benthic community in temporal scale. In spatial area, the South (DaGang DianChang area) and the North (Da Shen Tang area) of Tianjin coastal area have better ecological status, and the other areas between DaGang DianChang area and Da Shen Tang area and DaGang YouTian area are being partly perturbance. Research on the applicability of ecological index show that, (a) biodiversity index used in this study works well in most cases, but could not reflect the reality completely and accurately, (b) the evaluate results of ABC curves and W-statistic are not match with the actual, (c) results of multivariate analysis could refelt the similarity of ecosystem species composition, and the species changing during community succession, (d) exergy and specific exergy are further be able to indicate the real ecological status from both ecosystem function and ecosystem structure. The variation tendency of exergy and specific could indicate different perturbances, which gives the realistic picture of the ecological status of research region.
引文
[1]Rapport D J. Ecosystems not optimized:A reply. Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health),1993,2(1):57~ 57.
    [2]Rapport D J, et al. Ecosystem health:the concept, the ISEH, and the important tasks ahead. Cambridge:Blackwell Science,1999.82-90.
    [3]Karr J R. Assessing biological integrity in running waters:a method and its rationale. Champaigre:Special Publication/Illinois Natural History Survey,1986.
    [4]Schaeffer D J, Novak E W. Integrating epidemiology and epizootiology information in ecotoxicology studies III Ecosystem health. Ecotoxicology and environmental safety, 1988,16 (3):232.
    [5]Costanza R, Norton B G, Haskell B D. Ecosystem health:new goals for environmental management.1992. Island Press.
    [6]Smol J P. Paleolimnology:an important tool for effective ecosystem management. Journal of Aquatic Ecosystem Stress and Recovery,1992,1 (1):49~ 58.
    [7]Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health. Trends in Ecology & Evolution,1998,13 (10):397-402.
    [8]Schaeffer D J, Herricks E E, Kerster H W. Ecosystem health:Ⅰ.Measuring ecosystem health. Environmental Management,1988,12 (4):445~455.
    [9]Simpson J, Norris R, Barmuta L. AusRivAS-National River Health Program. User Manual Website version,1999.
    [10]O'Neill R V, et al. Monitoring environmental quality at the landscape scale. BioScience,1997,47 (8):513~519.
    [11]Meyer J L. Stream health:incorporating the human dimension to advance stream ecology. Journal of the North American Benthological Society,1997,16(2):439~ 447.
    [12]Mageau M T, Costanza R, Ulanowicz R E. Quantifying the trends expected in developing ecosystems. Ecological Modelling,1998,112(1):1~22.
    [13]崔保山,杨志峰.湿地生态系统健康研究进展.生态杂志,2001,20(003):31~36.
    [14]袁兴中,陆健健.生态系统健康评价—概念构架与指标选择.应用生态学报,2001,12(004):627~629.
    [15]沈文君,沈佐锐,王小艺.生态系统健康理论与评价方法探析.中国生态农业学报,2004,12(001):159~161.
    [16]Shugart L. Biological markers and indicators of marine ecosystem health in Foreign trip report November ORNL/FTR-4509 1992:21~28.
    [17]Leppard G G, Munawar M. The ultrastructural indicators of aquatic ecosystem health. Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health),1992,1 (4):309~317.
    [18]Holder-Franklin M A, Franklin M. River bacteria time series analysis:A field and laboratory study which demonstrates aquatic ecosystem health. Journal of Aquatic Ecosystem Health,1993,2 (4):251-259.
    [19]Pollard P, Huxham M. The European Water Framework Directive:a new era in the management of aquatic ecosystem health? 1998,8 (6):773~792.
    [20]Fairweather P G. Determining the health of estuaries:Priorities for ecological research. Austral Ecology,1999,24 (4):441~451.
    [21]Botsfor L W, Castilla J C, Peterson C H. The management of fisheries and marine ecosystems. Science,1997,277 (5325):509.
    [22]Pollard P, Huxham M. The European Water Framework Directive:a new era in the management of aquatic ecosystem health? Aquatic Conservation:Marine and Freshwater Ecosystems,1998,8 (6):773-792.
    [23]中华人民共和国国家质量监督检验检疫总局.GB/T 12763.9—2007海洋调查规范第9部分海洋生态调查指南.北京:中国标准出版社:2007.
    [24]Regier H A, Rapport D J. Importance of the nearshore area for sustainable redevelopment in the Great Lakes with observations on the Baltic Sea. Ambio,1988, 17 (2):112-120.
    [25]秦昌波.天津海岸带生态系统健康评价研究:[硕士学位论文].北京:中国环境科学研究院,2006.
    [26]张秋丰.天津近岸海域海洋生态健康评价与分析:[硕士学位论文].青岛:中国海洋大学,2006.
    [27]Jorgensen S E, Costanza R, Xu F L. Handbook of ecological indicators for assessment of ecosystem health. Boca Raton:Taylor & Francis,2005.
    [28]Salas F, Marcos C, Neto J M, et al. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean and Coastal Management, 2006,49 (5-6):308-331.
    [29]Bellan G. Annelides polychetes des substrats solids de troits mileux pollues sur les cortes de Provence (France):Cortiou, Golfe de Fos, Vieux Port de Marseille. Tethys, 1980,102 (9),260-278.
    [30]Borja A, Franco J, Perez V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin,2000,40 (12):1100-1114.
    [31]Simboura N, Zenetos A. Benthic indicators to use in ecological quality classification of Mediterranean soft bottom marine ecosystems, including a new biotic index. Mediterranean Marine Science,2002,3 (2):77~112.
    [32]Smith R W, et al. Benthic response index for assessing infaunal communities on the southern California mainland shelf. Ecological Applications,2001,11 (4):1073~ 1087.
    [33]Raffaelli D G, Mason C F. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Marine Pollution Bulletin,1981,12(5):158~163.
    [34]Gomez Gesteira J L, Dauvin J C. Amphipods are good bioindicators of the impact of oil spills on soft-bottom macrobenthic communities. Marine pollution bulletin,2000, 40 (11):1017~1027.
    [35]Warwick R M, Clarke K R. New 'biodiversity' measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series,1995,129(1): 301-305.
    [36]Clarke K R, Warwick R M. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology,1998,35 (4):523~531.
    [37]Lambshead P J D, Platt H M, Shaw K M. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. Journal of Natural History,1983,17 (6):859~874.
    [38]Warwick R M. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology,1986,92 (4):557~562.
    [39]Warwick R M, Clarke K R. Relearning the ABC:taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Marine Biology, 1994,118 (4):739~744.
    [40]Vollenweider R A, Giovanardi F, Montanari G, et al. Characterization of the trophic conditions of marine coastal waters, with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics,1998,9 (3):329~357.
    [41]Nelson W G. Prospects for development of an index of biotic integrity for evaluating habitat degradation in coastal systems. Chemistry and ecology,1990,4(4):197~ 210.
    [42]Weisberg S B, Ranasinghe J A, Dauer D M, et al. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries,1997,20 (1):149~158.
    [43]Deegan LA, Finn J T, Ayvazian S G, et al. Feasibility and application of the index of biotic integrity to Massachusetts estuaries (EBI), Final report to Massachusetts Executive Office of Environmental Affairs.1993. Department of Environmental Protection:North Grafton, MA.
    [44]Ulanowicz R E. Growth and development:ecosystems phenomenology.1986:Springer New York et al.
    [45]Odum H T. Environmental accounting:emergy and environmental decision making.1995:John Wiley & Sons Inc.
    [46]J(?)rgensen S E, Mejer H. A holistic approach to ecological modelling. Ecological Modelling,1979,7 (3):169~189.
    [47]BorjaA, Bricker S B, Dauer D M, et al. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin,2008,56 (9):1519~1537.
    [48]Borja A, Dauer D M. Assessing the environmental quality status in estuarine and coastal systems:comparing methodologies and indices. Ecological Indicators,2008, 8 (4):331~337.
    [49]Foley M M, Halpern B S, Micheli F, et al. Guiding ecological principles for marine spatial planning. Marine Policy. In Press, Corrected Proof.
    [50]Wells P G. Assessing health of the Bay of Fundy—concepts and framework. Marine Pollution Bulletin,2003,46 (9):1059-1077.
    [51]Malone T C. The coastal module of the Global Ocean Observing System (GOOS): an assessment of current capabilities to detect change. Marine Policy,2003,27(4): 295-302.
    [52]Wang H. An evaluation of the modular approach to the assessment and management of large marine ecosystems. Ocean Development & International Law,2004,35 (3): 267-286.
    [53]Muniz P, Venturini N, Pires-Vanin A, et al. Testing the applicability of a Marine Biotic Index(AMBI) to assessing the ecological quality of soft-bottom benthic communities, in the South America Atlantic region. Marine Pollution Bulletin,2005,50(6):624~ 637.
    [54]Giovannetti E, Montefalcone M, Morri C, et al. Early warning response of Posidonia oceanica epiphyte community to environmental alterations (Ligurian Sea, NW Mediterranean). Marine Pollution Bulletin. In Press. Corrected Proof.
    [55]Bazairi H, Bayed H, Hily C. Structure et bioevaluation de l'etat ecologique des communautes benthiques d'un ecosysteme lagunaire de la cote atlantique marocaine Comptes Rendus Biologies,2005,328 (10-11):977~990.
    [56]Parsons M L, Walsh W J, Settlemier C J, et al. A multivariate assessment of the coral ecosystem health of two embayments on the lee of the island of Hawaii. Marine Pollution Bulletin,2008,56 (6):1138~1149.
    [57]Herrera-Silveira J A, Morales-Ojeda S M. Evaluation of the health status of a coastal ecosystem in southeast Mexico:Assessment of water quality, phytoplankton and submerged aquatic vegetation. Marine Pollution Bulletin,2009,59 (1-3):72~86.
    [58]Montefalcone M. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica:A review. Ecological Indicators,2009,9 (4):595~604.
    [59]Teixeira H, Magalhaes N J, Patricio J, et al. Quality assessment of benthic macroinvertebrates under the scope of WFD using BAT, the Benthic Assessment Tool. Marine Pollution Bulletin,2009,58 (10):1477~1486.
    [60]Salas F, Pardal M A, Marques J C. Application of ecological indicators to assess environmental quality in coastal zones and transitional waters:two case studies, in Handbook of ecological indicators for assessment of ecosystem health 2005. University of Coimbra:Coimbra, Portugal.
    [61]Vassallo P, Fabiano M, Vezzulli L, et al. Assessing the health of coastal marine ecosystems:A holistic approach based on sediment micro and meio-benthic measures. Ecological Indicators,2006,6 (3):525~542.
    [62]Austoni M, Giordani G, Viaroli P, et al. Application of specific exergy to macrophytes as an integrated index of environmental quality for coastal lagoons. Ecological Indicators,2007,7 (2):229-238.
    [63]Munawar M, Munawar I F, McCathy L, et al. Assessing the impact of sewage effluent on the ecosystem health of the Toronto Waterfront (Ashbridges Bay), Lake Ontario. Aquatic Ecosystem Health,1993,2 (4):287~315.
    [64]Marshall A S, Ryon M G. A comparison of health assessment approaches for evaluating the effects of contaminant-related stress on fish populations. Aquatic Ecosystem Stress and Recovery,1994,3 (1):15~25.
    [65]Vandermeulen H. The development of marine indicators for coastal zone management. Ocean and Coastal Management,1998,39 (1-2):63~71.
    [66]Coates B, Jones A R, Williams R J. Is'ecosystem health'a useful concept for coastal managers. Tweed Heads:Proceedings of the Coast to Coast 2002 Meeting,2002.
    [67]Xu F L, Lam K C, Dawson R W, et al. Long-term temporal-spatial dynamics of marine coastal water quality in the Tolo Harbor, Hong Kong. Journal of Environmental Sciences,2004,16 (1):161-166.
    [68]Andrulewicz E, Kruk-Dowgiallo L, Osowiecki A. An expert judgement approach to designating ecosystem typology and assessing the health of the Gulf of Gdansk. Coastline Reports 2,2004:53~61.
    [69]Langmead O, McQuatters-Gollop A, Mee L D, et al. Recovery or decline of the northwestern Black Sea:A societal choice revealed by socio-ecological modelling. Ecological Modelling,2009,220 (21):2927~2939.
    [70]杨建强,崔文林,张洪亮,等.莱州湾西部海域海洋生态系统健康评价的结构功能指标法.海洋通报,2003,22(5):58~63.
    [71]欧文霞.闽东沿岸海洋生态监控区生态系统健康评价与管理研究:[硕士学位论文].厦门:厦门大学,2006.
    [72]叶属峰,刘星,丁德文.长江河口海域生态系统健康评价指标体系及其初步评价.海洋学报,2007,29(004):128~136.
    [73]李会民,王洪礼,郭嘉良.海洋生态系统健康评价研究.生产力研究,2007(010):50~51.
    [74]孙磊.胶州湾海岸带生态系统健康评价与预测研究:[博士学位论文].青岛:中国海洋大学,2008.
    [75]孙磊,孙英兰,周震峰.青岛市海岸带生态系统压力综合评价指标体系研究.海 洋环境科学,2009(005):584~587.
    [76]杨红,袁政涛,刘健,等.上海隧桥工程海域生态系统健康的初步评价.长江流域资源与环境,2009,18(011):1031~1037.
    [77]宋延巍.海岛生态系统健康评价方法及应用:[博士学位论文].青岛:中国海洋大学,2006.
    [78]贾晓平,李纯厚,甘居利,等.南海北部海域渔业生态环境健康状况诊断与质量评价.中国水产科学,2005,12(006):757~765.
    [79]张秋丰,屠建波,胡延忠,等.天津近岸海域生态环境健康评价.海洋通报,2008,27(005):73~78.
    [80]马玉艳,延启仑,王真良,等.基于熵权的浮游动物群落生态健康模糊综合评价.海洋环境科学,2008,27(A02):28~34.
    [81]索安宁,赵冬至,张丰收,等.景观指标与滨海湿地生态系统健康评价.海洋环境科学,2008,27(A02):137~143.
    [82]国家海洋环境监测中心.近岸海洋生态健康评价指南.2005.海洋监测技术规程汇编,HY/T087-2005.
    [83]Borja A. Marine ecological integrity assessment and ecosystem-based approach. SciTopics.2008, December 30, Cited Retrieved March 2,2010.
    [84]Borja A. Ecological integrity assessment, ecosystem-based approach, and integrative methodologies:Are these concepts equivalent? Marine Pollution Bulletin,2009,58 (3):457~458.
    [85]Saaty T L, Ozdemir M. Negative priorities in the analytic hierarchy process. Mathematical and Computer Modelling.2003,37 (9-10):1063~1076.
    [86]戴明新,胡焱弟,王芃AHP-Fuzzy在港口环境承载力综合评价中的应用.安全与环境学报,2008,8(5):109~112.
    [87]Den J L. Control problems of grey system. System and Control Letters 1982,1 (5): 288-294.
    [88]刘思峰.灰色系统理论持续发展的奥秘.2006年灰色系统理论及其应用学术会议论文集.2006.
    [89]刘思峰,党耀国,方志耕.灰色系统理论及其应用.北京:科学出版社,2004.132~143.
    [90]李祚泳,丁晶,彭荔红.环境质量评价原理与方法.北京:化学工业出版社,2004.118~162.
    [91]宋新山,邓伟.环境数学模型.北京:科学出版社,2004.17~24.
    [92]夏青,陈艳卿,刘宪兵.水质基准与水质标准.北京:中国标准出版社,2004.172~208.
    [93]USEPA. National recommended water quality criteria:2002, EPA 822-R-02-047 [S]. Washington D C:Office of Water,2002.
    [94]USEPA. National recommended water quality criteria-correction EPA 822-Z-99-001 [S]. Washington D C:Office of Water,1999.
    [95]《渤海、黄海近岸海域环境综合调查报告》.国家环保局近岸海域环境监测网中心站,1997.
    [96]第二次全国海洋污染基线调查报告.北京:国家海洋局,2004
    [97]2007年全国近岸生态监控区生态状况报告.北京:国家海洋局,2008.123~157.
    [98]Elliott M. The analysis of macrobenthic community data. Marine Pollution Bulletin, 1994,28 (2):62~64.
    [99]McLusky D S, Elliott M. The estuarine ecosystem:ecology, threats, and management. Oxford:Oxford University Press,2004.216.
    [100]Orfanidis S, Panayotidis P, Stamatis N. An insight to the ecological evaluation index (EEI). Ecological indicators,2003,3 (1):27~33.
    [101]Pearson T H, Rosenberg R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology,1978, 16:229-311.
    [102]Dauer D M, Ranasinghe J A, Weisberg S B. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries and Coasts,2000,23 (1):80~96.
    [103]Bustos B S, Frid C. Using indicator species to assess the state of macrobenthic communities. Hydrobiologia,2003,496 (1):299~309.
    [104]Dauvin J C. Paradox of estuarine quality. Benthic indicators and indices, consensus or debate for the future. Marine Pollution Bulletin,2007,55 (1-6):271~281.
    [105]Salas F, Marcos C, Neto J M, et al. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean & Coastal Management, 2006,49 (5-6):308~331.
    [106]Warwick R M. Environmental impact studies on marine communities, pragmatical considerations. Austral Ecology,2006,18 (1):63~80.
    [107]Warwick R M, Clarke K R. Taxonomic distinctness and environmental assessment. Journal of Applied Ecology,1998,35 (4):532~543.
    [108]Clarke K R, Warwick R M. The taxonomic distinctness measure of biodiversity, weighting of step lengths between hierarchical levels. Marine Ecology Progress Series, 1999,184:21-29.
    [109]环境保护部.HJ 442-2008近岸海域环境监测规范.北京:中国环境科学出版社,2008.
    [110]Shannon C E. A mathematical theory of communication. New York:ACM New York, 2001.3~55.
    [111]Engle V D, Summers J K, Gaston G R. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries and Coasts,1994,17 (2):372~384.
    [112]Mendez U N. Polychaetes inhabiting soft bottoms subjected to organic enrichment in the Topolobampo lagoon complex. Sinaloa:Mexico,1997.79~88.
    [113]李永祺,丁美丽.海洋污染生物学.北京:海洋出版社,1991.445~449.
    [114]Molvaer R J, Knutzen J, Magnusson J, et al. Classification of environmental quality in fjords and coastal waters. S guidelines. Editor.1997.
    [115]Clarke K R, Warwick R M. Changes in marine communities. an approach to statistical analysis and interpretation.2001.
    [116]Warwick R M, Clarke K R. Relearning the ABC:taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Marine Biology, 1994,118 (4):739~744.
    [117]Pearson T H, Rosenberg R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Review,1978,16:229~311
    [118]Simpson E H. Measurement of diversity. Nature,1949,163 (4148):688.
    [119]Hill M O. Diversity and evenness. a unifying notation and its consequences. Ecology, 1973,54 (2):427~432.
    [120]McNaughton S J. Relationships among functional properties of Californian grassland. Nature,1967,216:168~169.
    [121]Daan N. A spatial and temporal diversity index taking into account species rarity, with an application to the North Sea fish community. Berlin:ICES CM,2001.6.
    [122]Pearson T H, Rosenberg R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology:An Annual Review,1978,16:229~311.
    [123]Leppaekoski E. Assessment of degree of pollution on the basis of macrozoobenthos in marine and brakish water environments. Acta Acad. Aabo Ser. B.1975,35 (2): 1-96.
    [124]Rygg B. Distribution of species along pollution-induced diversity gradients in benthic communities in Norwegian Fjords. Marine Pollution Bulletin,1985,16(12):469~ 474.
    [125]J(?)rgensen S E, Xu F L, Salas F, et al. Application of Indicators for the Assessment of Ecosystem Health, in Handbook of ecological indicators for assessment of ecosystem health. Boca Raton:Taylor & Francis2005,439.
    [126]Pielou E C. Shannon's formula as a measure of specific diversity, its use and misuse. American Naturalist.1966:463~465.
    [127]Rice J, Gislason H. Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models.ICES Journal of Marine Science,1996,53 (6):1214.
    [128]Beukema J J. An evaluation of the ABC-method (abundance/biomass comparison) as applied to macrozoobenthic communities living on tidal flats in the Dutch Wadden Sea. Marine Biology,1988,99 (3):425~433.
    [129]Clarke K R. Comparisons of dominance curves. Journal of Experimental Marine Biology and Ecology,1990,138 (1):143~157.
    [130]Clarke K R, Gorley R N. PRIMER v6:user manual/tutorial PRIMER-E. Plymouth: PRIMER-E Ltd,2006.178
    [131]Clarke K R, Warwick R M. Changes in marine communities.an approach to statistical analysis and interpretation.2001. PRIMER-E Ltd:Plymouth.
    [132]Clarke K R, Gorley R N. PRIMER v6:User Manual/Tutorial.2006. PRIMER-E Ltd. Plymouth:PRIMER-E Ltd,2006.190.
    [133]张金屯.数量生态学.北京:科学出版社,2004.356.
    [134]Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology,1933,24 (6):417~441.
    [135]张金屯.数量生态学.北京:科学出版社,2004.357.
    [136]Shepard R N. The analysis of proximities:Multidimensional scaling with an unknown distance function II. Psychometrika,1962,27 (3):219~246.
    [137]Kruskal J B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,1964,29 (1):1~27.
    [138]Noy M I, Walker D, Williams W T. Data transformations in ecological ordination. Ⅱ. On the meaning of data standardization. Journal of Ecology,1975, 63 (3):779-800.
    [139]Greig S P. Quantitative plant ecology. Berkeley:University of California Press, 1983.359.
    [140]Clarke K R. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology,1993,18 (1):117~143.
    [141]Hill M O. Correspondence analysis.a neglected multivariate method. Applied Statistics,1974,23 (3):340-354.
    [142]Leps J, P Smilauer. Multivariate analysis of ecological data using CANOCO. Cambridge:Cambridge University Press,2003.
    [143]McRae G, Camp D K, Dix T L, et al. Relating benthic infaunal community structure to environmental variables in estuaries using nonmetric multidimensional scaling and similarity analysis. Environmental Monitoring and Assessment,1998,51 (1):233~ 246.
    [144]Clarke K R, Ainsworth M. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series,1993,92:205~205.
    [145]Cao Y, Bark A W, Williams W P. Measuring the responses of macroinvertebrate communities to water pollution.a comparison of multivariate approaches, biotic and diversity indices. Hydrobiologia,1996,341 (1):1~19.
    [146]j(?)rgensen S E. Eco-Exergy as Sustainability. Ashurst:WIT Press,2006.27~33.
    [147]葛永林.生态复杂性研究中[火用],能值理论的哲学意义.系统科学学报,2008,16(001):82~86.
    [148]张彦.有效能分析在环境评价中的应用.能源工程.2000(4):18~21.
    [149]Bastianoni S, Marchettini N. Emergy/exergy ratio as a measure of the level of organization of systems. Ecological Modelling,1997,99 (1):33~40.
    [150]J(?)rgensen S E. Development of models able to account for changes in species composition. Ecological Modelling,1992,62 (1-3):195~208.
    [151]J(?)rgensen S E. Parameters, ecological constraints and exergy. Ecological Modelling, 1992,62 (1-3):163~170.
    [152]扬戈逊 S E,陆健健.生态模型法原理.上海:上海翻译出版公司,1990.
    [153]Jogensen S E, Patten B C, Straskraba M. Ecosystems emerging. toward an ecology of complex systems in a complex future. Ecological Modelling,1992,62(1-3):1~ 27.
    [154]J(?)rgensen S E, Nielsen N S. Application of exergy as thermodynamic indicator in ecology. Energy,2007,32 (5):673~685.
    [155]J(?)rgensen S E. Integration of ecosystem theories, a pattern.3rd ed. Dordrecht:Kluwer Academic Publishers,2002.
    [156]J(?)rgensen S E. Application of exergy and specific exergy as ecological indicators of coastal areas. Aquatic Ecosystem Health and Management,2000,3 (3):419~430.
    [157]J(?)rgensen S E, Nielsen S N, H Mejer. Emergy, environ, exergy and ecological modelling. Ecological Modelling,1995,77 (2-3):99~109.
    [158]J(?)rgensen S E. Eco-exergy as sustainability. The Sustainable World, Vol 16. Ashurst: Wit Press,2006.35~41.
    [159]Jergensen S E, Patten B C, Straskraba M. Ecosystems emerging 4. growth. Ecological Modelling,2000,126 (2-3):249~284.
    [160]Fonseca J C, Marques J C, Paiva A A, et al. Nuclear DNA in the determination of weighing factors to estimate exergy from organisms biomass. Ecological Modelling, 2000,126 (2-3):179-189.
    [161]J(?)rgensen S E, Ladegaard N, Debeljak M, et al. Calculations of exergy for organisms. Ecological Modelling,2005,185 (2-4):165~175.
    [162]Mattick J S. Challenging the dogma.the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays,2003,25 (10):930~939.
    [163]Marques J C, Pardal M A, Nielsen S N, et al. Analysis of the properties of exergy and biodiversity along an estuarine gradient of eutrophication. Ecological Modelling,1997, 102 (1):155~167.
    [164]Debeljak M. Applicability of genome size in exergy calculation. Ecological Modelling,2002,152 (2-3):103-107.
    [165]Libralato S, Torricelli P, Pranovi F. Exergy as ecosystem indicator. An application to the recovery process of marine benthic communities. Ecological Modelling,2006,192 (3-4):571-585.
    [166]Salas F, Marcos C, Perez-Ruzafa A, Marques J C,et al. Application of the exergy index as ecological indicator of organically enrichment areas in the Mar Menor lagoon (south-eastern Spain). Energy,2005,30 (13):2505~2522.
    [167]孙平跃,陆健健.埃三级(Exergy)理论.生态系统研究的一种新方法.生态学杂志,]997,16(005):32~37.
    [168]张永泽,刘玉生,郑丙辉Exergy在湖泊生态系统建模中的应用.湖泊科学,1997,9(3):75~81.
    [169]Zhang Y Z, Wang X. Exergy and ecological modelling of lake environment. Journal of Environmental Sciences (China),1998,10 (4):497~504.
    [170]Jorgensen S E. Ecosystem Services. Sustainability and Thermodynamic Indicators. Ecosystem Complexity, in press.
    [171]Costanza R, d'Arge R, de Groot R, et al. The value of the world's ecosystem services and natural capital. Nature,1997,387:253~260.
    [172]J(?)rgensen S E. Application of exergy and specific exergy as ecological indicators of coastal areas. Aquatic Ecosystem Health and Management,2000,3 (3):419~430.
    [173]Fonseca J C, Pardal M A, Azeiteiro U M, Marques J C. Estimation of ecological exergy using weighing parameters determined from DNA contents of organisms-a case study. Hydrobiologia,2002,475 (1):79~90.
    [174]Fabiano M, Vassallo P, Vezzulli L. Temporal and spatial change of exergy and ascendency in different benthic marine ecosystems. Energy,2004,29(11):1697~ 1712.
    [175]Silow E A, Oh I H. Aquatic ecosystem assessment using exergy. Ecological Indicators, 2004,4 (3):189~198.
    [176]Vassallo P, Fabiano M, Vezzulli L. Assessing the health of coastal marine ecosystems: A holistic approach based on sediment micro and meio-benthic measures. Ecological Indicators,2006,6 (3):525~542.
    [177]Salas F, Marcos C, Neto J M. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean & Coastal Management, 2006,49 (5-6):308-331.
    [178]Austoni M, Giordani G, Viaroli P. Application of specific exergy to macrophytes as an integrated index of environmental quality for coastal lagoons. Ecological Indicators, 2007,7 (2):229~238.
    [179]胡志新,胡维平,张发兵,等.太湖梅梁湾生态系统健康状况周年变化的评价研究.生态学杂志,2005,24(007):763~767.
    [180]米文宝,樊新刚,刘明丽.宁夏沙湖水生生态系统健康评估.生态学杂志,2007,26(002):296~300.
    [181]龙邹霞,余兴光.湖泊生态系统弹性系数理论及其应用.生态学杂志,2007,26(007):1119~1124.
    [182]章飞军,童春富,谢志发,等.长江口潮间带大型底栖动物群落演替.生态学报,2007,27(012):4944~4952

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700