回流式生物膜组合工艺处理生活污水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种回流式生物膜法组合工艺,其以传统的接触氧化法和BAF为基础,同时设置缺氧段,在必要时进行硝化液回流以强化脱氮。该工艺按污水流经次序分为缺氧段(A段)、接触氧化段(O段)‘和BAF段(B段),其中,前两段装填多面空心球填料,而BAF段装填陶粒填料。应用该反应器系统对生活污水进行处理试验,研究了各污染物去除效果及影响因素,确定了该工艺的最优运行参数,并对该工艺中各污染物的去除机理进行了分析,对COD去除动力学模型进行了推导和验证,同时,还对系统的反冲洗机理、方式及强度进行了试验研究。
     通过不同试验条件下的污染物去除试验,最终确定出了该生物膜组合工艺在处理生活污水时的最优工艺参数为:水力停留时间(HRT)为6.5 h;O、B段溶解氧(DO)浓度分别控制在3-4 mg/L和6-7 mg/L;回流比为150%。在最优工艺参数条件下,当进水COD平均负荷和氨氮平均负荷分别为290.8 mg/L和42.2mg/L时,反应器对COD、氨氮、总氮及浊度的平均去除率分别为90.83%、98.97%、76.27%及88.66%,此时,反应器出水COD、氨氮、总氮及浊度分别为22~31 mg/L,0.2~0.75 mg/L、9.6~13.3 mg/L及6-10 NTU,其均值分别为26.4 mg/L、0.43 mg/L、11.15 mg/L、7.8 NTU,均满足GB18918-2002中所规定的一级A要求,且可满足部分城市杂用水(GB/T18920-2002)和景观用水(GB/T18921-2002)的标准。反应器对总磷的去除效果较差,其平均去除率仅为37.98%,出水总磷浓度为1.4-1.9 mg/L。
     试验结果表明,HRT、DO、R、水温、进水有机负荷和氨氮负荷对污染物的去除均有不同程度的影响。HRT对氨氮的去除影响较大,随着HRT的减小系统氨氮去除率大大降低;O段DO的变化对各项污染物去除的影响较小,而B段DO的变化对氨氮的去除影响较大,当B段DO低于6 mg/L时,该段氨氮去除率大大降低;受回流比变化影响最大的指标是总氮去除,其去除率随回流比的增大呈现先升高后降低的趋势;在HRT为6.5 h时,系统对COD和氨氮的去除率均随水温升高呈现增高趋势,但在HRT为4.25 h时,系统对COD的去除随水温升高有所增高,而此时氨氮的去除率并未明显受到水温变化的影响;进水COD负荷对A-O段COD和氨氮的去除均有影响,前者随进水COD负荷的增加呈现先增加后略有降低的趋势,而后者大体上随COD负荷的增加呈降低趋势;进水COD负荷对B段反应器污染物去除的影响并不明显;A-O段氨氮去除率受其进水氨氮负荷影响较大,该段出水氨氮浓度随进水氨氮负荷的增加呈线性增加趋势。
     通过理论推导及试验推求,最终确定了A-O段反应器和B段反应器的COD去除动力学模型分别为:C=C0e-(-0.117R2+0.2958R-0.0037T12+0.1559T1+0.2361)h1和C=C1e-(0.0861R2-0.2837R+0.1834T22-0.5895T2+0.8856)h2;整个系统的COD去除动力学模型为:C2=C0e0.1377R2-0·.2789R-0.0205T2-0.019T-13904。
     通过分析及试验验证分别确定了A-O、B段反应器的反冲洗方式及强度。A-O反应器的反冲洗方式和强度:先气、水同时冲洗,再单独用水反冲洗;确定气-水同时反冲洗时的气冲洗强度为12 L/(m2·s),水冲洗强度为4 L/(m2·s),冲洗时间5min,单独水冲洗阶段的水冲洗强度4 L/(m2·s),时间9 min。B反应器的反冲洗方式及强度:先单独气冲洗,再气-水同时反冲洗,最后单独用水漂洗;确定单独气洗阶段的反冲洗强度为18 L/(m2·s),时间4 min,气、水同时冲洗阶段的气洗强度18 L/(m2·s),水冲洗强度为4 L/(m2·s),时间8 min,单独水冲洗阶段的反冲洗强度为4 L/(m2·s),时间3 min。
     试验研究表明,该工艺可实现对COD、氨氮、总氮和悬浮物的有效去除,同时对总磷也有一定的去除效果,且该工艺具有占地面积小、操作简单、抗冲击负荷能力强、处理出水水质稳定、尤其是脱氮效果较好等优点,验证了该工艺在分散式污水处理与回用中的可行性。
In this dissertation, a new wastewater treatment process-a combined biofilm reactor was introduced, which was based on the traditional Contact Oxidation Method and BAF and was added anoxic zone. For enhancing nitrogen removal, nitrifying fluid return could be carried out. According to the order of the sewage flow, it was divided into three zones:the anaerobic zone (A), the contact oxidation zone (O) and the BAF (B). Both A and O zones were packed with polypropylene multi-faceted hollow balls and B zone was packed with ceramsite. A lab-scale experiment treating domestic sewage in the combined reactor was conducted. Contaminants removal was investigated and the optimum operational parameters were determined. The mechanics of contaminants removal were analyzed in detail, and kinetic models of COD removal were deduced and inspected. In addition, the mechanics, styles and intensity of backwashing were studied in this experiment.
     According to the experimental results under different conditions, the optimum operational parameters were determined as following:HRT was 6.5 h, DO concentrations of O zone and B zone were 3~4 mg/L and 6~7 mg/L, respectively, and nitrifying fluid return ratio(R) was 150%. Under the optimum conditions, with average influent COD of 290.8 mg/L and ammonia of 42.2 mg/L, the average removal efficiency of COD, ammonian, total nitrogen and turbidity were 90.83%,98.97%, 76.27% and 88.66%, respectively, and accordingly, the effluent concentrations were 22~31 mg/L,0.2~0.75 mg/L,9.6~13.3 mg/L and 6~10 NTU, respectively, so their average effluent concentrations were 26.4 mg/L,0.43 mg/L,11.15 mg/L and 8 NTU, respectively, all meeting the A-level standard in GB18918-2002. And some of the four indexes met water quality standard for urban miscellaneous water consumption (GB/T18920-2002) and for scenic environment use (GB/T18921-2002). The removal of total phosphorus was relatively poor, and the average removal efficiency of 37.98% and total phosphorus in effluent of 1.4~1.9 mg/L was just attained.
     The experimental results showed that, the changes of HRT, DO, R, temperature, COD concentration and ammonia concentration in influent could influence the removal efficiency of contaminants in varying degrees. The change of HRT made a great effect on ammonia removal, and the removal rate of ammonia dropped greatly with the decrease of HRT. The change of DO made little effect on the removal of contaminants in O zone but made a great effect on the removal of ammonia in B zone. The removal rate of ammonia decreased dramatically when the DO was less than 6 mg/L in B zone. The removal rate of total nitrogen was most obviously influenced by the change of return ratio, presenting the trend of first increase then decrease with the increase of return ratio. With HRT of 6.5 h, the removal rates of COD and ammonia increased with the increase of temperature, while with HRT of 4.25 h, the removal rate of COD increased slightly with the increase of temperature, and the removal of ammonia was hardly affected. COD concentration in influent made different effects on removal rates of COD and ammonia in A-O zone. With the increase of COD concentration, the removal rate of COD ascended firstly, and then descended slightly, but the removal rate of ammonia decreased constantly on the whole. The removal of contaminants in B zone was affected slightly by COD concentration in influent. Ammonia concentration in influent made a great effect on ammonia removal in A-O zone, rendering ammonia concentration in effluent to increase linearly with the increase of ammonia concentration in influent.
     By the combined deduction of theory and experiment, the kinetics models of COD removal were achieved as following:C= C0e-(-0.117R2+0.2958R-0.0037T12+0.1559T1+0.2361)h1 (in A-O zone), C=C1e-(0.861R2-0.2837R+0.1834T22-0.5895T2+0.8856)h2 (in B zone). Based on the above two models, the kinetics model C2=C0e0.1377R2-0.2789R-0.0205T2-0.019T-1.3904 of combined biofilm reactor was deduced.
     By analyzing in theory and experimental testing, the styles and intensity of backwashing were determined. They were as following:for A-O zone, firstly, simultaneous backwashing with air and water for 5min, under the backwashing intensity of air and water of 12 L/(m2·s) and 4 L/(m2·s), respectively; then, backwashing with water for 9min, under its intensity of 4L/(m2-s). While for B zone, firstly, backwashing with air for 4min, under its intensity of 18 L/(m2-s); then, simultaneous backwashing with air and water for 8 min, under the backwashing intensity of air and water of 18 L/(m2·s) and 4 L/(m2·s), respectively; lastly, backwashing with water for 3min, under its intensity of 4 L/(m2·s).
     The experimental results showed the combined biofilm reactor could achieve good removal efficiency of COD, ammonia, total nitrogen and SS, and relatively poor removal efficiency of total phosphorus. And some other advantages, like small footprint, simple operation, good capability of counteracting influent loading fluctuation, steady effluent quality, and especially prominent nitrogen removal were also presented. It was proved that it was feasible for the combined biofilm reactor to be applied in the distributed wastewater treatment for water reuse.
引文
[1]Hellstrorm D, Jonsson L. Evaluation of small wastewater treatment systems [J]. Water Science and Technology,2003,48 (11-12):61-68.
    [2]Zeeman G, Lens P, Lettinga G. Decentralised sanitation and reuse [J]. Water 21, 2001 (April),24-25.
    [3]Boller M. Small wastewater treatment plants-a challenge to wastewater engineers. Water Seience and Teehnology,1997,35 (6):1-12.
    [4]王琳,王宝贞.分散式污水处理与回用[M].北京:化学工业出版社2003.190-278.
    [5]郭卫宏等.中水道应用—建筑给排水的发展趋势[J].给水排水,1999,25(12):41-43.
    [6]金兆丰,徐竟成.城市污水回用技术手册[M].北京:化学工业出版社2004.46-68.
    [7]Asano, Takashi, Levine, et al. Wastewater reclamation, recycling and reuse:past, present, and future [J]. Water Science and Technology,1995,33 (10-11):1-14.
    [8]van Leeuwen J. Reclaimed water-an untapped resource [J]. Desalination,1996, 106 (1-3):233-240.
    [9]Eran Friendler. Water reuse-an integral part of water resources management: Israel as a case study [J]. Water Policy,2001,3 (1):29-39.
    [10]刘俊良.城市节制用水规划原理与技术[M].北京:化学工业出版社,2003.215-220.
    [11]Norrie Hunter. Water reuse:making use of wastewater [J]. Filtration & Separation.2007,44 (7):4-27.
    [12]Frank Rogella. Cost reduction will make MBR realistic even for large plants [J]. International Desalination & Reuse,2002,11 (4):3-12.
    [13]Prathrmesh Barar, seth V K. Application of reverse osmosis for water reclamation from sewage [J]. International Desalination & Water Reuse,2001, 10 (4):38-56.
    [14]邵青,龙荷云,安鼎年.水处理剂循环再利用技术[M].北京:化学工业出版社,2004.1-3.
    [15]柯崇宜,孙峻,沈晓南.青岛海泊河污水处理厂污水回用工程[J].中国给水排水.1999,15(8):35-36.
    [16]江雄志,李超,姜立安.石家庄市污水回用现状及发展构想[J].中国给水排水.2001,17(9):62-64.
    [17]邹利安,刘灿.二级城市污水处理厂出水直接过滤回用的研究与实践[J].给水排水.1997,23(8):21-24.
    [18]张智,阳春.城市污水回用技术.重庆建筑大学学报[J].2000,22(4):103-107.
    [19]Chan S Y, Tsang Y F, Cui L H, Chua H. Domestic wastewater treatment using batch-fed constructed wetland and predictive model development for NH3-N removal [J]. process biochemistry,2008,43 (3):297-305.
    [20]宣亚红,王小江,白玉华,等.垂直人工湿地在处理回用城市生活小区污水中的应用[J].科技信息,2008, (22):52-53.
    [21]程璞,李多松,张雁秋.城市小区分散式生态污水处理[J].能源环境保护,2004,18(6):4-6.
    [22]唐文清,曾光明,李小明,等.新型稳定塘处理小城镇生活废水的工程实践[J].衡阳师范学院学报,2006,28(6):129-130.
    [23]康冠军.MBR在PTA污水回用中的工程设计及运行[J].石油化工安全环保技术,2008,24(2):1-5.
    [24]孙星凡,文一波,张言.A/O-MBR处理生活污水回用的试验研究[J].供水技术,2008,2(4):24-26.
    [25]夏世斌,陈小珍,张兆基,等.复合MBR处理厕所污水与回用的试验研究[J].中国给水排水,2007,23(3):14-17.
    [26]Drizo A, Frost C A, Grace J, et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems [J]. Water Research,1999,33 (17):3595-3602.
    [27]沈耀良,杨锉大.新型废水处理技术—人工湿地[J].污染防治技术,1996,9(1):1-8.
    [28]于荣丽,李亚峰,孙铁珩.人工湿地污水处理技术及其发展现状[J].工业安全与环保,2006,32(9):29-31.
    [29]项学敏,宋晨,周集体,等.人工湿地水处理技术研究进展存在问题与改进[J].环境科学与技术,2006.29(10)101-102.
    [30]曹杰.人工湿地对农村生活污水的处理效果研究[M].杭州:浙江大学硕士学位论文.2007.
    [31]白晓慧.稳定塘系统与城镇污水资源化[J].西北水资源与水工程,1998,9(2):20-24.
    [32]黄学平,万金保,高延红.稳定塘常见问题与解决方法探讨[J].江西化工,2004,(4): 41-43.
    [33]Charaeklis G. Reaction kinetics in biofilms [J]. Biotechnology and Bioengineering,1991,38 (8):877-882.
    [34]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.51-52.
    [35]Hyung Sool Lee, Se Jin Park, Tai Yoon. Wastewater treatment in a hybrid biological reactor using powdered minerals:effects of organic loading rates on COD removal and nitrification. Process Biochemistry,2002,38(1):81-88.
    [36]Muller N. Implementing biofilm carriers into activated sludge process-15 years of experience. Water Science and Technology,1998,37(9):167-174.
    [37]Chung Jinwook, Bae Wookeun, Lee Yong-Woo, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors [J]. Process Biochemistry,2007,42 (3):320-328.
    [38]Hu Zhiqiang, Ferraina R A, Ericson J F, et al. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals [J]. Water Research,2005,39 (4):710-720.
    [39]Miqurleto Ana Paula, Rodrigues J A D, Ratusznei M, et al. Treatment of easily degradable waste water in a stirred anaerobic sequencing batch biofilm reactor [J]. Water Research,2005,39 (11):2376-2384.
    [40]Zhang Xin-Min, Rodgers Michael, O Reilly Edmond. Biofilm growth and characteristics in an alternating pumped sequencing batch biofilm reactor (APSBBR) [J]. Water Research,2006,40 (4):817-825.
    [41]Sung Ho Yeom. A simplified steady-state model of a hybrid bioreactor composed of a bubble column bioreactor and biofilter compartments. Process Biochemistry,2007,42 (4):554-560.
    [42]Harry Futselaar, Henk Schonewille, Dick de Vente, et al. NORIT AirLift MBR: side-stream system for municipal waste water treatment. Desalination,2007, 204(1-3):1-7.
    [43]Chuang S H, Ouyang C F, Yuang H C, et al. Effects of SRT and DO on nutrient removal in a combined as biofilm process. Water Science and Technology,1997, 36 (12):19-27.
    [44]蒋展鹏,钟燕敏,师绍琪.一体化A/O生物膜反应器处理生活污水[J].中国给水排水,2002,18(8):9-12.
    [45]Iaconi C Di, Lopez A, Ramadori R, et al. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR) [J]. Water Research,2002,36 (9):2205-2214.
    [46]Rajasimman M, Karthikeyan C. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support [J]. Journal of Hazardous Materials,2007,143 (1-2):82-86.
    [47]Chowdhury Nabin, Nakhla George, Zhu Jesse. Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater [J]. Chemosphere,2008,71 (5):807-815.
    [48]郭远凯,黎松强,吴馥平.生物膜—紫外消毒工艺处理城市污水研究[J].化学工程师,2006,126(3):15-17.
    [49]Fang H H P, Yeong C L Y, Book K M, et al. Removal of COD and nitrogen in wastewater using Sequencing Batch Reactor with fibrous packing [J]. Water Science and Technology,1993,28 (7):125-131.
    [50]吴根,宋存义,郭湛.悬浮填料生物膜反应器处理高校生活污水环境污染治理技术与设备[J].2005,6(1):87-89.
    [51]Broch-Due A., Anderson R. Kristoffersen O. Pilot plant experience with an aerobic moving bed biofilm reactor for the treatment of NSSC wastewater. Water Science and Technology,1994,29 (5):283-294.
    [52]Pastorelli G, Andreottola G, Canziani R, et al. Pilot plant experiments with moving bed biofilm reactors. Water Science and Technology,1997,36 (1): 43-50.
    [53]Lewandowski Z, Stoodley P, Altobelli S. Experimental and conceptual studies on mass transport in biofilm. Water Science and Technology,1995,31 (1): 153-162.
    [54]许泽美,唐建国,周彤,等.废水处理及再用[M].中国建筑工业出版社,2002,47-49.
    [55]季民,吴昌敏,贾霞珍,等.生物接触氧化法对引滦水中藻类的去除[J].中国给水排水.2003,19(8):56-58.
    [56]黄瑞敏,吴宏海.珠江微污染源水脱氮除氨生物处理研究[J].华南理工大学学报.2001,29(12):84-88.
    [57]宋襄翎,张欣,李继荣,等.生物接触氧化法处理生活污水的研究[J].化学与生物工程,2007,24(2):66-68.
    [58]邵蓊,李亭亭,姚敬博.二段生物接触氧化法处理寒冷地区生活污水试验研究[J].辽宁化工,2007,38(4):274-276.
    [59]刘庆斌,陈超产.水解酸化—接触氧化—混凝处理印染废水工程实践[J].工业安全与环保,2008,34(4):24-25.
    [60]古杏红,耿书良,李峰.厌氧水解—生物接触氧化法处理苯胺类化工废水[J].给水排水,2002,28(1):69-70.
    [61]李国秀,王克全.改良生物接触氧化法在印染废水处理中的应用[J].城市环境与城市生态,2008,21(3):36-37.
    [62]宁蔚,施卫红,周正华.水解酸化-生物接触氧化工艺处理生物制药废水[J].工业用水与废水,2008,39(2):94-96.
    [63]周建民,郑朋刚,扈映如,等.UASB与接触氧化反应器在养殖废水处理工程中的应用中国沼气[J].2008,26(2):21-24.
    [64]许健,王诗发,陈城池.混凝沉淀-电解-ABR-生物接触氧化法处理树脂废水[J].广东化工,2008,35(1):90-92.
    [65]李峰,赵永庆,曹宗仑,等.生物膜水解酸化-生物膜接触氧化工艺处理油田采出水技术研究[J].石油与天然气化工,2008,37(3):226-228.
    [66]刘忠伟,梁呈明.接触氧化一体化装置处理二级出水并回用[J].中国给水排水,2006,22(14):72-74.
    [67]许航,陈卫,程士俊,等.气提式接触氧化法处理生活污水的研究[J].中国给水排水,2007,23(5):90-93.
    [68]邵武、李中和.接触氧化-超滤膜分离工艺在中水处理中的应用研究[J].煤矿环境保护.1999,13(4):24-26.
    [69]陈丽杰,于军,周国彬.膜-生物接触氧化法在中水示范工程中应用与探讨[J].辽宁城乡环境科技,1997,17(6):57-59.
    [70]秦英海.生物接触氧化塔在炼油污水回用中的应用[J].上海化工,1999,24(17):22-24.
    [71]周建民,罗峥,刘源,等.水解酸化与接触氧化在牛仔洗漂污水回用工程的应用[J].水处理技术,2008,34(3):88-91.
    [72]Pujol R, Hamon M, Kandel X, et al. Biofilters:flexible, reliable biological reactors. Wat. Sci. Technol.1994,29 (10-11):33-39.
    [73]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社,2005.23-24.
    [74]Allan T Mann, Leopoldo Mendoza-Espinos, Tom Stephenson. Performance of floation and sunken media biological aerated filters under unsteady conditions [J]. Water Research,1999,33 (4):1108-1113.
    [75]黄健盛,谷晋川,王永强,等.曝气生物滤池处理生活污水试验研究[J].西华大学学报(自然科学版),2006,25(4):47-49.
    [76]张杰,曹相生,孟雪征.曝气生物滤池的研究进展[J].中国给水排水,2002,18(8):26-29.
    [77]齐兵强,王占生.曝气生物滤池在污水处理中的应用.给水排水.2000,26(10):4-8.
    [78]徐亚明,蒋彬,曝气生物滤池的原理及工艺[J],工业水处理,2002,22(6),1-5.
    [79]Chudoba P, Pujol R. A three-stage biofiltration process:performances of a pilot plant [J]. Water Science and Technology,1998,38 (8-9):257-265.
    [80]唐业梅,唐锦涛.BAF工艺处理城市污水[J].湖南有色金属.2002,18(5):40-42.
    [81]易彪,陶涛,朱鹏.曝气生物滤池处理城市污水的工程应用[J].中国给水排水,2007,23(20):60-62.
    [82]Mendoza-Espinosa G L, Stephenson T. Organic and hydraulic shock loading on a biological aerated filter [J]. Environment Technology,2001,22 (3):321-330.
    [83]兰善红,陈锡强,梁谋会,等.新型填料曝气生物滤池处理生活污水的研究[J].中国给水排水,2007,23(9):77-80.
    [84]李亚新,华玉妹.生物曝气滤池处理生活污水工艺特性研究[J].给水排水,2001,27(9):31-33.
    [85]武晓刚,史乐君,曹文平.两段BAF处理生活污水中试研究[J].科学技术与工程,2008,8(13):3563-3566.
    [86]Omil F, Juan M G, Arrojo B, et al. Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale [J]. Water Research, 2003,37 (17):4099-4108.
    [87]钟华文,张钧正,李晓明,等.二段BAF工艺处理炼油厂汽提废水的研究[J].工业水处理,2004,24(2):29-32.
    [88]郭景玉,万小芳,贺春梅,等.上向流BAF处理合成氨废水的应用研究[J].石油化工安全环保技术,2008,24(3):55-56.
    [89]Won-Seok Chang, Seok-Won Hong, Joonkyu Park. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Process Biochemistry.2002,37 (7):693-698.
    [90]Kuribayashi S. Experimental studies on advanced treatment of wastewater for amenity use [J]. Water Science and Technology,1992,26 (9-11):2401-2404.
    [91]丛广治,白宇,张杰,等.生物膜过滤技术处理污水厂二级出水[J].中国给水排水.2002,18(12):48-50.
    [92]郭天鹏,汪诚文,陈吕军,等.UBAF与纤维球过滤结合工艺应用于污水回用的试验研究[J].环境工程.2002,20(1):14-17.
    [93]Gimore K R, Husovitz K J, Holst T, et al. Influence of Organic and Ammonia Loading on Nitrifier Activity and Nitrification Performance for a Two-stage Biological Aerated Filter System [J].Water Science and Technology,1999,39 (7):227-234.
    [94]Chudoba P, Pujol R. A three-stage biofiltration process:performances of a pilot plant [J].Water Science and Technology,1998,38 (8-9):257-265.
    [95]李国一,王建功,张俊,等.曝气生物滤池技术在工业废水回用处理中的应用[J].水道港口,2006,27(S1):62-64.
    [96]黄全家,谢忱.改进型BAF水处理及回用装置节能工艺与投资效益分析[J].自动化与仪器仪表,2004,(4):64-66.
    [97]刘明坤,郑俊,汪荣.曝气生物滤池的调试及运行[J].中国给水排水,24(4)100-102.
    [98]Adachi S, Fuchu Y. Reclamation and reuse of wastewater by biological aerated filter process [J]. Water Science and Technology,1991,24 (9):195-204.
    [99]张东,乐林生,许建华.生物处理工艺生物膜活性与除污染效能相关性研究[J].净水技术,2004,23(4):13-15.
    [100]赖万东,杨卓如.接触氧化污水处理技术的研究进展与展望[J].四川环境,2005,24(1):74-78.
    [101]齐水冰,罗建中,乔庆霞.固定化微生物技术处理废水[J].上海环境科学,2002,21(3):185-189.
    [102]国家环境保护总局,编著.水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M]北京:中国环境科学出版社,2002.200-284.
    [103]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997.185-191.
    [104]张东,许建华.受污染原水的弹性填料生物接触氧化处理挂膜试验研究[J].重庆环境科学,2001,(1):61-63.
    [105]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004.11-25.
    [106]Stenstorm M K, Song S S. Effects of oxygen transport limitation on nitrification in the activated sludge process [J]. Research Journal of the Water Pollution Control Federation,1991,63 (3):208-219.
    [107]Liu Y, Capdeville B. Dynamics of Nitrifying Biofilm Growth in Biological Nitrogen Removal Process [J]. Water Science and Technology,1994,29 (7): 377-380.
    [108]李红岩,张昱,高峰,等.水力停留时间对活性污泥系统的硝化性能及其生物结构的影响[J].环境科学,2006,27(9):1862-1865.
    [109]Falkentoft C M, Arnz P, Henze M, et al. Possible complication regarding phosphorus removal with a continuous flow biofilm system:diffusion limitation [J]. Biotechnology and Bioengineering,2001,76 (1):77-85.
    [110]Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing-batch reactor for organic and nitrogen removal from wastewater [J]. Journal of Biotechnology, 2003,106 (1):77-86.
    [111]邱立平.曝气生物滤池处理生活污水的运行特性及生态学研究[D].哈尔滨:哈尔滨工业大学,2003,6.
    [112]Metcalf, Eddy. Wastewater engineering:treatment, disposal and reuse(3rd Ed.). McGraw-Hill Inc.,1991,65-70.
    [113]Songming Zhu, Shulin Chen. The Impact of Temperature on Nitrification Rate in Fixed Film Biofilters [J]. Aquacultural Engineering,2002,26 (10):221-237.
    [114]Antoniu P, Hamilton J, Koolloway B, et al. Effect of temperature and PH on the effective maximum specific growth rate of nitrifying bacteria [J]. Water Research,1990,24 (8):97-101.
    [115]Mauret M, Paul E, Puech-Costes E, et al. Application of experimental research methodology to the study of nitrification in mixed culture [J]. Water Science and Technology,1996,34 (1-2):245-252.
    [116]Randall C W, Buth D. Nitrite build-activated sludge resulting from temperature effects [J]. Water Pollut Control Fed,1984,56 (9):1039-1044.
    [117]周涛.生物活性炭—砂滤池深度处理微污染原水的试验研究[D].武汉:武汉水利电力大学,2000,5.11-13.
    [118]Billmann B E, el al. The nonsteady-statebiofilm Process for and advanced organics removal[J]. J.WPCF,1984,56 (7):874-880
    [119]Qin L, Liu Y, Tay J H. Denitrification on poly-β-hydroxybutyrate in microbial granular sludge sequencing batch reactor [J]. Water Research,2005,39 (8): 1503-1510.
    [120]方振东,赵刚,刘文君等.生物陶粒反应器中硝化自养菌与异养菌生长关系的研究[J].中国给水排水,1998,14(1):18-20.
    [121]Baek Seunq H, Paqilla, Krishna R. Simultaneous nitrification and denitrification of municipal wastewater in aerobic membrane bioreactors [J]. Water Environment Research,2008,80 (2):109-117.
    [122]Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts [J].. Environmental Pollution,1998,102 (S1):717-726.
    [123]G. Ciudad O, Rubilar P, Munoz, et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process [J]. Process Biochemistry,2005,40 (5):1715-1719.
    [124]Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a more sustainable municipal wastewater treatment system [J]. Water Science and Technology, 1997,35 (9):171-180.
    [125]Tatsuo Sumino, Kazuichi Isaka, Hajime Ikuta, et al. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor [J]. Journal of Bioscience and Bioengineering,2006, 102 (4):346-351.
    [126]Robertson L A, Kuenen J G. Aerobic denitrification:a controversy revived [J]. Arch Microbiol,1984,139 (5):351-354.
    [127]Patureau D, Bernet N, Bouchez T, et al. Biological nitrogen removal in a single aerobic reactor by association of a nitrifying ecosystem to an aerobic denitrifier, Microvirgula Aerodenitrificans [J]. Journal of Molecular Catalysis,1998,5 (1-4): 435-439.
    [128]Lone Frette, Bo Gejlsbjerg, Peter Westermann. Aerobic denitrifiers isolated from an alternating activated sluge system [J]. FEMS Microbiology Ecology, 1997,24 (4):363-370.
    [129]Huang H K, Tseng S K. Nitrate reduction by citrobacter diversus under aerobic environment [J]. Appl Microbiol Biotechnol,2001,55 (1):90-94.
    [130]Shwu-Ling Pai, Nyuk-Min Chong, Chei-Hsiang Chen. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment [J]. Bioresource Technology,1999,68 (2):179-185.
    [131]Naoki Takaya, Maria Antonina B Catalan-Sakairi, Yasushi Sakaguchi, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide [J]. Applied and Environmental Microbiology,2003,69 (6):3152-3157.
    [132]Seung-Hun Baek, Cheng-Ri Yin, Sung-Taik LEE. Aerobic nitrate respiration by a newly isolated phenol-degrading bacterium, Alcaligenes strain [J]. Biotechnology Letters,2001,23 (8):627-630.
    [133]周丹丹,马放,王弘宇,等.关于好氧反硝化菌筛选方法的研究[J].微生物学报,2004,44(6):837-839.
    [134]马放,王弘宇,周丹丹,等.好氧反硝化菌株X31的反硝化特性[J].华南理工大学学报(自然科学版),2005,33(7):42-46.
    [135]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.166-167.
    [136]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,6(1):13-15.
    [137]万金保,王敬斌.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):347-350.
    [138]Falkentoft C M, Arnz P, Henze M, et al. Possible complication regarding phosphorus removal with a continuous flow biofilm system:diffusion limitation [J]. Biotechnology and bioengineering,2001,76 (1):77-85.
    [139]Fuhs C W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater [J]. Microbiol Ecology, 1975,2(2):119-138.
    [140]Brodisch K E U, Joyner S J. The role of micro-organisms other than Acinetobacter in biological phosphate removal in activated sludge process [J]. Water Science and Technology,1983,15 (3-4):117-125.
    [141]Suresh N, Warburg R, et al. New strategies for the isolation of micro-organisms responsible for phosphorus accumulation [J]. Water Science Technology,1984, 17(11-12):99-111.
    [142]Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research,1998, 32 (11):3193-3207.
    [143]Murnleitner E, Kuba T, Van Loosdrecht M C M, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal [J]. Biotechnology and Bioengineering,1997,54 (5):434-450.
    [144]Wentzel M C, Lotter L H, Ekama G A, et al. Evaluation of biochemical models for biological excess phosphorus removal [J]. Water Science and Technology, 1991,23 (4-6):567-576.
    [145]Marais G R, Loewenthal R E, Siebritz J P. Observations supporting phosphate removal by biological excess uptake [J]. Water Science and Technology,1982, 15 (3-4):15-41.
    [146]Comeau Y, Hall K J, Hancock R E W, et al. Biochemical model for enhanced biological phosphate removal [J]. Water Research,1986,20 (12):1511-1521.
    [147]Lin C K, Katayama Y, Hosomi M, et al. The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes [J].Water Research,2003,37 (12):2944-2952.
    [148]Converti A, Zilli M, Ghigliazza R, et al. Microbiological and plant engineering aspects of phosphate biological removal [J]. Chemical and Biochemical Engineering Quarterly,1999,13 (4):169-175.
    [149]Haraquchi L H, Fujita M, Daimon H, et al. Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge [J]. Brazilian Journal of Chemical Engineering,2006,23 (1),29-35.
    [150]Thongchai Panswad, Napaporn Tongkhammak, Jin Anotai. Estimation of intracellular phosphorus content of phosphorus-accumulating organisms at different P:COD feeding ratios [J]. Journal of Environmental Management, 2007,84 (2):141-145.
    [151]王冠平.弹性填料生物接触氧化法预处理深圳水库水的试验研究[D].上海:同济大学,1999.34-35.
    [152]陈世和,陈建华,王士芬.微生物生理学原理[M].上海:同济大学出版社,1992.309-329.
    [153]Niguera D R, Okabe Satoshi, Picioreanu C. Biofilm modeling:present status and future directions [J]. Water Science and Technology,1999,39 (7):273-278.
    [154]张白杰,周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社,1989.
    [155]李姜华.SBR动力学模型的研究及其在明胶废水处理中的应用[D].重庆:重庆大学,2006.15-24.
    [156]陈胜,孙德智,陈桂霞,等.移动床生物膜法处理垃圾渗滤液COD降解动力学[J].化工学报,2007,58(3):733-738.
    [157]邹长伟,金腊华,万雨龙,等.渠式生物膜反应器处理生活污水的动力学研究[J].环境科学与技术,2007,30(10):77-79.
    [158]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1993.
    [159]许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000.69-71.
    [160]David Hall, Caroline S. B. Fitzpatrick. Suspension concentration profiles during rapid gravity filter backwashing [J]. Chemical Engineering Journal,2000,80 (1-3):197-201.
    [161]邹伟国,朱月海.滤池气水反冲洗应用技术研究[J].中国给水排水,1996,12(1): 10-13.
    [162]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1995.
    [163]彭举威,王晓轩,王宏哲,等.曝气生物滤池反冲洗过和的研究[J].中国资源综合利用,2006,24(11):31-33.
    [164]Ahmad R, Amirtharajah. Detachment of particles during biofilter backwashing [J]. Journal of American Water Works Association,1998,90 (12):74-85.
    [165]Miltner R J, Summers R S, Wang J Z. Biofiltration performance:part 2:effect of backwashing. Journal of American Water Works Association,1995,87 (12): 64-70.
    [166]Ahmad R, Amirtharajah. Detachment of particles during biofilter backwashing [J]. Journal of American Water Works Association,1998,90 (12):74-85.
    [167]刘荣光,罗辉荣,汪义强,等.滤池气水反冲洗机理综述与初探[J].重庆建筑大学学报,1998,20(6):7-11.
    [168]吴光春,唐传祥.快滤池气水反冲洗技术的研究和设计[J].化工给排水设计,1995,4:1-6.
    [169]徐丽花,李亚新.一种好氧生物处理有机废水的新工艺设备——生物曝气滤池[J].给水排水,1999,25(11):1-5.