用户名: 密码: 验证码:
双基因型玉米间作控制气传病害的生态生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双基因型玉米间作能够有效控制玉米的气传病害,但对其机制缺乏系统研究。本文以郑单958(株型紧凑,感南方锈病)、鲁单981(株型半紧凑,高抗南方锈病)、周单041(株型半紧凑,抗南方锈病)、豫玉19(株型半紧凑,感南方锈病)、浚单20(株型紧凑,中感小斑病)和滑丰9(株型半紧凑,中抗小斑病)为材料,采用大田试验和室内试验相结合的方法,研究了双基因型玉米间作的群体质量、对气传病害(玉米小斑病和南方锈病)的防控及抗病代谢反应,提取并分析了不同基因型玉米叶片挥发性物质的组分,同时探讨了玉米叶片挥发性物质对南方锈病和小斑病病原物的抑制作用。目的是从作物栽培学、植物病理学和化学生态学相结合的角度,揭示双基因型玉米间作控制气传病害的生态生理基础,为开发可持续控制玉米气传病害的保健栽培技术积累理论依据。主要研究结果如下:
     (1)双基因型玉米间作有利于改善群体结构、减少病原物侵染机率、降低病情指数。在ZD958‖LD98和HF9‖XD20两种间作模式中,4个品种间作植株的平均叶龄均有不同程度的增加;吐丝前,群体叶面积指数(leaf area index,LAI)单间作无明显差异,吐丝后,HF9和LD981的LAI分别大于和显著大于单作群体,而ZD958和XD20则分别小于和显著小于单作群体;吐丝后10d,4个品种棒三叶叶色值(soil and plant analyzer development readings,SPADRs)均有所增加,并且除ZD958外,其余3个品种棒三叶净光合速率均有所增加,其中LD981增加显著。间作对吐丝以前的群体干物质积累量影响不大,吐丝后,半紧凑型品种(HF9和LD981)的干物质积累量增加,其中LD981增加显著,而紧凑型品种(XD20和ZD958)的干物质积累量减少,其中ZD958显著减少。在ZD958‖LD98和YY19‖ZD041两种间作模式中,在吐丝后10d,4个玉米品种叶片中的SOD和POD活性均有所提高或显著提高,ZD041和ZD958叶片中的CAT活性提高或显著提高,YY19和LD981变化不显著;4个玉米品种叶片中的MDA含量降低。在吐丝后40d,SOD和POD活性及MDA含量的变化与吐丝后10d基本一致,CAT活性均有所提高,其中以YY19较为显著。紧凑型和半紧凑型品种间作增加了群体透光率。间作降低了间作群体引起继代感染的病原菌孢子数量,ZD958和XD20病情指数分别下降59.75%和50.38%,HF9和XD20小斑病病情也有所下降。间作还增加了复合群体产量,3种间作模式的土地当量比(land equivalent ratio,LER)均大于1,籽粒品质也有所改善。
     (2)双基因型玉米间作增强了群体的抗病代谢。人工接种试验表明,抗南方锈病基因型LD981基因型与感南方锈病基因型ZD958间作,病原菌侵染后,能够及时启动间作群体的抗病代谢,LOX、PAL和PPO活性迅速提高,并维持较长时间的高活性水平;但抗、感病品种的表现有所差异,在感病品种ZD958抗南方锈病的代谢中,LOX、PAL和PPO均具有重要作用,而在抗病品种LD981抗南方锈病的代谢中,PPO所起的作用更大一些。
     (3)双基因型玉米间作能够增加群体遗传多样性、丰富群体叶片挥发性物组分、增强对南方锈病和小斑病的抵抗能力。采用蒸馏法提取了玉米叶片挥发性物质,并对其组分进行了GC-MS分析。结果表明,玉米叶片挥发性组分及组分比在品种间和提取方法间存在较大差异,间作也能改变其组分及组分比。染毒试验结果表明,叶片挥发性物质能够抑制南方锈病和小斑病病原菌孢子萌发,并能抑制小斑病菌丝的生长和分生孢子的形成,对南方锈病病原菌孢子萌发的抑制作用尤为显著。5种挥发组分对南方锈病病原菌夏孢子萌发的抑制率从大到小依次为顺-3-己烯醇>反-2-己烯醛>苯甲醇>香草醛>α-蒎烯,对小斑病病原菌孢子萌发的抑制率从大到小依次为苯甲醇>香草醛>顺-3-己烯醇>反-2-己烯醛>α-蒎烯。香草醛、反-2-己烯醛和顺-3-己烯醇对小斑病病原菌菌丝生长的抑制作用最强,但低浓度和高浓度的顺-3-己烯醇处理对孢子的形成与萌发具有促进作用;反-2-己烯醛显著抑制孢子的形成,但高浓度处理对菌丝所产孢子的萌发无影响;香草醛显著抑制孢子的形成,但所产孢子的萌发率相对较高;苯甲醇对菌丝生长的影响较小,但菌丝颜色变异较大,气生菌丝发达呈灰白色至白色,难以产生分生孢子;α-蒎烯对菌丝生长的抑制作用最弱,菌丝性状基本正常,但产孢量较少,孢子的萌发率也较低。挥发组分组合作用的效果要优于单剂处理,这符合植物抗病的自然状况。
     总之,双基因型玉米间作抗病具有深厚的生态生理基础,是群体生态(包括化学生态)和群体抗病生理共同作用的结果。双基因型玉米间作,不仅优化群体结构、改善群体通风透光条件、营造了一个有利于植株生长而不利于病原物滋生的微生态环境,而且增加了群体抗病基因的遗传多样性,群体次生代谢变得丰富多彩,群体中挥发性物质及其所建立起来的化学通讯网络更加复杂,提高了群体抵抗病原菌侵染的能力,从而延缓了叶片衰老,减少了病原物侵染的机率及玉米植株为抵御病害所付出的能量损失,提高了群体的光合速率和物质生产能力,促进了籽粒产量的提高和品质的改善。
Maize airborne diseases can be controlled efficiently via double-genotypes intercropping, but the mechanisms are little known. We presuppose that the eco-physiological factors such as compound population quality, disease resistant metabolism and maize leaf volatile organic compounds (LVOCs) may be of importance for controlling maize airborne diseases in this intercropped system. In this study, we conducted a field experiment on the farm of Henan Agricultural University, Zhengzhou, China, using six maize hybrids, Zhengdan 958(ZD958, compact plant type, susceptible to maize leaf south rust), Ludan 981(LD981, semi-compact plant type, highly resistant to maize leaf south rust), Zhoudan 041(ZD041, semi-compact plant type, resistant to maize leaf south rust disease), Yuyu 19(YY19, semi-compact plant type, susceptible to maize leaf south rust), Xundan 20(XD20, compact plant type, medium susceptible to maize leaf spot), Huafeng 9(HF9, semi-compact plant type, medium resistant to maize leaf spot). The experimental plots of 6 m×6 m were separated by 1 m. The experiments were planted by hand with rows oriented north-south and spacing of 0.70 and 0.50 m. The ratio of two maize varieties intercropped was 1:1 per row. The planting density was 67 500 plant·hm-2. There were nine treatments: each of the varieties alone, YY19 intercropped with ZD041 (YY19‖ZD041), ZD958 intercropped with LD981 (ZD958‖LD981), and HF9 intercropped with XD20 (HF9‖XD20). There were four replicate plots for each treatment, arranged in a randomized complete block design. We investigated the population quality, resistant physiology and relationship between airborne diseases resistance and maize leaf volatile organic compounds. Our objective was to reveal the eco-physiological basic for controlling maize airborne diseases in intercropping with double-genotypes. The results are as follows:
     1) Maize intercropping with double-genotypes is favorable for improving plant population structure, enhancing population quality and reducing disease index. In the intercropping treatments both ZD958 II LD981 and HF9 II XD20, the average leaf life of four varieties increased. The leaf area indexes (LAI) of four varieties were no significant difference between sole-cropping and Intercropping before silking. But, the LAI of HF9 and LD981 increased while that of ZD958 and XD20 decreased in the intercropping treatments after silking. The soil and plant analyzer development readings (SPADRs) of ear-leaves of four varieties increased in the treatments 10 days after silking, and the photosynthesis rate of ear-leaves in LD981, HF9 and XD20 increased or increased significantly. There were no differences in the dry matter accumulation (DMA) of four varieties between the treatments of sole-cropping and intercropping before silking. The DMA of semi-compact plant types both HF9 and LD981 increased or increased markedly, while that of compact plant types both XD20 and ZD958 decreased or decreased significantly after silking. In the intercropping treatments both ZD958‖LD98 and YY19‖ZD041, the activities of SOD and POD of leaves increased in the intercropping treatments 10 days after silking, which resulted in decreased MDA contents of leaves. The activities of CAT of leaves in ZD041 and ZD958 increased or increased markedly, while YY19 and LD981 decreased slightly. The changes of activities of SOD and POD and contents of MDA in leaves remained similar 40 days after silking. Meanwhile, the activities of CAT of leaves increased, among them YY19 increased significantly. Transmittance enhanced in the treatment of compact plant type intercropped with semi-compact plant type, which resulted in reduced pathogen spore concentrations in the intercropped colonies, which led to reduced disease index of the intercropped colonies. For example, the disease index of southern rust in the intercropped colonies of ZD958 and HF9 reduced by 59.75% and 50.38%, respectively. Also, yields, land equivalent ratio (LER) and grain quality were enhanced in the intercropped colonies. Results suggested that suitable maize intercropping with different genotypes would increase the activities of SOD, POD and CAT of leaf, prolong leaf life, enhance photosynthesis rate, increase disease index, increase yield and improve quality.
     2) Maize intercropping with double-genotypes is favorable for enhancing resistant metabolism. The artificial inoculation test showed that, in the intercropping treatment of ZD958‖LD98, the activities LOX, PAL and PPO of leaves increased rapidly and maintaining at the high activity level for a long period after inoculation. There was a significant difference for resistance action against southern rust between susceptible variety (ZD958) and resistant variety (LD981). LOX, PAL and PPO would play a key role in ZD958 against southern rust, while PPO would be very important in the same action for LD981. Results suggested that maize intercropping with different resistance genotypes would be favorable for improving defense ability of the intercropped colonies.
     3) Maize intercropping with double-genotypes increases the genetic diversity of colony, which results in enriching leaf volatile organic compounds (VOCs) and the ability to resistant maize leaf south rust and maize leaf spot maize leaf spot. Maize leaf VOCs were extracted by steam distillation and analyzed by GC-MS. Results showed that there were great differences of the leaf VOCs among varieties, and the VOCs were changed in the intercropping treatments. The results of exposure to VOCs test indicate that the urediospore germinations of Puccinia polysora Underw were inhibited by leaf VOCs of LD981, HF9 andXD20, while conidia germinations of Helminthos porium maydis Nisik & Miy were marked inhibited by leaf VOCs of HF9 andXD20. In order to prove antimicrobial activity of maize leaf VOCs, a further test was conducted by five maize leaf volatile organic components such as (Z)-3-hexenol, (E)-2-hexenal, benzyl alcohol, vanillin and a-pinene. Results revealed that the urediospore germinations of Puccinia polysora Underw were inhibited significantly by the five components, the inhibitory rate from high to low were (Z)-3-hexenol, (E)-2-hexenal, benzyl alcohol, vanillin and a-pinene. Also, the conidia germinations of Helminthos porium maydis Nisik & Miy were inhibited markedly by the five components, and the inhibitory rates of the conidia germination were benzyl alcohol>vanillin>(Z)-3-hexenol> (E)-2-hexenal>α-pinene. Meanwhile, the mycelium growth of Helminthos porium maydis Nisik & Miy were significant inhibited markedly by the five components. Among them, the inhibitory rates of mycelium growth of vanillin, (E)-2-hexenal and (Z)-3-hexenol were more significant. The sporulation of the mycelium treated with high and low concentration of (Z)-3-hexenol was promoted, and the germination of spores generated from the mycelium was also promoted. In the treatments both (E)-2-hexenal and vanillin, the sporulations of mycelium were inhibited significantly, while the germinations of spores inhibited slightly. In the treatment of benzyl alcohol, the growth and sporulation of mycelium were mightily inhibited, and the mycelium was significant variation, the color of aerial mycelium was white with hardly sporulated. The treatment of a-pinene had a slight inhibition effect on the mycelium growth, while the sporulation quantity and the spore germination rate were lower. Results also indicated that the inhibitory effects of the treatments of different combination with the five volatile components on Puccinia polysora Underw and Helminthos porium maydis Nisik & Miy were more significant than the treatment of a single volatile organic component, which accord with natural condition of plant resistance.
     In conclusion, the higher resistance against Puccinia polysora Underw and Helminthos porium maydis Nisik & Miy in maize intercropped system is based on the intercropped colonies ecology (including chemistry ecology) and physiological resistance. Suitable maize intercropping with different genotypes not only optimizes the population structure, improves the conditions of ventilation and transmission in the intercropped colonies, creates a micro-environment which is benefit for plant growth and makes against the pathogen growth. It also increases the genetic diversity of disease-resistant gene in the compound population, which results in increasing secondary metabolisms and leaf VOCs, and the chemical communication net of the compound population becomes more sophisticated and consequently improves the population resistance. Thus, leaf life would be prolonged, which be favor of improving grain yield and quality.
引文
Adikarman N K B. Phytoalexin involvement in the latent infection of C. annuum L. fruit by G. cingulata. Physiol Plant Pathol,1982,21:161-170.
    Ahmed H U, Finckh M R, Alfonso R F, et al. Epiderniological effect of gene deployment strategies on bacterial blight of rice. Phytopathology,1997,87:66-70.
    Airmura G I. Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature,2000,411: 854-856.
    Akanda S I, Mundt C C. Effects of two-component wheat cultivar mixtures on stripe ruet severity. PhytoPathology,1996,86:347-353.
    Alan Hern & Silvia Dorn. Induction of volatile emissions from ripening apple fruits infested with Cydia pomonella and the attraction of adult females. Entomologia Experimentalis et Applicata 2002,102: 145-151.
    Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F and Takabayshi J. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal,2002,29:87-98.
    Assefa H, Van den Bosch F, Zadoks J C. Focus expansion of bean rust in cultivar mixtures. Plant Pathology,1995,44:503-509.
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. Signaling in plant-microbe interactions. Science, 1997,276:726-733.
    Baldwin I E.& Schultz J. Rapid changes in tree leaf chemistry induced by damage:evidence for communication between plants. Science,1983,211:277-279.
    Baldwin I E, Schmelz J & Ohnmeiss T. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris. Journal of Chemical Ecology,1994, 20:2139-2157.
    Barrera J A S, Frederiksen R A. Evaluation of sorghum hybrid mixtures for controlling sorghum leaf blight. Plant Dis,1994,78:499-503.
    Baruah P, Sharma R K, Singh R S et al. Fungicidal activity of some naturally occurring essential oils against Fusarium moniliforme. Journal Essent Oil Research,1996,8 (4):411-412.
    Beardmore J. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiology Plant Pathology,1984,24: 43-47.
    Bentaf F. Function meets structure in the study of plant disease resistance genes. Plant Cell,1996,8: 1757-1765.
    Bridges J R. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology,1987,77(1):83-85.
    Boucher D H and Espinosa J. Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop. Agric. (Trinidad),1982,59:279-282.
    Boyer J S. Plant productivity and environment. Science,1982,218:443-448
    Brophy L S, Mundt C C. Influence of plant spatial patterns on disease dynamics, plant competition and grain yield in genetically diverse wheat populations. Agriculture Ecosystems and Environment,1991, 35:1-12.
    Caccioni D R L, Guizzardi M. Inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. Journal Essent Oil Research,1994,6 (2):173-179.
    Caccioni D R L. Guizzardi M. Biondi D M, et al. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int Journal Food Microbiology,1998,43 (1/2):73-79
    Caldwell M M. Competition between root systems in natural communities. In:Root development. Cambridge:Cambridge University Press,1987,167-185.
    Camp W.V, Montagu M V. H2O2 and NO:redox signals in disease resistance. Trends Plant Science,1998, 3:330-334.
    Carta C, Moretti M D L, Peana A T. Activity of the oil of Salvia officinalis L. against Botrytis cinerea. Ital J Essent Oil Res,1996,8 (4):399-404.
    Chessin M.& Zipf A. Alarm systems in higher plants. Botanical Review,1990,56:193-235.
    Clark D, Durner J, Navarre D A, et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact,2000,13:1380-1384.
    Cowger C, Mundt C C. Effects of wheat cultivar mixtures on epidemic progression of Septoria tritici blotch and pathogenicity of Mycosphaerella graminicola. Phytopathology,2002,92:617-623.
    Coy A H L. Resistance to disease in the hybrid N. glutinosa is associated with high constitutive levels of B-l,3-glucanase, peroxidase and PPO[J]. Physiol. Mol Plant Pathol,1992,41:11-21.
    Cooney R V, Harwoed P J, Custer L J, et al. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect.1994,102:460-462.
    Creelman R A & Mullet J E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.1997,48,355-387.
    Croft K P C, Juttner F, Slusarenko A J. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris L. leaves inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiol,1993,101:13-24.
    Daouk R K, Dagher S M, Sattout E J. Antifungal activity of the essential oil of Origanum syriacum L. J Food Protect,1995,58(10):1147-1149.
    Delaney T P, Uknes S, Vernooij B, et al. A central role of salicylic acid in plant disease resistance. Science,1994,18:1247-1250
    Delledonne M, Xai Y J, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance. Nature,1998,394:585-588.
    DeMoraes C M, Lewis W J P, Pare W, et al. Herbivore-in-fested plants selectively attract parasitoids. Nature,1998,393:570-573.
    De Wpj G M. Molecular eharactemzation of gene-for-gene systems in plant-fungus interaction and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopatholngyt,1992,30: 391-481
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids:their role in Plant-herbivore mutualism. J Plant Physiol,1994,143:465-472.
    Dileone J A, Mundt C C. Effect of wheat cultivar mixtures on populations of Puccinia striiformis races. Plant Pathol,1994,43:817-930.
    Dixit S N, Chandra H, Tiwari R, et al. Development of a botanical fungicide against blue mould of mandarins. J Stored Prod Res,1995,31(2):165-172.
    Dubin H J, Wolfe M S. Comparative behavior of three wheat cultivars and their mixture in India, Nepal and Pakistan. Field Crops Research,1994,39:71-83.
    Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiol,2004,135: 1893-1902.
    Durner J, Klessig D F. Nitric oxide as a signal in plants. Curr Opin Plant Sci,1999,2:369-374.
    Durner J, Wendehenne D, Klessig DF.Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose. Proc Natl Acad Sci USA,1998,95:10328-10333.
    Epple P, Apel K, Bohlmann H. An Arabidopsis thaliana thionin gene is inducible via a signal-transduction pathway different from that for patho-genesis-related proteins. Plant Physiol,1995,109:813-820.
    Espinosa-Garcia F J, Langeheim J H. Effect of some leaf essential oil phenotypes in coastal redwood on the growth of several fungi with endophytic stages. Biochem Syste Ecol,1991,19 (8):629-642.
    Farmer E E.& C. Ryan.1990. Interplant communication:airborne methyl jasmonate inhibitors in plant leaves. Proceedings of the National Academy of Science, USA,87:7713-7716.
    Farmer E E. Surface-to-air signals. Nature,2001,411 (6839):854-856.
    Falkenstein E B, Groth A, Mithofer & E.Weiler. Methyl jasmonate and alpha-linoleic acid ale potent inducers of tendril coiling. Planta,1991,85:316-322.
    Finckh M R, Mundt C C. Stripe rust, yield, and plant competition in wheat cultivar mixtures. Phytopathology,1992,82:905-913.
    Flor H. Current status of the gene-for-gene concept. Annu Rew Phytopath,1971,9:275-296.
    Foissner I, Wendehenne D, Langebartels C, et al. In vivo imaging ofan elicitor-induced nitric oxide burst in tobacco. Plant J,2000,23:817-824.
    Francis C A (ED.). Multiple Cropping systems.Macmillan. New York,1986.
    Garrett K A, Mundt C C. Host diversity can reduce potao late blight severity for focal and general patterns of primary inoculum. Phytopathology,2000,90:1307-1312.
    Garrett K A, Nelson R J, Mundt C C, et al. The effects of host diversity and other management components on epidemics of potato late blight in the humid highland tropics. Phytopathology,2001, 91:993-1000.
    Gershenzon J. Metabolic costs of terpenoid accumulation in higher plant. J Chem Ecol,18:172-176.
    Gomi K, Yamasaki Y, Yamamoto H, et al. Characte rjzation of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. J Plant Physiol,2003,160 (10):1219~1231
    Gundlach, H, M Muller, T Kutchan & M Zenk. Jasmonic acid is a signal transducer in elicitor-induced plantt cell cultures. Proceedings of the National Academy of Science, USA,1992,89:2389-2393.
    Hain R. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature,1993, 361(14):153-156.
    Hamilton-Kemp T R, McCracken C T, Loughrin J H, et al. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea.J Chem Ecol,1992,18 (7): 1083-1086.
    Hamilton W D, Axelrod R, Taneser. Sex as an adaptation to resist parasites. Proceedings of the National Academy ot Sciences, USA,1990,87:3556-3573.
    Hammerschimidt R. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol,1982,20:73-82.
    Hammerschimidt R. Lignification as a mechanism for induced SAR in cucumber. Physiol Plant Pathol. 1982,60:61-71.
    Harborne J B. Biochemical interactions between higher plant. In:Harborne J B. ed. Introduction to ecological biochemistry, New York:Academy Press,1993,243-263.
    Harborne J B. Introduction to Ecological Biochemistry.4th edn. London:Academic Press,1993.
    Hariri D, Fouchrd M, Prudhomme H. Incidence of Soil-borne wheat mosaic virus in mixtures of susceptible and resistant wheat cultivars. Eur. J Plant pathol,2001,107:625-631.
    Haukioja E, J Suomela & S Neuvonen. Long term inducible resistance in birch foliage:triggering cues and efficacy on a defoliator. Oecologia,1985,65:363-369.
    Inoue K, Hiradate S, Tkagi S. Interactions of organic acid with synthetically produced iron oxides.Soil Sci Am J,1993,57:1254-1260.
    Jastrow J D, Miller R M. Neighbour influences on root morphology and mycorrhizal fungus colonization in tall grass prairie plants. Ecology,1993,72 (2):561-569.
    Karban R & J Meyers. Induced plant responses herbivory. Annual Review of Ecological System.1989, 20:331-348.
    Karban R, I T Baldwin, K J Baxte, J G Laue & G W Felton. Communication between plants:induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia,2000,125: 66-71.
    Klessig D F, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA,2000,97:8849-8855.
    Knobloch K, Pauli A, Iberl B et al. Antibacterial and antifungal properties of essential oil components. J Essent Oil Res,1989.1:119-128
    Knoester M. Ethylene-insensitive tobacco lacks non-host resistance against soil-borne fungi. Proceedings of the National Academy of Science, USA,1998,95:1933-1937.
    Koiwa H. Characterization of accumulation tobacco PR-5 proteins by IEF-immunoblot anzlysis. Plant Cell Physiol,1994,35 (5):82,18-27.
    Kozlowski G, Buchala A, Metraux J P. Methyl iasmonate protects Norway spruce [Picea abies L. Karst] seedlings against Pythium ultimum Trow. Physiol Mol Plant Pathol,1999,55(11):53-58.
    Kumar G, Klessig D F. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact,2000,13:347-351.
    Lamb C, Dixon R A. The oxid ative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    Leshem YY, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum satium Linn. Foliage. J Plant Physiol,1996,148: 258-263.
    Letessier M P, Svoboda K P, Waiters D R. Antifungal activity of the essential oil of hyssop (Hyssopus officinalis). J Phytopathol,2001,149 (11~12):673-678
    Li L, Sun J H, Zhang F S, LI X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crop Research, 2001,71:123-137.
    Li L, Yang S C, Li X L, Zhang F S, Christie P. Interspecific complementary and competitive interactions between intercropped maize and fahabean. Plant and Soil,1999,212(2):105-114.
    Li L, Zhang F S, Li X L, et al. Inter-specific facilitation of nutrient uptakes by intercropped maize and faba bean. Nutr. Cycl. Agroecosys,2003,65:61-71.
    Lo S C. Phytoalexin accumulation in sorghum:Identification of a methyl ether of luteolinidin. Physiol And Mol Plant Pathol,1996,49:21-31.
    Lum H K, Butt Y K, Lo S C. Hydrogen peroxide induces a rapid production of nitric oxide in mung bea(Phaselus aureus). Nitric Oxide,2002,6:205-213.
    Malamy J, Carr J P, Klessig D F, Raskin I. Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection. Science,1990, (250):1002-1004.
    Miksch M & Boland W. Airborne methyl iasmonate stimulates the biosynthesis of furanocoumarins in the leaves of celery plants. Experientia,1996,52 (7):739-743.
    Manthey R, Fehrmann H. Effect of cultivar mixtures in wheat on fungal diseases, yield and profitability. Crop Prot,1993,12:63-68.
    Mathmood T, Marshall D, Mcdaniel M E. Effect of winter wheat cultivar mixtures on leaf rust severity and grain yield. Phytopathology,1991,81:470-474.
    McDonald B A, Allard R W, Webster R K. Responses of two, three-and four-component barley mixtures to a variable pathogen population. Crop Sci.,1988,28:447-452.
    Mench M J, Morel L, Guekert A, Guillet. Metal binding with root exudates of low molecular weight. J Soil Sei,1988,39:521-527.
    Mew T W. Management of rice diseases-A future perspective. In:Aziz A, Kadir S A, Barlow H S. eds. Pest management and the Environment in 2000. Wallingford:CAB International,1992:54-66.
    Metraux J P, Signer H, Ryals J A et al. Increase in salicylic acid at the onst of systemic acquired resistance in cucumber. Science,1990,(250):1004-1006.
    Mothes K. Physiology of alkaloids. Annu Rev Plant Physiol,1995,6:393-432.
    Mundt C C, Brophy L S, Schmitt ME. Disease severity and yield of pure-line wheat cultivars and mixtures in the presence of eyespot, yellow rust, and their combination. Plant Pathol,1995,44: 173-182.
    Mundt C C, Hayes P M, Schon C C. Influence of barley variety mixtures on severity of scald and net blotch and on yoeld. Plant Pathol,1994,43:356-361.
    Mundt C C. Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Prot,2002,21:93-99.
    Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol,2002,40:381-410.
    Nakashita H, Yasuda M, Nitta T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J,2003,33 (5):887-898.
    Navarre D A, Wendehenne D, Dumer J, et al. Nitric oxide medulates the activity of tobacco aconitase. Plant Physiol,2000,122:573-582.
    Newton A C, Ellis R P, Hackett C A, Guy D C. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathol,1997,45:930-938.
    Ngugi H K, King S B, Holt J, Julian A M. Simultaneous temporal progress of sorghum anthracnose and leaf blight in crop mixyures with disparate patterns. Phytopathology,2001,91:720-729.
    Obara N. Hasegawa M. Kodama O. Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci Biotechnol Biochem,2002,66 (12):2549-2559.
    Ogindo H O and Walker S. Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa. Physics and Chemistry of the Earth,2005,30:799-808.
    Pennickx I, Eggermont K, Terras FRG, et al. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996, (8):2309-2323.
    Pennickx I, Thomma B, Buchala A, et al. Concomitant activation of jasmonate and ethylene response pathways id require for induction of a plant defense gene in Arabidopsis. Plant Cell,1998, (10): 2103-2113.
    Petersen M, Brodersen P, Naested H, et al. Arabidopsis MAP kinase4 negatively regulates systemic acquired resistance. Cell,2000,103:1111-1120.
    Pieterse C M J, van Wees S C M, van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis.Plant Cell,1998,(10):1571-1580
    Power A G. Plant community diversity, herbivore movement, and an insect-transmitted disease of maize. Ecology,1987,68:1658-1669.
    Power A G. Virus spread and vector dynamics in genencally diverse plant populations. Ecology,1991,72: 232-241.
    Qasem J R, Al-Abed A S, Abu-Blan H A. Antifungal activity of clammy inula(Inula viscosa)on Helminthosporium sativum and Fusarium oxysporura f. sp. Lycopersici. Phytopathol Mediterra,1995, 34(1):7-14
    Rausher M D. Co-evolution and plant resistance to natural enemies. Nature,2001,411:846-857.
    Reymond P & Farmer E E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol.1998,1:404-411.
    Rhoades D. Responses of alder and willow to attract by tent caterpillars and webworms:evidence for pheromonal sensitivity of willows. American Chemical Society Symposia Series,1983,208:55-68.
    Ruther J and Kleier S. Plant-plant Signaling:ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-l-o. Journal of Chemical Ecology,2005,31 (9):2217-2222.
    Ryals J A, Lawton K A, Delaney T P, et al. Signal transduction in systemic acquired resistance. Pro Natl Acad Sci USA,1995,92:4202-4205.
    Ryoko T. Ichiki & Yooichi Kainoh & Soichi Kugimiya & Junji Takabayashi & Satoshi Nakamura. Attraction to herbivore-induced plant volatiles by the host-foraging parasitoid fly exorista japonica. J Chem Ecol,2008,34:614-621.
    Schoonhoven L M, Jermy T, van Loon J J A. Insect-Plant Biology, from Physiology to Evolution. London:Chapman and Hall.1998.
    Sekamatte M B. Options for integrated management of termites (Isoptera:Termitidae) in smallholder maize-based cropping systems in Uganda. Ph.D. Thesis, Makerere University,2001,289.
    Seo H S. Jasmonic acid carboxyl methytrransferase:a key enzyme for jasmonate-regulated plant responds. Proc Natl Acad Sci USA,2001,98:4788-4793.
    Sharma R C, Dubin H J. Effect of wheat cultivar mixtures on spot blotch (Bipolaris sorokiniana) and grain yield. Field Crops Research,1996,48:95-101.
    Shen B, Zheng Z, Dooner H K. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin:characterization of wild-type and mutant alleles. Pro N ati Acad Sci,2000,97 (26):14808-14812.
    Shulaev V, Leon J, Raskin I. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell,1995,7:1691-1701.
    Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature,1997,385 (66)181:718-721.
    Smithson J B & Lene J M. Varietal mixtures:a viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol,1996,128:127-158.
    Smith M T & J van Staden. Infochemicals:the seed-fungus-root continuum:a review of Environmental and Experimental Botany.1995,35:113-23.
    Stafford H A. Role of flavonoid in symbiotic and defenses functions in legume roots. The Botanical Review,1997,63:27-39.
    Staskawicz B J, Ausubel F M, Baker B J, et al. Molecular genetics plant disease resistance. Science,1995, 268:661-667.
    Staswich P. Jasmonate, gene and fragrant signals. Plant Physiology,1992,99:804-807.
    Stern W R. Nitrogen fixation and transfer in intercrop systems. Field Crops Res,1993,34:335-356.
    Thomma B, Eggermont K, Penninckx I, et al. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Pro Natl Acad Sci USA,1998,95:15107-15111.
    Thomma B, Eggermont K, Tierens K, et al. Requeiement of functional ethylene-insensitive-gene for efficient resistance of Arabidopsis to infection by Botryris cinerea. Plant Physiol,1999,121: 1093-1101.
    Tilman D. Resource competition and community structure. Princeton:Princeton University Press,1982, 231-258.
    Tofinger M P, Snaydom R W. The root activity of cereals and peas when grown in pure stands and mixtures. Plant and Soil,1992,142 (2):281-285.
    Tscharntke T, Thiessen S, Dolch R and Boland W. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst. Ecol,2001,29:1025-1047.
    Uknes S, Winter A, Delaney T, et al. Biological induction of systemic acquired resistance in Arabidopsis. Mol. Plant-Microbe interact,1993, (6):692-698.
    Vaughn S F & Gardner H W. Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J Chem Ecol,1993,19 (10):2337-2345.
    Vanderplank J E. Genetic and Molecular Basis of Plant Pathogenesis. Springer-Verlag, Berlin, Heidelberg, New York,1978,22.
    Vandermeer J H. The Ecology of intercropping. Cambridge University Press,1989.
    Van Kessel C and Roskoski J P. Row spacing effects on N2-fixation, N-yield and soil N uptake of intercropped cowpea and maize. Plant Soil,1988,111:17-23.
    Visser J H, R Herb & H Schidknecht. Recovery and preliminary chromatographic investigation of germination stimulants produced by Vigna unguicultata. Journal of Plant Physiology,1987,129: 375-381.
    Voda K, Boh B, Vrtacnik M, et al. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeterior Biodegra,2003,51:51-59.
    Vollenweider S, W eber H, Stolz S, et al. Fatty acid ketodienes and fatty acid ketotrienes:Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J,2000,24 (4):467-476
    Walker S and Ogindo H O. The water budget of rained maize and bean intercrop. Physics and Chemistry of the Earth,2003,28:919-926.
    Wendehenne D, Pugin A, Klessig D F, et al. Nitric oxide:comparative synthesis and signalling in animal and plant cells. Trends Jplant Sci.2001,6:177-183.
    Wilson C L, Franklin J D, Otto B E. Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Disea,1987,71 (4):316-319.
    Wolfe M S, Barret J A. Can we lead the pathogen astray? Plant Dis,1980,64:148-155.
    Wolfe M S. Crop strength through diversity. Nature,2000,406:681-682.
    Wolfe M S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol,1985,23:251-273.
    Wright M S, Greene-M cDowelle D M, Zeringue H J, et al. Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon,2000,38 (9):1215-1223.
    Yalpani N, Silverman P, Wilson T M A, et al. Salicylic acid is a systemic signal and an inducer of pathogensis-related proteins in virus-infected tobacco. Plant Cell,1991, (3):809-818.
    Zhang S Q, Klessig D F. MAPK cascades in plant defence signalling. Trends Plant Sci,2001,11:520-52.
    Zeringue H J. Change in cotton leaf chemistry induced by volatile elicitors. Phytochemistry,1987,26: 1357-1360.
    Zeringue H J. Effect of C6-C10 alkenals and alkanals on eliciting a defence responsible in the developing cotton bol1. Phytochemisty,1992,1:2305-2308.
    Zhu Y, Chen H, Fan J, et al. Genetic diversity and disease control in rice. Nature,2000,406:718-722.
    Zygadlo J A, Guzman C A, Grosso N R. Antifungal properties of the leaf oils of T. agetes minuta L. and T.filifolia Lag. J Essent Oil Res,1994,6 (6):617-621.
    陈阜,逢焕成.冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨.中国农业大学学报,2000,5(5):12-16.
    崔俊明,宋长江,卢道文.不同类型玉米杂交种高矮立体间作种植技术研究.杂粮作物,2005,25(4): 253-257.
    董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制.植物病理学报,1996,26(4):289-293.
    郭萍,李振歧.植物一病原互作系统中基因对基因识别研究.西北植物学报,2000,20(6):922-929.
    何承刚,黄高宝,辛培尧.小麦不同施氮时期对间套作小麦玉米品质影响的研究.云南农业大学学报,2004,19(4):402-404.
    郝艳茹,劳秀荣,孙伟红,等.小麦/玉米间作作物根系与根际微环境的交互作用.农村生态环境,2003,19(4):18-22.
    季连良,朱树秀,阿米娜.大豆玉米混作系统氮素转移特性的研究.华北农学报,1996,11(2):56-61.
    孔垂华,胡飞.植物化学通讯研究进展.植物生态学报,2003,27(4):561-566.
    李少明,赵平,范茂攀,等.玉米大豆间作条件下氮素养分吸收利用研究.云南农业大学学报,2004,19(5):572-576.
    李淑敏,李隆,张福锁.蚕豆玉米间作接种真菌与根瘤菌对其吸磷量的影响.中国生态农业学报,2005,13(3):136-139.
    刘浩,段爱旺,高阳,申孝军.间作种植模式下冬小麦根系生长的时空分布及变化规律研究.灌溉排水学报,2006,25(1):20-24.
    刘巽浩,邹超亚.耕作学.北京:中国农业出版社,2000,117-154.
    宋日,牟瑛,王玉兰,等.玉米、大豆间作对两种作物根系形态特征的影响.东北师大学报自然科学版,2002,34(3):83-86.
    宋亚娜,MARSCHNER Petra,张福锁,等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响.生态学报,2006,26(7):2268-2274.
    苏艳红,黄国勤,刘秀英,等.红壤旱地玉米大豆问作系统的增产增收效应及其机理研究.江西农业大学学报,2005,27(2):210-213.
    唐劲驰,Ismael A. Mboreha,佘丽娜,等.大豆根构型在玉米/大豆间作系统中的营养作用.中国农业科学,2005,38(6):1196-1203.
    张建华,马义勇,王振南,等.间作系统中玉米光合作用指标改善的研究.玉米科学,2006,14(4):104-106.
    左元梅,陈清,张福锁.利用14C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制.核农学报,2004,18(1):43-46.
    左元梅,李晓林,曹一平,等.河南省沙区玉米花生间作对花生铁营养效率及间作优势的影响.、作物学报,2003,29(5):658-663.
    Bailey B A, Schun W, Fred-eriksen R A, Bockholt A J. Identification of slow-rusting resistance to Puccinia polysora in maize inbreds and single crosses. Plant Dis,1987,71:518-521.
    DeMoraes C M, Lewis W J P, Pa W, et a 1.Herbivore-in-fasted plants selectively attract parasitoids. Nature,1998,393:570-573.
    Farmer E E. Surface-to-air signals. Nature,2001,411 (6839):854-856.
    Galambosi B, Svoboda K P, Hampson J B, et al. Agronomical and phytochemical investigation of cnanthemum spp. In Finland. Agr Sci Finland,1999,2:293-301.
    Hamilton, Kemp TR, McCracken CT, Loughrin JH et al. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol,1992, 18 (7):1083-1086.
    Holland J B, Uhr D V, Jeffers D, Goodman M M. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations.Theor Appl Genet,1998,96:232-241.
    Hooker A L. Genetic diversity of maize disease resistance maize for biological research va. Plant Molecular Biology Association,1982,361-366.
    James L D. Dynamics of new corn and sorghum disease and projections for the 1990's.45th annual corn & sorghum research conference.1989,102-109.
    Martin S, Wolfe. Crop strength through diversity. Nature,2000,406:681-682.
    Obara N, Hasegawa M, Kodama O. Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci Biotechnol Biochem,2002,66 (12):2549-2559.
    Savary S, Willocquet L, Elazegui F A,Castilla N P,Teng P S.Rice pest constraints in tropical Asia: Quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 2000,84:357-369.
    Savary S, Willocqet L, Elazegui F A, et al. Singh H M, Srivastava R K. Rice pest constraints in tropical Asia:Characterization of injury profiles in relation to production situations.Plant Disease,2000,84: 341-356.
    Scott G E, King S B, Armour J W. Inheritance of resistance to southern corn rust in maize populations. Crop Sci,1984,24:265-267.
    Smith D R, Hooker A L, Lim S M. Physiologic races of Helminthosporium maydis. Plant Disease Reporter,1970,54:819-822.
    Trenbath BR. Intercropping for the management of pests and diseases. Field Crops Research,1993, 34:381-405.
    Wei J K, Liu K M, et al. Pathological and physiological identification of race C of Bipolaris maydis in China. Phytopathology,1988,78(5):550-554.
    Wright M S, Greene-McDowelle D M, Zeringue H J, et al. Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon,2000,38 (9):1215-1223.
    Wolfe M S. The current status and prospects of multilane cultivars and variety mixtures for disease resistance. Annu.Rev.Phytopathol,1985,23:251-273.
    Zhu Y, Chen H, Fan J, et al. Genetic diversity and disease control in rice. Nature,2000,406:718-722
    Zummo N. Components contributing to partial resistance in maize to Puccinia polysora.Plant Dis,1988, 72:157-160.
    曹克强,曾士迈.小麦混合品种对条锈病叶锈病及白粉病的群体抗病性的研究.植物病理学报,1994,24(1):21-25.
    陈翠霞 赵延兵 刘保申,等.不同玉米自交系南方锈病的抗性评价.作物学报,2004,30(10):1053-1055.
    陈翠霞,邢全华,梁春阳,等.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003,30(4):341-344.
    戴景瑞.发展玉米育种科学迎接21世纪的挑战.作物杂志1998,(6):1-3.
    李潮海,苏新宏,孙敦立.不同基因型玉米间作复合群体生态生理效应.生态学报,2002,22(12):2096-2103
    罗畔池,刘克明,杨明漪,等.我国玉米小斑病菌的生理小种.植物病理学报,1981,11(3):49-56.
    苏新宏,李潮海,孙敦立,张怀志.不同基因型玉米间作研究初报.玉米科学,2000,8(4):57-60.
    郭予元主编.棉铃虫的研究.中国农业出版社,1998,82-128.
    任转滩,马毅,任真真,等.南方玉米锈病的发生及防治对策.玉米科学,2005,13(4):124-126.
    余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,1998.
    唐维民,毛模湛.隔行混植与混播对玉米病害及产量的影响.耕作与栽培,2003,3:12-14.
    吴建宇,席章营,盖钧镒.玉米抗病遗传育种的研究进展.玉米科学,1999,7(2):6-11.
    喻大昭,叶志华,王少南.生物资源在减轻植物病害中的作用、潜力及其利用对策.灾害学,2000,15(1):1-6
    Akanda S I, Mundt C C. Effects of two-component wheat cultivar mixtures on stripe ruet severity. PhytoPathology,1996,86:347-353.
    Braconnier S. Maize-coconut intercropping:effects of shade and root competition on maize growth and yield. Agronomie,1998,18:373-382.
    Brophy L S, Mundt C C. Influence of plant spatial patterns on disease dynamics, plant competition and grain yield in genetically diverse wheat populations. Agriculture Ecosystems and Environment,1991, 35:1-12.
    Djisbar A. Heterosis for embryo size and source and sink components of maize. Crop Science,1989, 29(4):985-991.
    Dileone J A, Mundt C C. Effect of wheat cultivar mixtures on populations of Puccinia striiformis races. Plant Pathol,1994,43:817-930.
    Dupraz C, Simorte V, Dauzat M. Growth and nitrogen status of young walnuts as affected by intercropped legumes in a Mediterranean climate. Agrofor. Syst,1998,43:71-80.
    Horkstar G J, Kannenberg, L W, Christie B R. Grain yield comparison of pure stands and equal proportion mixtures for seven hybrids of maize. Can. J. Plant Sci.,1985,65:471-479.
    Jolliffe P A and Wanjau F M. Competition and productivity in mixtures:some properties of productive intercrops. J. Agric. Sci. (Cambridge),1999,132:425-435.
    Letchworth M B and Lambert R J. Pollen parent effect on oil, protein and starch concentration in maize kernels. Crop Sci.,1998, (41):363-367.
    McDonald B A, Allard R W, Webster R K. Responses of two, three-and four-component barley mixtures to a variable pathogen population. Crop Sci.,1988,28:447-452.
    Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol,2002,40:381-410.
    Newton A C, Ellis R P, Hackett C A, Guy D C. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathol,1997,45:930-938.
    Ngugi H K, King S B, Holt J, Julian A M. Simultaneous temporal progress of sorghum anthracnose and leaf blight in crop mixyures with disparate patterns. Phytopathology,2001,91:720-729.
    Ogindo H O and Walker S. Comparison of measured changes in seasonal soil water content by rained maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa. Physics and Chemistry of the Earth,2005,30:799-808.
    Piepho H P. Implications of a simple competition model for the stability of an intercropping system. Ecol. Model,1995,80:251-256.
    Sekamatte B M, Ogenga-Latigo M, Russell-Smith A. Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Protection,2003,22: 87-93.
    Sekamatte M B. Options for integrated management of termites (Isoptera:Termitidae) in smallholder maize-based cropping systems in Uganda. Ph.D. Thesis, Makerere University,2001, pp.289.
    Trenbath B R. Intercropping for the management of pests and diseases. Field Crops Research,1993, (34): 381-405.
    Walker S and Ogindo H O. The water budget of rained maize and bean intercrop. Physics and Chemistry of the Earth,2003,28:919-926.
    Wolfe M S. Crop strength through diversity. Nature,2000,406:681-682.
    Zhu Y, Chen H, Fan J, et al. Genetic diversity and disease control in rice. Nature,2000,406:718-722
    艾天成,李方敏.作物叶片叶绿素含量与SPAD值相关性研究.湖北农学院学报,2000,20(1):6-8.
    鲍巨松,薛吉全,郝引川,杨成书,胡小平.紧凑型玉米不同群体的冠层特征和物质生产关系的研究.西北农业学报,1992,1(2):25-29.
    陈建勋.植物生理学实验指导.广州:华南理工大学出版社,2002.
    陈绍江.培育伴侣品种实现玉米杂交种间优势利用.玉米科学,2004,12(3):3-5.
    戴景瑞.发展玉米育种科学迎接21世纪的挑战.作物杂志,1998,6:1-4.
    董宁,于长英,李永禄.玉米不同品种间作增产机理及栽培技术.农业科技通讯,2002(8):10.
    胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究,Ⅱ物质生产特性演进.玉米科学,1998,6(3):49-53.
    李潮海,苏新宏,孙敦立.不同基因型玉米间作复合群体生态生理效应.生态学报,2002,22(12):2096-2103.
    李合生2000.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    刘巽浩,牟正国.中国耕作制度.北京:农业出版杜,1993.
    苏新宏,李潮海,孙敦立,张怀志.不同基因型玉米间作研究初报.玉米科学,2000,8(4):57-60.
    唐劲驰,Ismael A. Mboreha,佘丽娜,等.大豆根构型在玉米/大豆间作系统中的营养作用.中国农业科学,2005,38(6):1196-1203.
    赵秉强,李凤超,李曾嘉,张保仁.粮菜间套作带型运用规律的研究.作物学报,1999,25(3):356-362.
    赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科学技术出版社,1998.
    中国科学院上海植物生理研究所(上海市植物生理学会).现代植物生理学实验指南.北京:科学出版社,1999.
    左元梅,刘永秀,张福锁.玉米/花生混作改善花生铁营养对花生根瘤碳氮代谢及固氮的影响.生态学报,2004,24(11):2584-2590.
    Bailey B A, Schuh W, Frederiksen R A, et al. Identification of slow-rusting resistance to Puccinia polysora In maize inbreds and single crosses. Plant dis,1987,71:518-521.
    Chen C X, Wang Z L, Yang D E, et al. Molecular tagging and genetic mapping of the disease resistance gene RppQ to southern corn rust. Theor Appl Genet,2004,108:945-950.
    Garrett K A, Nelson R J, Mundt C C, et al. The effects of host diversity and other management components on epidemics of potato late blight in the humid highland tropics. Phytopathology,2001, 91:993-1000.
    Holland J B, Uhr D V, Jeffers D, et al. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theor Appl Genet,1998,96 (2):232-241.
    Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol,2002,40:381-410.
    Newton A C, Ellis R P, Hackett C A, Guy D C. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathol,1997,45:930-938.
    Rhind D, Waterston J M, Deighton F C. Occurrence of Puccinia polysora Underw in west Africa. Nature, 1952,169:631.
    Ru-hong Z, King S B, Scott G E. A study of slow rusting of southern rust of corn:Preliminary report. Miss Agri For Exp Stn Bull,1983,925:6.
    Scott G E, King S B, Armour J W. Inheritance of resistance to southern corn rust in maize population. Crop Science,1984,24:265-267.
    Scott G E, Zummo N. Effect of genes with slow-rusting characteristics on southern corn rust in maize. Plant dis,1989,73 (2):114-116.
    Smith D R, Hooker A L, Lim S M. Physiologic races of Helminthosporium maydis. Plant Disease Reporter,1970,54:819-822.
    Storey H H, Howland A. Resistance in maize to the tropical American rust fungus, Puccinia polysora Underw. Heredity,1957,2:289-301.
    Ullstrup A J. Inheritance and linkage of a gene determining resistance to an American race of Puccinia polysora. Phytopathology,1965,55:425-428.
    Voluevich E A, Bulocichik A A. Nucleocytoplasmic interaction in the resistance of wheat to fungal pathogens. IV. Quantiative resistance to powdery mildew in seedlings of alloplasmic lines of the variety Chinese Spring. Genetika Moskia,1992,28:104-112.
    Wei J K, Liu K M, et al. Pathological and physiological identification of race C of Bipolaris maydis in China. Phytopathology,1988,78(5):550-554.
    Zhou C J, Chen C X, Cao P X, et al. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Mol Genet Genomics,2007,278:723-728.
    Zhu Y, Chen H, Fan J, et al. Genetic diversity and disease control in rice. Nature,2000,406:718-722.
    Zummo N. Componenta contributing to partial resistance in maize to Puccinia polysora Underw. Plant dis,1988,72:157-160.
    陈翠霞赵延兵刘保申,等.不同玉米自交系南方锈病的抗性评价.作物学报,2004,30(10):1053-1055.
    陈翠霞,邢全华,梁春阳,等.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003,30(4):341-344.
    崔洋,刘克明,魏建皮,张为国,等.玉米小斑病菌C小种毒素的分离、纯化及其植物病理反应.植物病理学,1991,21,3.
    崔洋,马春红,魏建昆,等.纯化的玉米小斑病C小种毒素生物活性的研究.植物生理学报,1992,22(2):175-178.
    段定仁,何宏珍.海南岛玉米上的多堆柄锈病.真菌学报,1984,3(2):125-126.
    胡务义,唐有全,阮义理,等.淳安县玉米南方型锈病逐年加重.植物保护,1999,25(6):50.
    高志环,薛勇彪,戴景瑞.玉米小斑病菌C小种毒素的致病作用位点.科学通报,2000,45(6):622-626.
    刘克明,陈伟程,苏海,等.玉米C群不同亚群雄性不育细胞质对玉米小斑病C小种侵染反应.中国农业科学,1991,24(4):58-60.
    刘玉瑛,石洁,王庆雷.1998年河北省发生南方型玉米锈病.植物保护,1999,25(3):53.
    刘章雄,王守才.玉米锈病研究进展.玉米科学,2003,11(4):76-79.
    马春红,翟彩霞,王立安,等.玉米小斑病菌T小种培养滤液对玉米抗病性的诱导.中国农业科学,2005,38(8):1578-1584.
    叶金才.育成我国首例对玉米南方锈病免疫系齐319.中国农业科学,2000,33(4):110.
    叶忠川.玉米锈病之研究.中华农业研究,1986,35(1):81-93.
    王晓鸣.玉米抗病虫性鉴定与调查技术.作物杂志,2005,(6):53-55.
    Alfred M. Mayer. Polyphenol oxidase in plants resent progress. Phytochemistry,1987,26:11-20.
    Anosike E O, Ayaebene A O. Properties of polyphenol oxidase from tubers of the yam dioscorea bulbifera. Phytochem,1982,21 (8):1889-1893.
    Bi, J L, Felton, G W. Foliar oxidative stress and insect herbivory:primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol.1995, 21:1511-1530.
    Brady A Vick, Don C Zimmerman. Oxidative systems for modification of fatty acids:The lipoxygenase pathway.The Biochemistry of Plants,1987,9:53-90.
    Duffey S, Felton G. Enzymatic antinutritive defenses of the tomato plant against insects. In:Hedin P (ed). Naturally Occurring Pest Bioregulators. Washington, DC:American Chemical Society,1991. 166-197.
    Feussner I, Kiihn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci,2001,6(6):268-273.
    Feussner I, Wasternack C. The lipoxygenase pathway. Annu Rev Plant Biol,2002,53:275-297.
    Gardner W H. Biological roles and biochemistry of the lipoxygenase pathway. Hort Sci,1995,30 (2): 197-205.
    Hammerschmidt R, Nuckles E M, et al. Association of enhanced perpxidase activity with induced systematic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol,1982,20: 73-82.
    Hanson L A. Early events in the interaction between maize and southern rust. Maydica,1997,42: 339-346.
    Keppler L D, Novacky A. Involvement of lipid peroxidation in the development of bacterially induced hypersensitive reaction. Phytopathology,1986,76:104-108.
    Keppler L D, Novacky A.The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiological and Molecular Plant Pathology,1987,30:233-245.
    Kevan P C Croft, Friedrich Juttner, Alan J Slusarenko. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with pseudomonas syringae pv phaseolicola. Plant Physiol,1993,101:13-24.
    Konkoul J, Conn E E. The metabolism of aromatic compoundsin higher plants Ⅳ:purification and properties the phenylalaninedeaminase of Herdeam Vulagare. J Biol Chem,1961,23:2692-2698.
    Kowalski S P, Eannetta N T, Hirzel A T et al. Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol,1992,100:677-684.
    Kuc J. Multiple mechanisms, reaction rate, and induced resistance in plants. In Plant Disease Control: Resistance and Susceptibility CR C Staple, G H Tommiessen, eds. Jhon Wiley and Sons, New York, 1981,259-272.
    Li L, Steffens, J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta,2002,215,239-247.
    Mayer A M, Harel E. Polyphenol oxidases in plants. Phytochem,1979,18:193-215.
    Melan M A, Dong X, Endara M E et al. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol,1993,101:441-450.
    Melo G A, Shimizu M M, Mazzafera P. Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust Phytochemistry,2006,67:277-285.
    Minke A N, Gerrit A V, Johannes F G V. Fatty acid hydroperoxidelyase:A plant cytochrome P450 enzyme involved in wound healing and pest resistance. Chem-BioChem,2001 (2):494-504.
    Mtller K. The formation and immunological signification of Phytoalexin produced by Phaseolis vugaris in response to infection with Sclerotinia fructicola and Phytophtophthora infestans. Aust J Biol Sci, 1958,11:257-300.
    Park T, Holland MA, Laskey JG et al. Germination-associated lipoxygenase transcripts persist in maturing soybean plants and are induced by jasmonate. Plant Sci,1994,96 (1-2):109-117.
    Romero M V and Barrett D M. Rapid Methods for Lipoxygenase Assay in Sweet Corn. J Food Sci,1997, 62 (4):696-700.
    Stout M J, Workman K V & Duffey S S. Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomologia Experimentalis etApplicata,1996,79:255-271.
    Thierry Heitz, Daniel R Bergey, Clarence A Ryan. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, system in, and methyl jasmonate. Plant Physiol, 1997,114:1085-1093.
    Thipyapong P, Joel D M, Steffens J C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol,1997,113: 707-718.
    Vaughn K C, Duke S O. Function of polyphenol oxidase in higher plants. Physiol Plant,1984 60:106-112.
    Yu H, Kowalski S P, Steffens J C.Comparison of polyphenol oxidase expression in glandular trichomes of solanum and lycopersicon species. Plant Physiol,1992,100:1885-1890.
    Zawistowski J, Biliaderis C G, Eskin N A M. polyphenol oxidase. In:Robinson DS, Skin NAME (eds). Oxidative Enzymes in Foods. London, Elsevier Science Publishers,1991,217-273.
    金庆超,叶华智,张敏.苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系四川农业大学学报,2003,21(2):116-118.
    马春红,李运朝,董文琦,等.低浓度玉米小斑病菌T毒素对玉米叶片苯丙氨酸解氨酶活性的诱导研究.华北农学报,2007,22(1):40-43.
    马春红,翟彩霞,王立安,等.玉米小斑病菌T小种培养滤液对玉米抗病性的诱导.中国农业科学,2005,38(8):1578-1584.
    梅伏生,孟祥高,赵显珍等.脂氧合酶——植物抗胁迫响应的关键酶.华中师范大学学报(自然科学版),2005,39(3):346-350,354.
    欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,1988,24(3):9-16.
    王敬文,薛应龙.PAL的研究Ⅲ:玉米小斑T小种和大斑病菌毒素对PAL的刺激作用.植物生理学报,1982,8(3):237-244.
    万永芳,叶华智.小麦抗赤霉病的一些生理生化特性.四川农业大学学报,1993,11(3):439-443.
    吴元华,钟丽娟,赵秀香.烟草感染PVYN后叶脉坏死与总酚、类黄酮及PPO关系研究.植物病理学报,2007,37(4):398-402.
    邢会琴,李敏权,徐秉良,雷玉明,马建仓.过氧化物酶和苯丙氨酸解氨酶与苜蓿白粉病抗性的关系.草地学报,2007,15(4):376-380.
    杨家书,吴友三.植物苯丙烷类代谢途径与小麦抗白粉病的关系.植物病理学报,1986,16(3):169-173.
    叶茂炳,徐朗莱,徐雍皋,等.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系.南京农业大学学报,1990,13(3):103-107.
    张建成,范永山,董金皋.玉米大斑病菌毒素对玉米叶肉细胞脂氧合酶活性的影响.植物病理学报,2003,33(5):421-424.
    张江涛,段光明,等.PAL与水稻抗稻瘟病的关系.植物生理学通讯,1987,(60):34-37.
    Arimura G, Ozawa R, Horiuchi T, Nishioka T and Takabayshi J. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol,2001,29:1049-1061.
    Baldwin I T, Halitschke R, Paschold A, et al. Volatiles signaling in plant-plant interactions:"talking trees" in the genomics era. Science,2006,311(5762):812-815.
    Buttery R G, Ling L G. Corn leaf volatiles:Identification using tenax trapping for possible insect attractants. J. Agric. Food Chem.1984,32:1104-1106.
    Dean J M, De Moraes C M. Effects of genetic modification on herbivore-induced volatiles form maize. J Chem Ecol,2006,32(4):713-724.
    Delia M. Pinto & James D. Blande & Riikka Nykanen & Wen-Xia Dong & Anne-Marja Nerg & Jarmo K. Holopainen. Ozone degrades common herbivore-induced plant volatiles:Does this affect herbivore prey location by predators and parasitoids? J Chem Ecol,2007,33:683-694.
    De Moraes C M, Lewis W J P, Pa W et al. Herbivore-in-fasted plants selectively attract parasitoids. Nature,1998,393:570-573
    De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature,2001,410:577-580.
    Dicke M and Sabelis M W. How plants obtain predatory mites as bodyguards. Neth. J. Zool,1988,38: 148-165.
    Dixon R A. Natural products and plant disease resistance. Nature,2001,411 (6839):843-847.
    Doughty K J, Blight M M, Bock C H et al. Release of alkeny lisothioc yanates and other volatiles from brassica rapa seedlings during infection by Alternaria brassicae. Phytochemisty,1996,43 (2): 371-374.
    Engelberth J, Alborn H T, Schmelz E A, et al. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA,2004,101:1781
    Farag M A, Fokar M, Abd H, Zhang H M, Allen R D, Pare P W. (Z)-3-Hexenol induces defense genes and downstream metabolitesin maize. Planta,2005,220:900-909.
    Farmer E E. Surface-to-air signals. Nature,2001,411 (6839):854-856.
    Frey M et al. Analysis of a chemical plant defense mechanism in grasses. Science 1997,277,696-699.
    Gijzen M, lewinsohn E, Savage T J et al. Conifer monoterpenes:biochemistry and bark beetle chemical ecology. ACS Sympos Ser,1993,525:8-22.
    Hamilton-Kemp T R, McCracken C T, Loughrin J H, et al. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol,1992,18 (7): 1083-1086.
    Isman M B. Plant essential oils for pest and disease management. Crop Protec,2000,19:603-608.
    Kurita, N., Miyaji, M., Kurane, R., Takahara, Y. Antifungal activity of components of essential oils. Agric. Biol. Chem,1981,45,945-952.
    Mark J. Carroll & Eric A. Schmelz & Peter E. A. Teal. The Attraction of spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J Chem Ecol,2008,34:291-300.
    Mark J. Carroll & Eric A. Schmelz & Robert L. Meagher & Peter E. A. Teal attraction of spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J Chem Ecol,2006,32: 1911-1924.
    Marco L, Bernasconil, Ted C. J. Turlings1, Lara Ambrosetti, Paolo Bassetti & Silvia Dorn herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomologia Experimentalis et Applicata,1998,87:133-142.
    Mauricio R, Rausher M D, Burdick D S. Variation in the defense strategies of plant:are resistance or tolerance mutually exclusive? Ecology,1997,78:1301-1311.
    Michiel van Wijk & Paulien J. A. De Bruijn & Maurice W. Sabelis. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J Chem Ecol,2008,34:791-803.
    Muller-Riebau F, Berger B, Yegen, O. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric Food Chem,1995,43,2262-2266.
    Obara N, Hasegawa M, Kodama O. Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci Biotechnol Biochem,2002,66 (12):2549-2559
    Oliver C, Vaughn S F, Mizubuti E S G et al., Variation in allylisothiocyanate production within Brassica species and correlation with fungicidal activity. J Chem Ecol,1999,25 (12):2687-2701.
    Papadopoulou K, Melton R E, Leggett M, Daniels M J & Osbourn A E. Compromised disease resistance in saponin-deficient plants. Proc. Natl Acad. Sci. USA 1999,96,12923-12928.
    Pare P W and Tumlinson J H. Induced synthesis of plant volatiles. Nature,1997,385:30-31.
    Pare P W and Tumlinson J.H. Plant volatiles as a defense against insect herbivores. Plant Physiol,1999, 121:325-331.
    Runyon J B, Mescher M C, De Moraes C M. Volatile chemical cues guide host location and host selection by parasitic. Science,2006,313 (5795):1964-1967.
    Gouinguene'Sandrine, Thomas Degen and Ted C. J. Turlings. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology,2001,11:9-16.
    Sangwan N K, Verma B S, Verma K K, Dhindsa K S. Nematicidal activity of some essential plant oils. Pestic. Sci,1990,28,331-335.
    Singh A K., Dikshit A, Sharma M L, Dixit S N. Fungitoxic activity of some essential oils. Econ. Bot, 1980,34,186-190.
    Ted C J. Turlings, Hans T. Alborn, John H. Loughrin and James H. Tumlinson. Volicitin, an elicitor of maize volatiles in oral secretion of spodoptera exigua:isolation and bioactivity. Journal of Chemical Ecology, Vol.26, No.1,2000,189-202.
    Turlings T C J, Lougherin J H, Mccall P J, Rose U S, Lewis W J and Tumlinson J H. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl Acad Sci, U.S.A.1995,92:4169-4174.
    Turlings T C J, M L Bernasconi, R Bertossa, F Bigler, G Caloz& S Dorn. The induction of volatile emissions in maize by three herbivore species with different feeding habits:possibleconsequences for their natural enemies. Biological Control,1998,11:122-129.
    Turlings T C J, P J McCall, H T Alborn & J H Tumlinson. An elicitor in caterpillar oral secretions that induces cornseedlings to emit chemical signals attractive to parasitic wasps.Journal of Chemical Ecology,1993,19:411-425.
    Turlings T C J, Tumlinson J H and Lewis W J. Exploitation of herbivore-induced plant odors by host-seeking wasps. Science,1990,250:1251-1253.
    Wilson C L, Solar J M., E Ghaouth, A Wisniewski M E. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis,1997,81,204-210.
    邓晓军,陈晓亚,杜家纬.植物挥发性物质及其代谢工程.植物生理与分子生物学报,2004,30(1):11-18.
    何培青,张鹏英,陈靠山,李光友.番茄几种挥发性组分对番茄灰葡萄孢的抑制作用.云南植物研究,2005,27(3):315-320.
    娄永根,程家安.植物-植食性昆虫-天敌三营养层次的相互作用及其研究方法.应用生态学报,1997,8(3):325-331.
    秦秋菊,高希武.昆虫取食诱导的植物防御反应.昆虫学报,2005,48(1):125-134.
    张鹏英,何培青,陈靠山,谢寒冰.番茄几种有机挥发组分对尖镰孢的抑制作用.植物病理学报,2006,36(1):91-93.
    张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社,2003,180-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700