姜黄的化学成分及去甲氧基姜黄素大鼠体内代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜黄为姜科姜黄属(Curcuma)多年生草本植物姜黄Curcuma longa L.的干燥根茎,在亚洲的热带地区广为栽培。姜黄作为传统中药具有多种功效,同时作为食品添加剂,不仅具有着色的作用,而且兼顾医疗及保健的功能,因此在国际市场上享有很高声誉,是联合国粮食与农业组织(FAO)和世界卫生组织(WHO)所规定的使用安全性很高的天然色素之一。姜黄味苦、辛、性温,归脾、肝经,具有破血行气、通经止痛之功效。印度传统医学认为其可以治疗胆病、厌食、鼻炎、咳嗽、糖尿病、肝病、风湿病和窦炎等。现代药理研究表明姜黄具有抗炎、抗氧化、抗癌、抗HIV等多方面作用。姜黄的化学研究表明挥发油及姜黄素为其主要活性成分。但迄今为止,对姜黄的研究多集中于药理、姜黄素的提取分离工艺等方面,姜黄的化学成分研究除姜黄素外报道较少。本论文对姜黄进行了较系统的化学研究,利用现代色谱分离手段,从姜黄的80%乙醇提取物中分离得到37个化合物,通过各种谱学数据(UV、NMR、MS)分析鉴定了36个化合物,包括一个没药烷类衍生物:(bisabola 4′-methyl-4′,10′-diene-9′-one-3′-yl)-(bisabola 4″-methyl-1″,4″-dihydroxy-5″,10″-diene-9″-one-3″-yl)-methane(1);四个异没药烷类化合物:isobisabolone A(2)、isobisabolone B(3)、isobisabolone C(4)、isobisabolone D(5);九个没药烷类化合物:turmerone A(6)、turmerone B(7)、turmerone C(8)、turmerone D(9)、turmerone E(10)、turmeronol B(11)、bisabolone(12)、bisabolone-9-one(13)、turmeronol A(14);九个二苯庚烷类化合物:(E)-1-(1,2-dihydro-6-hydroxyinden-3-ylidene)-4-(4-hydroxyphenyl)butan-2-one (15),(4E,6E)-2,5-epoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-1,4,6-heptatrien-3-one(16)、(1S)-1,5-epoxy-1-(3-methoxy-4-hydroxyphenyl)-7-(4-hydroxyphenyl)-4,6-heptadien-3-one(17)、(1S)-1,5-epoxy-1-(4-hydroxyphenyl)-7-(3-methoxy-4-hydroxyphenyl)-4,6-heptadien-3-one(18)、(1E,4E,6E)-1-(3-methoxy-4-hydroxyphenyl)-7-(4-hydroxyphenyl)-1,4,6-heptatrien-3-one(19)、1,7-bis(4-hydroxyl-phenyl)-3-hydroxy-1,3-heptadien-5-one(20)、姜黄素(21)、去甲氧基姜黄素(22)、双去甲氧基姜黄素(23);二个Calebin类衍生物:4″-(3″′-methoxy-4″′-hydroxyphenyl)-2″-oxo-3″-butenyl-3-(4′-hydroxylphenyl)-propenoate(24)、4″-(4″′-hydroxyphenyl)-2″-oxo-3″-butenyl-3-(3′-methoxy-4′-hydroxyphenyl)-propenoate(25);一个二苯戊烷类化合物:1-(4-羟基-3-甲氧基苯基)-5-(4-羟基苯基)-(1E,4E)-戊二烯-3-酮(26);九个酚酸类衍生物:4-羟基-3-甲氧基苯丙烯醛(27)、阿魏酸甲酯(28)、4-羟基苯丙烯酸甲酯(29)、4-羟基苯甲醛(30)、4-羟基苯丙烯酸(31)、甲酰阿魏酸(32)、4-羟基苯丙烯醛(33)、香兰素(34)、反式阿魏酸(35)及一个甾醇类化合物:谷甾醇(36)。其中,1为具有新骨架的化合物;2-4为首次发现的异没药烷型倍半萜类化合物,15为首次发现的具有苯并戊烷结构的二苯庚烷类化合物,16为首次发现的具有五元呋喃环结构的二苯庚烷类化合物结构,6-8,17-19和24为新化合物;5为新的人工产物;9和25为新的天然产物;13和27-31为首次从该属植物中分离得到的化合物。上述研究结果丰富了姜黄化学成分的结构类型,同时为进一步的生物活性研究奠定了物质基础。
     姜黄素类成分包括姜黄素、去甲氧基姜黄素及双去甲氧基姜黄素。近年来研究表明姜黄素类成分具有抗肿瘤、调节血脂、抗HIV和抗老年痴呆等多方面药理作用。然而,口服姜黄素类成分体内血药浓度和生物利用度较低,代谢研究亦发现其生物转化率高,因此,代谢产物研究对口服用药的姜黄素类成分显得格外重要。在姜黄素类三种主要成分中,姜黄素的代谢研究报道较多,而去甲氧基姜黄素及双去甲氧基姜黄素的代谢截止目前仅发现一篇有关体外实验研究的报道。去甲氧基姜黄素与姜黄素母核结构相同,但两端苯环的取代模式不同,其体内代谢与体外以及姜黄素的体内体外代谢是否一致尚不明确,为此,我们开展了对去甲氧基姜黄素的体内代谢研究。
     利用现代色谱分离手段,从大鼠灌胃去甲氧基姜黄素的尿液及粪便中共分离得到了9个去甲氧基姜黄素的一相代谢产物,通过波谱学等手段确定它们的结构。其中7个为首次发现的代谢产物,分别为:5-去羟基-六氢去甲氧基姜黄素A(M-1),5-去羟基-六氢去甲氧基姜黄素B(M-2),5-去羟基-八氢去甲氧基姜黄素A(M-3)and 5-去羟基-八氢去甲氧基姜黄素B(M-4),5-O-甲基-六氢去甲氧基姜黄素A(M-7),5-O-甲基-六氢去甲氧基姜黄素B(M-8),和5-去羟基-二氢去甲氧基姜黄素B(M-9),2个已知的代谢产物为六氢去甲氧基姜黄素A(M-5)和六氢去甲氧基姜黄素B(M-6)。代谢产物1-4为从粪便中分离得到,5-9为从尿液中分离得到。
     与以往姜黄素类化合物的代谢研究相比,本研究首次发现了脱羟基及O-甲基化还原代谢产物,同时还发现了多对异构体的存在,这些结果是对姜黄素类化合物代谢研究的有益补充。该部分研究不仅明确了去甲氧基姜黄素在大鼠体内的一相代谢途径,为今后其人体内代谢研究以及药代动力学研究提供参考,而且为进一步阐明其口服后体内发挥药效的作用形式奠定基础。
The rhizomes of Curcuma Longa, a tropical herb indigenous to southern Asia, has played an important role in the pharmaceutical, food and textile industries in China, Japan and southeastern Asia for thousands of years. It has been widely used as an aromatic stomachic, carminative, anthelmintic, laxative, and as condiments in foods as well as for liver ailment. With regard to the chemical constituents of this plant, essential oil and curcuminoids were shown to be the major active principles, and the content of bisabolane type sesquiterpenes in volatile oil is high. Curcuminoids, consist mainly of three diarylheptanoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. These are recognized for their beneficial effects such as a choleretic, as anti-oxidant, anti-inflammatory agents, for treating human immunodeficiency virus infections and as anticarcinogens. In recent years, their ability to protect neuronal cells fromβA insult has also attracted great attention. Demethoxycurcumnin was found to be the more effective in protecting PC12 and HUVEC cells fromβA insult than curcumin. Bisabolane-type sesquiterpenes have been reported to show antitumor, antifungal, anti-bacteria, antioxidant and antivenom effects. Although great attentions have been paid to the chemical and pharmacological research of curcumin, demethoxycurcumin and bisdemethoxycurcumin, there was little information on the other constituents of C. longa. Therefore, a systematic chemical research on the constituents of C. longa was carried out, which resulted in the isolation of 37 compounds. The chemical structures of 36 compounds were identified by spectral methods, including one bisabolane dirivate: (bisabola 4'-methyl-4',10'-diene-9'-one-3'-yl)-(bisabola 4"-methyl-1",4"-dihydroxy-5",10"-diene-9"-one- 3"-yl)-methane (1); four isobisabolane-type compounds: isobisabolone A (2), isobisabolone B (3), isobisabolone C (4), isobisabolone D (5); nine bisabolane-type compounds: turmerone A (6), turmerone B (7), turmerone C (8), turmerone D (9), turmerune E (10), turmeronol B (11), bisabolone(12), bisabolone-9-one(13), turmeronol A(14): nine diarylheptanoids:(E)-1-(1,2-dihydro-6-hydroxyinden-3-ylidene)-4-(4-hydroxyphenyl)butan-2.one (15), (4E,6E)-2,5-epoxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (16), (1S)-1,5-epoxy-1-(3-methoxy-4-hydroxyphenyl)-7-(4-hydroxyphenyl)-4,6-heptadien-3-one (17), (1S)-1,5-epoxy-1-(4-hydroxylphenyl)-7-(3-methoxy-4-hydroxyphenyl)-4,6-heptadien-3-one (18), (1E,4E,6E)1-(3-methoxy-4-hydroxyphenyl)-7-(4-hydroxylphenyl)-1,4,6-heptatrien-3-one (19), 1,7-bis(4- hydroxyphenyl)-3-hydroxy-1,3-heptadien-5-one (20), curcumin (21), demethoxycurcumin (22),bisdemethoxycurcumin (23); two calebin derivatives: 4"-(3"'-methoxy-4"'-hydroxyphenyl)-2"-oxo-3"-butenyl-3-(4'-hydroxylphenyl)-propenoate (24)、4"-(4"-hydroxyphenyl)-2"-oxo-3"-butenyl-3-(3'-methoxy-4'-hydroxyphenyl)-propenoate (25); one diarylpentanoid constituent: 1-(4-hydroxy-3-methoxyphenyl)-5-(4-hydroxyphenyl)-(1E,4E)-pentadiene-3-one (26); nine phenolic acid derivatives: 4-hydroxy-3-methoxy cinnamaldehyde (27), ferulic acid methyl ester (28), 4-hydroxycinnamic acid methyl ester (29), 4-hydroxybenzaldehyde (30), 4-hydroxycinnamic acid (31), formylferulic acid (32), 4-hydroxy-cinnamaldehyde (33), vanillin (34), trans-ferulic acid (35) and one sterol compound: sitosterol(36). Among them 1 was novel compounds with new skeleton; 2-4 were isobisabolane-type sesquiterpenes discovered for the first time; 6-8, 15-19 and 24 were new compounds; 5 was a new artifact; 9 and 25 were new natural products; 13 and 27-31were isolated for the first time from the plants of this genus.
     The investigation enriched the constituent-types of C. longa and could provide material basic for further activity screening.
     Although numerous aspects of the pharmacology of curcuminoids, in particular its activity as chemopreventive agent, have been studied, the metabolism in humans and experimental animals have not been fully characterized. The metabolism of curcumin has mostly been studied in rats in vivo and in vitro. More recently, information on the metabolism of curcumin in humans has been obtained from in vitro studies with hepatic and intestinal cells and subcellular fractions, as well as from clinical studies with cancer patients. The metabolism of demethoxycurcumin, which is the major active component in curcuminoids such as curcumin, has only been studied on one report. In that investigation, in vitro studies with tissue slices and subcellular fractions from rat fiver were reported. No data have yet been published on the metabolism of demethoxycurcumin in vivo. Therefore, studies of the metabolic products of demethoxycurcumin in feces and urine after oral administration in male Wistar rats were undertaken. And nine phaseⅠreductive products were isolated. Four new metabolites: 5-dehydroxy-hexahydro-demethoxycurcumin-A (M-1), 5-dehydroxy-hexahydro-demethoxycurcumin -B (M-2), 5-dehydroxy-octahydro--demethoxycurcumin-A (M-3) and 5-dehydroxy-octahydrodemethoxycurcumin-B (M-4) were isolated from the feces, and three new metabolites: 5-O-methylhexahydro-demethoxycurcumin-A (M-7), 5-O-methyl-hexahydro-demethoxycurcumin-B (M-8), and 5-dehydroxy-dihydro-demethoxycurcumin-B(M-9) in addition to two known metabolites: hexahydro-demethoxycurcumin-A(M-5), hexahydro-demethoxycurcumin-B (M-6) from the urine of male Wistar rats. Their structures were established by spectral methods.
     Demethoxycurcumin in vivo follows almost the same pathway as curcumin and demethoxycurcumin in vitro: no oxidative metabolites were observed, and the reduction pattern of hydrogenation was about the same. However, there were two new discoveries in the present study: first the existence of the dehydroxy or methylated metabolites was demonstrated and secondly the existence of the isomers with a methoxy group substituted on a different benzene ring. These results are important for the understanding of demethoxycurcumin metabolism in rats and should provide information and reference for the further metabolic investigation of demethoxycurcumin in humans.
引文
[1] 中国药典2005年一部[M]。北京:化学工业出版社,2005:186.
    [2] [明]李时珍.本草纲目(校点本)[M].第2册.北京:人民卫生出版社,1979:880.
    [3] 陈宏,张振书。姜黄的药理作用研究概况[J].国外医学.中医中药分册,1996,18(6):3-7.
    [4] 王贤纯,谢锦云.姜黄的综合利用[J].食品科学,1993,164(8):49-51.
    [5] Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric: synergistic action of curcuminoids[J]. Chem. Pharm. Bull., 1993, 41(9): 1640-1643.
    [6] Park SY, Kim DSHL. Discovery of natural products from curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against alzheimer's disease[J]. J. Nat. Prod., 2002, 65(9): 1227-1231.
    [7] Manzan ACCM, Toniolo FS, Bredow E, et al. Extraction of essential oil and pigments from curcuma longa[L.] by steam distillation and extraction with volatile solvents[J]. J. Agric. Food. Chem., 2003, 51(23): 6802-6807.
    [8] Ohshiro M, Kuroyanagi M, Ueno A, et al. Structures of sesquiterpenes from curcuma longa[J]. Phytochemistry, 1990, 29(7): 2201-2205.
    [9] Imai S, Morikiyo M, Furihata K, et al. Turmeronol A and turmeronol B, new inhibitors of soyben lipoxygenase[J]. Agric. Biol. Chem., 1990, 54(9): 2367-2371.
    [10] Soudamini, K.K. Kuttan, R. Inhibition of chemical carcinogenesis by curcumin[J]. J. Ethnopharmaco, 1989, 27(1-2): 227-33.
    [11] Conney All, Lou YR, Osawa T, et al. Some perspectives on dietary inhibition of carcinogenesis: studies with curcumin and tea[J]. Proc. Sac. Exp. Biol. & Med., 1997, 216(2): 234-245.
    [12] Rao, C. V., Rivenson, A., Simi, B, et al. & Eddy, B. S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound[J]. Cancer Res, 1995, 55(2):259-266.
    [13] 王建舜,容维祺,康九红,等.姜黄素对羟自由基及红细胞氧化性溶血的影响[J].中国现代应用药学杂志,2000,17(6):469-471.
    [14] Huang MT, Lou YR, Ma W, et al. Inhibitory effects of dietary curcumin on forestomach, duodenal and colon carcinogenesis in mice[J]. Cancer Res, 1994, 54(22):5841~5847.
    [15] Hadi SM, Asad SF, Singh S, et al. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds[J]. IUBMB Life, 2000, 50(3): 167~171.
    [16] Kuttan R, Bhanumathy P, Nirmala K, et al. Potential anticancer activity of turmeric(Curcuma longa)[J]. Cancer lett, 1985, 29(2): 197~202.
    [17] 许建华,赵蓉,柯丹如.姜黄素对人肝癌Bel7402细胞杀伤动力学及周期时相的影响[J].福建医科大学学报,1998,32(3):236-239.
    [18] Dhandapani KM, Brann DW. Cytotoxic effects of curcumin on malignant glioma cell lines[J]. Journal of Neurochemistry, 2003, 85(1):P71.
    [19] Conney AH, Lysz T, Ferraro T, et al. Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin[J]. Adv Enzyme Regul, 1991, 31:385~396.
    [20] Krishnaswamy K. Retardation of experimental tumorigenesis and reduction in DNA adducts by turmeric and curcumin[J]. Nutr-Cancer, 1998, 30(2):163~166.
    [21] Huang MT. Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene[J]. Carcinogenesis, 1992, 13(11):2183-2186.
    [22] Singletary K. Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin[J]. Cancer Lett, 1996,103(2): 137~41.
    [23] 孟秀香,巩静,孙宏丹,等.姜黄素在体外对白血病细胞及其时相性影响的观察[J].白血病,2000,9(3):147~150.
    [24] Sokoloski JA, Shyam K, Sartorelli AC. Induction of the differentiation of HL-60 promyeloeytic leukemia cells by curcumin in combination with low levels of VitaminD3[J]. Oncol Res, 1997, 9(1):31~39.
    [25] Surh YJ, Han SS, Keum YS, et al. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappaB and AP-l[J]. Biofactors, 2000, 12(1-4): 107~112.
    [26] Xu Yx, Pindolia KR, Janakiraman N, et al. Curcumin inhibits IL La and TNF-α induction of NF-kB DNA-binding activity in bone marrow stromal cells[J]. Hematopathol Mol Hematol, 1997, 11(1):49~62.
    [27] Jiang MC, Yang-Yen HF, Yen JJ, et al. Curcumin induces apoptosis in Immortalized NIH 3T3 and malignant cancer cell lines[J]. Nutr Cancer, 1996,26(1):111-116.
    [28] 陈文娟,陈燕,吴裕丹,等.姜黄素调节HL-60细胞周期蛋白表达的研究[J].临床血注学杂志,2001,14(5):215~217.
    [29] Pal S, Choudhud T, Chattopadhyay S, et al. Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells[J], Biochem Biophys Res Commun, 2001,288(3):658~665.
    [30] Anto RJ, Mukhopadhyay A, Denning K, et al. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome e release: its suppression by ectopic expression of Bcl-2 and Bel-xl[J]. Carcinogenesis, 2002, 23(1): 143~150.
    [31] Gururaj AE, Belakavadi M, Venkatesh DA, et al. Molecular mechanisms of anti-angiogenic effect of curcumin[J]. Biochem Biophys Res Commun, 2002, 297(4):934~942.
    [32] Thaloor D, Singh AK, Sidhu GS,et al. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin[J]. Cell Growth Differ, 1998, 9(4):305~12.
    [33] 李宁,陈晓欣,韩池,等.茶和姜黄素对二甲基苯并蒽诱发地鼠口腔癌的预防作用[J].卫生研究,2002,31(5):354.
    [34] Huang TS, Lee SC, Lin JK. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells[J]. Proc Natl Acad Sci USA, 1991, 88(12):5292~5296.
    [35] Kakar SS, Roy D. Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin[J]. Cancer Lett, 1994, 87(1):85~89.
    [36] Brennan P. Inhibition of nuclear factor kappaB by direct modification in whole cells-mechanism of action of nordihydroguaiaritic acid, curcumin and thiol modifiers[J]. Biochem Pharmacol, 1998, 55(7):965~973.
    [37] Lin JK, Chen YC, Huang YT, et al. Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin[J]. J Cell Biochem Suppl, 1997, (28-29):39~48.
    [38] Liu JY, Lin SJ, Lin JK. Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells[J]. Carcinogenesis, 1993, 14(5):857~861.
    [39] Korutla L, Kumar R. Inhibitory effects of curcumin on epidermal growth factor receptor kinase activity in A431 cells[J]. Biochim Biophys Acta, 1994, 1224(3):597~600.
    [40] Korutla L, Cheung JY, Mendelsohn J, et al. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin[J]. Carcinogenesis, 1995, 16(8): 1741~1745.
    [41] 大泽俊彦.色素.食品开发(日),1998,33(8):5-10
    [42] Lin JK, Huang TS, Shih CA, et al. Molecular mechanism of action of curcumin. Food Phyto-Chemicals for Cancer Prevention Ⅱ[J]. ACS Symposium Series, 1994, 547: 196~203.
    [43] Chen YC, Kuo TC, Lin-Shiau SY, et al. Induction of HSP70 gene expression by modulation of Ca+2 ion and cellular p53 protein by curcumin in colorectal carcinoma cell[J]. Mol Carcinogenesis, 1996, 17(4):224~234.
    [44] Lin JK, Shih CA. Inhibitory effect of curcumin on xanthine dehyrogenase/oxidase induced by TPA in NIH3T3 cells[J]. Carcinogenesis, 1994, 15(8):1717~1721.
    [45] Yegnanarayan R, Saraf AP, Balwani JH. Comparison of anti-inflammatory activity of various extracts of Curcuma longa(Linn)[J]. Indian J. Med. Res., 1976, 64(4): 601-608.
    [46] Ghatak N, Basu N. Sodium curcuminate as an effective anti-inflammatory agent[J]. Indian J. Exp. Boil., 1972, 10(3): 235-236.
    [47] Srimal RC, Dhawan BN. In: Development of Unani drugs from herbal sources and the role of elements in their mechanism of action, (Arora BB, ed.). Hamdard National Foundation Monograph, New Delhi, India.
    [48] Rao TS Basu N, Siddiqui HH. Anti-inflammatory activity of curcumin analogues[J]. Indian J. Med. Res., 1982, 75: 574-8.
    [49] Chandra D, Gupta SS. Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa (Haldi)[J]. Indian J. Med. Res., 1972, 60(1): 138-42.
    [50] Tripathi RM, Gupta SS, Chandra D. Anti-trypsin and antihyaluronidase activity of the volatile oil of Curcuma longa(Haldi)[J]. Indian J Pharmacol., 1973, 5: 260-261.
    [51] Arora RB, Kapoor V, Basu N, et al. Anti-inflammatory studies on Curcuma longa(turmeric)[J]. Indian J. Meal. Res., 1971, 59(8): 1289-1295.
    [52] Sharm OP. Antioxidant activity of curcumin and related compounds[J]. Biochem Pharmacol. 1976, 25: 1181-1182.
    [53] Ramprasad C, Sirsi M. Observation on the Pharmacology of Curcuma Longa: Effect of Curcumin and Essential Oil of Curcuma Longa on Bile Secretion[j]. J Sci Industr Res., 1956, 15C: 262-265.
    [54] Hussain M.S, Chandrasekhara N. Effect of curcumin and capsaicin on the regression of pre-established cholesterol gallstones in mice[J]. Nutri. Res. 1994, 14(10): 1561-1574.
    [55] Hussain M S, Chandrasekhara N. Effect on curcumin on cholesterol gall-stone induction in mice[J]. Ind J Med Res. 1992, 96: 288-291.
    [56] Hussain MS, Chandrasekhara N. Influence of curcumin and capsaicin on cholesterol gallstone induction in hamsters and mice[J]. Nutri. Res. 1993, 13(3): 349-357.
    [57] Sakai K, Miyazaki Y, Yamane T, et al. Effect of extracts of Zingiberaceae herbs on gastric secretion in rabbits[J]. Chem. Pharm. Bull. 1989, 37(1): 215-217.
    [58] Rafatullah S, Tariq M, Al-Yahya MA, et al. Evaluation of turmeric(Curcuma longa) for gastric and duodenal antiulcer activity in rats[J]. J. Ethnopharmacol, 1990, 29(1): 25-34.
    [59] Gupta B, Kulshrestha VK, Srivastava RK, et al. Mechanisms of curcumin induced gastric ulcer in rats[J]. Indian J Med Res, 1980, 71(5):806-814.
    [60] Soni KB, Lahiri M, Chackradeo P, et al. Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity[J]. Cancer Lett., 1997: 115(2): 129-133.
    [61] Goud VK, Polasa K, Kfishnaswamy K. Effect of turmeric on xenobiotic metabolising enzymes[J]. Plants Food for Human Nutri., 1993, 44(1):87-92.
    [62] Singh A, Singh SP, Bamezai R. Postnatal modulation of hepatic biotransformation system enzymes via translaetational exposure of F1 mouse pups to turmeric and curcumin[J]. Cancer Lett. 1995, 96(1): 87-93.
    [63] Oetari S, Sudibyo M, Commandeur JN, et al. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver[J]. Biochem Pharmacol, 1996, 51(1):39-45.
    [64] 李诚秀,李玲,罗俊,等。姜黄挥发油对呼吸道作用的研究[J]。中国中药杂志,1998,23(10):624-625.
    [65] Venkatesan N. Chandrakasan G. Modulation of cyclophosphamide-induced early lung injury by curcumin, an anti-inflammatory antioxidant[J]. Mol Cellular Biochem., 1995,142(1): 79-87.
    [66] 陈文娟.姜黄素对恶性肿瘤细胞的调控[J].临床血液学杂志,1999,12(5):238.
    [67] Ramirez MC, Mesa MD. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atterosclerosis[J]. Atherosclerosis, 1999, 147(2):371.
    [68] Babu PS, Sdnivasan K Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat[J]. Mol Cellular Biochem, 1995, 152(1): 13-21.
    [69] Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric(Curcuma longa) in streptozotoein induced diabetic rats[J]. Mol Cellular Biochem, 1997, 166(1-2): 169-175.
    [70] Srivastava R, Dikshit M, Srimal RC, et al. Anti-thrombotic effect of curcumin[J]. Thromb. Res. 1985, 40(3): 413-417.
    [71] Srivastava KC, Bordia A, Verma SK. Curcumin, a major component of food spice turmeric(Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets[J]. Prostaglandins-Leukot-Essent-Fatty-Acids, 1995, 52(4): 223-227.
    [72] Sinha M, Mukherjee BP, Mukherjee B, et al. Study of the mechanism of action of curcumin: an antiulcer agent[J]. Indian J Pharm., 1975, 7: 98-99.
    [73] Selvam R, Subramanian L, Gayathd R, et al. The anti-oxidant activity of turmeric(Curcuma longa)[J]. J. Ethnopharmacol., 1995, 47(2), 59-67.
    [74] 石晶,顾军,邓心新,等。姜黄素对大鼠心肌缺血性损伤的保护作用[J].中国药理学通报,1998,14(2):145-147.
    [75] Mulky N, Amonkar AJ, Bhide SV. Antimutagenicity of curcumins and related compounds: the structural requirement for the antimutagenicity of curcumins[J]. India Drug, 1987, 25(3): 91-95.
    [76] Azuine MA, Kayal JJ, Bhide SV. Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity[J]. J Cancer Res Clin Oncol, 1992, 118(6): 447-452.
    [77] Nagabhushan M, Amonkar AJ, Bhide SV. In vitro antimutagenicity of curcumin against environmental mutagens[J]. Food Chem Toxicol, 1987, 25(7): 545-547.
    [78] Yasni S, Yoshiie K, Oda H, et al. Dietary Curcuma xanthorrhiza Roxb. increases mitogenic responses of splenic lymphocytes in rats, and alters populations of the lymphocytes in mice[J]. Journal of nutritional science and vitaminology, 1993, 39(4): 345-354.
    [79] Gonda R, Tomoda M, Takada K, et al. The core structure of ukonan A, a phagocytosis-activating polysaccharide from the rhizome of Curcuma longa, and immunological activities of degradation products[J]. Chem Pharm Bull, 1992, 40(4): 990-993.
    [80] Tomoda M, Gonda R, Shimizu N, et al. A reticuloendothelial system-activating glycan from the rhizomes of Curcuma longa[J]. Phytochemistry, 1990, 29(4): 1083-1086.
    [81] Inagawa H, Nishizawa T, Tsukioka D, et al. Homeostasis as regulated by activated macrophage. Ⅱ. LPS of plant origin other than wheat flour and their concomitant bacteria[J]. Chem Pharm Bull, 1992, 40(4): 994-997.
    [82] South EH, Exon JH, Hendrix K. Dietary curcumin enhances antibody response in rats[J]. Immunopharmacol Immunotoxicol., 1997, 19(1): 105-119.
    [83] Garg SK. Effect of Curcuma longa(rhizomes) on fertility in experimental animals[J]. Planta Med. 1974, 26(3): 225-227.
    [84] Garg SK, Mathur VS, Chaudhury RR. Screening of Indian plants for antifertility activity[J]. Indian J. Exptl. Biol. 1978, 16(10): 1077-1079.
    [85] Xia X, Pan Y, Zhang WY, et al. Ethanolic extracts from Curcuma longa attenuates behavioral, immune, and neuroendocrine alterations in a rat chronic mild stress model[J]. Biol Pharm Bull., 2006, 29(5): 938-944.
    [86] Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse[J]. J. Neurosci. 2001, 21(21): 8370-8377.
    [87] Yang.F., Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo[J]. J Biol Chem. 2005, 280(7): 5892-5901.
    [88] Ferreira LAF, Henriques OB, Andreoni AA, et al. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa(Zingiberaceae)[J]. Toxicon, 1992, 30(10): 1211-1218.
    [89] Mazumder A, Raghavan K, Weinstein J, et al. Inhibition of human immunodeficieney virus type-1 integrase by curcumin[J]. Biochem Pharmacol, 1995, 49(8): 1165-1170.
    [90] Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal[J]. J Ethnopharmacol, 1999, 67(1): 1-6.
    [91] Rasmussen HB, Christensen SB, Kvist LP, et al. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa[J]. Planta reed. 2000, 66(4): 396-398.
    [92] Chopra RN, Gupta JC, Chopra GS. Pharmacological action of the essential oil of Curcuma longa [J]. Indian J Med Res. 1941, 29: 769-772.
    [93] Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric: synergistic action of curcuminoids[J]. Chem Pharm Bull. 1993, 41(9): 1640-1643.
    [94] Lutomski J, Kedzia B, Debska W. Effect of an alcohol extract and of active ingredients from Curcuma longa on bacteria and fungi(author's transl)[J]. Planta Med. 1974, 26(1): 9-19.
    [95] Bhavani STN, Sreenivasa MV. Effect of turmeric(Curcuma longa)fractions on the growth of some intestinal & pathogenic bacteria in vitro[J]. Indian J. Exp. Biol. 1979, 17(12): 1363-1366.
    [96] Ramprasad C, Sirsi M. Indian medicinal plants: Curcuma longa; in vitro anti-bacterial activity of curcumin and the essential oil[J]. J. Sci. Industr. Res. 1956, 15C: 239-241.
    [97] Banerjee A, Nigam SS. Antimicrobial efficacy of the essential oil of Curcuma longa[J]. Indian J. Med. ges. 1978, 68: 864-866.
    [98] Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa(Zingiberaceae)[J]. J. Ethnopharmacol, 1995, 49(3): 163-169.
    [99] Dhar ML, Dhar MM, Dhawan BN, et al. Screening of Indian plants for biological activity: Ⅰ[J]. Indian J. Exptl. Biol. 1968, 6(4): 232-247.
    [100] 朱晓薇。姜黄的药理作用[J]。国外医药.植物药分册,1999,14(2):57-60.
    [101] Vanisree AJ, Sudha N. Curcumin combats against cigarette smoke and ethanol-induced lipid alterations in rat lung and liver[J]. Mol Cell Biochem. 2006, 288(1-2):115-123.
    [102] Chan MM, Ho CT, Huang HI. Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production[J]. Cancer Lett. 1995, 96(1): 23-29.
    [103] Unnikrishnan MK, Rao MN. Curcumin inhibits nitrite-induced methemoglobin formation[J]. Febs Lett. 1992, 301(2): 195-196.
    [104] Abraham SK, Sarma L, Kesavan PC. Protective effects of chlorogenic acid, curcumin and β-carotene against γ-radiation-induced in vivo chromosomal damage[J]. Mutation Res. 1993, 303(3): 109-112.
    [105] Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat[J]. Acta Pharmacol. Toxicol. 1978, 43: 86-92.
    [106] Bhavani Shankar TN, Shantha NV, Ramesh HP, et al. Toxicity studies on turmeric(Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys[J]. Indian J. Exp. Biol. 1980, 18(1): 73-75.
    [107] Sambaiah K, Ratankumar S, Kamanna VS, et al. Influence of turmeric and curcumin on growth, blood constituents and serum enzymes in rats[J]. J. Food Sci. Technol. 1982, 19(5): 187-190.
    [108] Vijayalaxmi. Genetic effects of turmeric and curcumin in mice and rats[J]. Mut. Res. 1980, 79(2): 125-132.
    [109] Abraham SK, Kesavan PC. Genotoxicity of garlic, turmeric and asafoetida in mice[J]. Mutat. Res. 1984, 136(1): 85-88.
    [110] Abraham S, Abraham SK, Radhamony G. Mutagenic potential of the condiments, ginger and turmeric[j]. Cytologia, 1976, 41(3-4): 591-595.
    [111] Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin(1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat[J]. Xenobiotica, 1978, 8(12): 761-768.
    [112] Ravindranath, V., Chandrasekhare, N. Absorption and tissue distribution of curcumin in rats[J]. Toxicology, 1980, 16: 259-266.
    [113] Ravindranath V, Chandrasekhara N. Metabolism of curcumin-studies with [~3H]curcumin[J]. Toxicology, 1982, 22: 337-344.
    [114] Asai A, Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma[J]. Life Sci., 2000, 67:2785-2793.
    [115] Ireson C, Orr S, Jones DJ, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production[J]. Cancer Res., 2001, 61:1058-1064.
    [116] Ireson CR, Jones DJ, Orr S, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine[J]. Cancer Epidemiol Biomarkers Prey., 2002, 11:105-111.
    [117] Cheng AL, Hsu CH, Lin JK, et al. Phase Ⅰ clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions[J]. Anticancer Res., 2001, 21:2895-2900.
    [118] Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokinetic study of oral curcuma extract in patients with colorectal cancer[J]. Clin Cancer Res., 2001, 7:1894-1900.
    [119] Sharma RA, Euden SA, Platton SL, et al. Phase Ⅰ clinical trial oral curcumin: biomarkers of systemic activity and compliance[J]. Clin Cancer Res., 2004, 10: 6847-6854.
    [120] Garcea G, Jones DJ, Singh R, et al. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration[J]. Br J Cancer, 2004, 90:1011-1015.
    [121] Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice[J]. Drug Metabolism and Disposition, 1999,27(4):486~494.
    [122] Hoehle SI, Pfeiffer E, Solyom AM, et al. Metabolism of Curcuminoids in Tissue Slices and Subcellular Fractions from Rat Liver[J]. J Agric Food Chem., 2006, 54:756-764.
    [123] Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions and characterization of its degradation products[J]. Journal of pharmaceutical and biomedical analysis, 1997, 15(12):1867~1876.
    [124] Kiuchi F, Iwakami S, Shibuya M, et al. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids[J]. Chem Pharm Bull. 1992, 40(2): 387-391.
    [125] Kiuchi F, Shibuya M, Sankawa U. Inhibitors of prostaglandin biosynthesis from Alpinia officinarum[J]. Chem Pharm Bull. 1982, 30(6): 2279-2282.
    [126] Iwakami S, Shibuya M, Tseng CF, et al. Inhibition of arachidonate 5-lipoxygenase by phenolic compounds[J]. Chem Pharm Bull. 1986, 34(9): 3960-3963.
    [127] Claeson P, Panthong A, Tuchinda P, et al. Three non-phenolic diarylheptanoids with anti-inflammatory activity from Cureuma xanthorrhiza[J]. Planta Med. 1993, 59: 451-454.
    [128] Claeson P, Pongprayoon U, Sematong T, et al. Non-phenolic linear diarylheptanoids from Curcuma xanthorrhiza: a novel type of topical anti-inflammatory agents: structure-activity relationship[J]. Planta Med. 1996, 62(3): 236-240.
    [129] Araujo CAC, Alegrio LV, Gomes DC, et al. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis[J]. Mem Inst Oswaldo Cruz. 1999, 94(6): 791-794.
    [130] Araujo CAC, Alegrio, LV, Castro D, et al. Leishmania amazonensis: in vivo experiments with diarylheptanoids from Leguminosae and Zingiberaceae plants[J]. Mem Inst Oswaldo Cruz. 1998, 93(Suppl. Ⅱ): 306.
    [131] Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatie activity of curcumin (diferuloyl methane)[J]. Indian J. Med. Res. 1980, 71: 632-634.
    [132] 朱晓薇。姜黄的药理作用[J]。国外医药.植物药分册,1999,14(2):57-60。
    [134] 郝左太,王起福。姜黄、郁金为主治疗慢性胆囊炎100例疗效对比观察[J]。中医药研究,1994,3:12-13.
    [135] 邓国刚.软脉降脂方(Ⅰ号)的临床及实验研究[J].中国医药学报,1998,4:23-25.
    [136] Navis I, Sriganth P. Dietary curcumin with cisplatin administration modulates tumor roarker indices in experimental fibrosarcoma[J]. Pharmacol Res, 1999, 39(3): 175~179.
    [137] 罗挺。中药姜黄外用治疗带状疱疹和单纯疱疹[J]。中华皮肤科杂志,1992,25(2):116.
    [138] Kuttan R, Sudheeran PC, Josph CD. Turmeric and curcumin as topical agents in cancer therapy [J]. Tumori, 1987, 73(1):29-31.
    [139] Tonnesen HH, de Vries H, Karlsen J, et al. Studies on curcumin and curcuminoids. Ⅸ: Investigation of the photobiological activity of curcumin using bacterial indicator systems[J]. J Pharm Sci, 1987, 76(5): 371-373.
    [140] 熊欣,王植军.姜黄对声带粘膜异型增生治疗的临床观察[J].中国眼耳鼻喉科杂志,2002,2(6):397.
    [141] Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin(diferuloyl methane) in patients with postoperative inflammation[J]. Int J Clin Pharmacol Ther Toxicol, 1986, 24(12): 651-654.
    [142] Murugan P, Pari L. Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats[J]. Life Sci., 2006, 79:1720-1728.
    [143] Leyon PY, Kuttan G. Studies on the role of some synthetic curcuminoid derivatives in the inhibition of tumour specific angiogenesis[J]. J Exp Clin Cancer Res., 2003, 22:77-83.
    [144] Pari L, Murugan P. Protective role of tetrahydrocurcumin against erythromycin estolate-induced hepatotoxicity[J]. Pharmacol Res., 2004, 49:481-486.
    [145] Limtrakul P, Chearwae W, Shukla S, et al. Modulation of function of three ABC drug transporters, P-glycoprotein(ABCB1), mitoxantrone resistance protein(ABCG2) and multidrug resistance protein 1(ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin[J]. Mol Cell Biochem., 2007, 296(1-2):85-95.
    [146] Lee SL, Huang WJ, Lin WW, et al. Preparation and anti-inflammatory activities of diarylheptanoid and diarylheptylamine analogs[J]. Bioorg Med Chem., 2005, 13:6175-6181.
    [147] Golding BT, Pombo-Villar E. Structures of α-and β-Turmerone[J]. J. Chem. Soc. Perkin Trans I., 1992, 1519-1524.
    [148] Uehara SI, Yasuda I, Takeya K, et al. New bisabolane sesquiterpenoids from the rhizomes of curcuma xanthorrhiza(zingiberaceae)Ⅱ[J]. Chem. Pharm. Bull., 1990, 38(1): 261-263.
    [149] Hori T, Kanazawa S. Bactericidal sesquiterpene[P]. Jpn. Kokai Tokkyo Koho, JP 09157207, 1997-06-17.
    [150] Ferdinand B, Christa Z, Harold R. Naturally occurring terpene derivatives.Part 397. Germacranolides from Lychnophora species[J]. Phytochemistry, 1982, 21(5), 1087-1091.
    [151] Dong H, Chen SX. A new antiplatelet diarylheptanoid from alpinia blepharocalyx[J]. J. Nat. Prod., 1998, 61(1): 142-144.
    [152] Kiuchi F, Goto Y, Suqimoto N, et al. Nematocidal Activity of Turmeric: Synergistic Action of Curcuminoids[J]. Chem Pharm Bull., 1993, 41(9): 1640-1643.
    [153] Masuda T, Jitoe A. Anti-oxidative and anti-inflammatory curcumin-related phenolies from rhizomes of Curcuma domestica[J]. Phytochemistry 1993, 32: 1557-60.
    [154] Etse JT, Gray AI, Waterman PG, et al. Chemistry in the annonaceae, part ⅹⅹⅴ. Sesquiterpenes from the stem bark of Cleistopholis glauca[J]. J. Nat. Prod, 1988, 51(2): 314-318.
    [155] Kwon YS, Kim CM. Antioxidant constituents from the stem of Sorghum bicolor[J]. Archives of Pharmacal Research, 2003, 26(7): 535-539.
    [156] Speranza G, Martignoni A, Manitto P. Studies on aloe. Part 5. Iso-aleoresin A, a minor constituent of Cape aloe[J]. J. Nat. Prod., 1988, 51(3): 588-590.
    [157] Chiang YM, Liu HK. Cytotoxic constituents of the leaves of Calocedrus fomosana[J]. Journal of the Chinese Chemical Society. 2003, 50(1): 161-166.
    [158] Elias G, Rao MNA. Synthesis and anti-inflammatory activity of substituted (E)-4-phenyl-3-buten-2-ones[J]. European Journal of Medicinal Chemistry. 1988, 23(4): 379-80.
    [159] Richard R, Stange Jr. Isolation of a phytoalexin, trans-p-coumaryl aldehyde, from Cucurbita maxima, Cucurbitaceae[J]. Phytochemistry. 1999, 52(1): 41-43.
    [160] Ji R, Chen ZX. Synthesis of [~(13)C] and [~(14)C]-labeled phenolic humus and lignan monomers[J]. Chemosphere. 2005, 60(9): 1169-81.
    [161] Ibrahim MT, Mohamadin A. Flavonoids as antioxidants from flower of Tecomaria Capeusis Lindl var. Aurea[J]. Bulletin of the Faculty of Pharmacy. 2004, 42(2): 297-307.
    [162] Li G, Seo CS, Lee SH, Jahng Y, Chang HW, Lee CS, Woo MH, Son JK. Diarylheptanoids from the Roots of Juglans mandshurica[J]. Bull Korean Chem Soc., 2004, 25(3):397-399.
    [163] Kikuzaki H, Kobayashi M, Nakatani N. Diarylheptanoids from Rhizomes of Zingiber officinale[J]. Phytochemistry, 1991, 30(11):3647-3651.
    [164] Shin D, Kinoshita K, Koyama K, et al. Antiemetic Principles of Alpinia officinarum[J]. J Nat Prod., 2002, 65(9): 1315-1318.
    [165] Li G, Xu ML, Choi HG, et al. Four New Diarylheptanoids from the Roots of Juglans mandshurica[J]. Chem Pharm Bull., 2003, 51(3):262-264.
    [166] Bokkenheuser VD, Winter J, Hylemon PB, et al. Dehydroxylation of 16α-hydroxyprogesterone by fecal flora of man and rat[J]. J.Lipid Res. 1981, 22: 95-102.
    [167] Feighner SD, Hylemon PB. Characterization of a corticosteroid 21-dehydroxylase from the intestinal anaerobic bacterium, Eubacterium lentum[J]. J. Lipid Res., 1980, 21:585-593.
    [168] Kasahara H, Miyazawa M, Kameoka H. Biotransformation of an Acyclic Neolignan in rats[J]. Phytochemistry, 1995, 38(2): 343-346.
    [169] Yang B, Meng ZY, Dong JX, et al. Metabolic profile of 1,5-dicaffeoylquinic acid in rats, an in vivo and in vitro study[J]. Drug Metab. Dispos. 2005, 33(7):930-936.