鹿衔草质量控制与相关成分药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹿衔草为鹿蹄草科植物鹿蹄草Pyrola calliantha H.Andres和普通鹿蹄草Pyrola decorata H.Andres的干燥全草,收载于《中国药典》2005年版一部。具有补虚益肾、驱风除湿、活血调经的功效,用于治疗虚弱咳嗽、劳伤吐血、风湿痹痛、腰膝无力、月经过多、外伤出血等。
     中药鹿衔草的应用历史久远,可与多种中药配伍使用,已有研究多集中于药理活性和临床应用等方面。本论文主要从化学成分、药效物质基础、活性成分的质量控制和药物动力学等方面对该药的一个品种—普通鹿蹄草进行了深入的研究。
     对普通鹿蹄草的95%乙醇提取物进行了系统的化学成分研究,采用硅胶柱色谱、聚酰胺柱色谱、Sephadex LH-20分子排阻色谱、ODS柱色谱以及制备HPLC等多种色谱技术分离得到22个化合物,通过理化性质和波谱学分析鉴定了它们的结构。6,6′-dihydroxy-4,5′-dimethyl-[1,1′-biphenyl]-3,3′-diyl bis-β-D-glucopyranoside为新化合物;梅笠草素(chimaphilin)、齐墩果酸(oleanolic acid)、熊果酸(ursolic acid)、鹿蹄草素(toluhydroquinone)、香草酸(vanillic acid)、pomolic acid、maslinic acid、colosic acid、槲皮素(quercetin)、异槲皮苷(isoquercitrin)、槲皮苷(quercitrin)、pyrolaside A、异高熊果苷(isohomoarbutin)、没食子酸(gallic acid)、3-β-O-α—L-arabinopyranosylsiaresinolic acid-28-O-β-D-glucopyranosyl ester和ziyuglycosideⅠ等16个化合物为首次从普通鹿蹄草种植物中分离得到;金丝桃苷(hyperin)、槲皮素3-O-呋喃阿拉伯糖苷(quercetin-3-O-α-L-arabinofuranoside)、高熊果苷(homoarbutin)、2″-O-galloylhyperin和鹿蹄草苷(pirolatin)等为分离得到的已知化合物。
     根据鹿衔草的传统用药记载以及现代临床应用,对其抗肿瘤和抗菌两方面生物活性进行了研究。采用MTT法,首先利用人肝癌Bel-7402细胞株,以细胞增殖抑制率为评价指标,对鹿衔草抗肿瘤活性部位进行追踪,确定了活性部位为该药乙酸乙酯萃取层经硅胶柱层析得到的甲醇-氯仿(1:9)洗脱流份,活性部位中化学成分协同发挥抗癌活性,对Bel-7402细胞的增殖抑制量效关系较好,IC_(50)为3.2 g生药量·mL~(-1);进一步利用人肝癌Bel-7402、人肝癌HepG-2、人宫颈癌HeLa、人胃癌SGC-7901和人纤维肉瘤HT-1080等五种细胞株,对从活性部位分离得到的化学成分进行抗肿瘤活性初步评价,结果表明:醌类成分梅笠草素、酚酸类成分鹿蹄草素和三萜类成分熊果酸、pomolic acid、colosic acid对考察的5种人癌细胞都表现出不同强度的增殖抑制活性,IC_(50)分别在7.64~19.14μg·mL~(-1),14.87~28.52μg·mL~(-1),1.36~5.84μg·mL~(-1),17.34~23.99μg·mL~(-1)和12.69~28.75μg·mL~(-1)之间,三萜类成分maslinic acid对3种人癌细胞具有选择性抑制作用,IC_(50)在24.24~47.29μg·mL~(-1)之间。采用纸片法和微量肉汤稀释法,初步考察了普通鹿蹄草中化学成分的体外抗菌活性。结果表明,醌类成分梅笠草素和酚酸类成分鹿蹄草素具有一定的广谱抗菌活性,它们对革兰氏阳性细菌金黄色葡萄球菌、肺炎链球菌和革兰氏阴性细菌大肠埃希氏菌的MIC分别为4~64μg·mL~(-1)和8~32μg·mL~(-1);黄酮类成分2″-O-galloylhyperin具有抗真菌活性,对白色念珠菌的MIC为32μg·mL~(-1)。以上研究结果初步阐明了鹿衔草抗肿瘤和抗菌的药效物质基础,为鹿衔草的临床应用和进一步开发提供了实验依据。
     建立了鹿衔草中多组分的同时定量分析方法,定量指标涉及该药中三萜、黄酮和酚酸等三大类主要成分。采用LC-MS法同时定量分析了3-β-O-α-L-arabinopyranosylsiaresinolic acid-28-O-β-D-glucopyranosyl ester、ziyuglycosideⅠ、pomolic acid、maslinic acid、colosic acid、齐墩果酸和熊果酸等7种三萜类成分,选用Hypersil C_(18)色谱柱,以甲醇-水为流动相进行梯度洗脱,大气压电离源(APCI)负离子方式电离,SIM法检测,各组分线性关系良好,平均回收率为94.5~103.3%,RSD≤4.6%;采用HPLC-UV法同时定量分析了金丝桃苷、异槲皮苷、2″-O-galloylhyperin、槲皮素-3-O-呋喃阿拉伯糖苷和槲皮苷等5种黄酮苷类成分,选用Zobax Extend C_(18)色谱柱,以乙腈-水(14:86,v/v)为流动相,在350 nm处检测,各组分线性关系良好,平均回收率为96.3~104.2%,RSD≤4.2%;采用HPLC-UV法同时定量分析了异高熊果苷、高熊果苷和鹿蹄草素等3种酚酸类成分,选用Zobax Extend C_(18)色谱柱,以甲醇-水为流动相进行梯度洗脱,在280 nm处检测,各组分线性关系良好,平均回收率为97.2~101.3%,RSD≤2.7%。建立的分析方法简便、灵敏、准确,为鹿衔草药材的质量控制提供了技术保证。
     建立了鹿衔草中醌类成分梅笠草素,酚酸类成分鹿蹄草素、异高熊果苷、高熊果苷和三萜类成分齐墩果酸、熊果酸在大鼠血浆中的分析方法。采用LC-MS法测定梅笠草素,以联苯甲酰为内标,乙醚为提取溶剂,梅笠草素在10~1000 ng·mL~(-1)范围内线性良好,方法的定量下限为10 ng·mL~(-1),日内精密度RSD≤11.5%,日间精密度RSD≤7.6%,准确度在88.4%~113.0%之间,平均回收率为85.5%;采用GC法测定鹿蹄草素,以对硝基苯乙酮为内标,血浆经乙醚-异丙醇(9:1)提取,以氢火焰离子化检测器(FID)检测,色谱柱为HP-5毛细管柱,鹿蹄草素在1.0~50μg·mL~(-1)范围内线性良好,方法的定量下限为1.0μg·mL~(-1),日内精密度RSD≤11.7%,日间精密度RSD≤15.6%,准确度在88.1~105.4%之间,平均回收率为94.1%;采用HPLC-UV法测定异高熊果苷和高熊果苷,以阿昔洛韦为内标,血浆经甲醇沉淀蛋白处理,异高熊果苷和高熊果苷的线性范围均为0.6~60μg·mL~(-1),定量下限均为0.6μg·mL~(-1),日内精密度分别为RSD≤5.5%和RSD≤4.5%,日间精密度分别为RSD≤10.0%和RSD≤6.3%,准确度分别在90.1%~111.4%和92.7%~104.2%之间,平均回收率分别为92.7%和94.9%;采用LC-MS法测定齐墩果酸和熊果酸,以白桦酯酸为内标,乙酸乙酯为提取溶剂,齐墩果酸和熊果酸的线性范围分别为2~160 ng·mL~(-1)和10~800 ng·mL~(-1)定量下限分别为2 ng·mL~(-1)和10 ng·mL~(-1),日内精密度分别为RSD≤11.0%和RSD≤9.8%,日间精密度分别为RSD≤12.7%和RSD≤6.2%,准确度分别在89.7%~115.8%和94.2%~114.7%之间,平均回收率分别为75.0%和73.8%。
     研究了大鼠口服鹿衔草提取液后各指标成分的药动学行为,结果表明,大鼠血浆中梅笠草素(30 mg·kg~(-1))吸收快、消除较平缓,T_(max)和MRT分别为1.2h和5.0 h,组织分布广,V为44.5 L·kg~(-1),AUC_(0-∞)为3467 ng·h·mL~(-1),药时曲线存在双峰现象;异高熊果苷(20.2 mg·kg~(-1))和高熊果苷(20.0 mg·kg~(-1))具有明显的吸收,T_(max)分别为0.6 h和0.5 h,t_(1/2)分别为1.5 h和1.2 h,C_(max)分别为18.5μg·mL~(-1)和35.1μg·mL~(-1),AUC_(0-∞)分别为37.7μg·h·mL~(-1)和52.7μg·h·mL~(-1),高熊果苷的吸收和消除速度均略快于异高熊果苷,吸收量大于异高熊果苷,AUC/Dose值约为异高熊果苷的1.4倍;齐墩果酸(20.8 mg·Kg~(-1))和熊果酸(88.4mg·Kg~(-1))在大鼠体内具有一定吸收,C_(max)分别为93.5 ng·mL~(-1)和178.9 ng·mL~(-1),AUC_(0-∞)分别为215.2 ng·h·mL~(-1)和1686 ng·h·mL~(-1);口服鹿衔草提取液后,大鼠血浆中未检测到鹿蹄草素。进一步研究了大鼠股静脉注射鹿蹄草素单体的药动学行为,结果表明,鹿蹄草素(20 mg·kg~(-1))的药动学过程均符合二室模型,吸收和消除速度均较快,t_(1/2α)和t_(1/2β)分别为1.6 min和31.6 min,C_(max)为23.9μg·mL~(-1),在体内维持最小抑菌浓度MIC(8~32μg·mL~(-1))的时间仅为20 min。以上药动学结果可为鹿衔草作用机制研究、药效学评价以及临床合理用药提供实验依据。
     本研究在中医药学理论和实践的指导下,综合运用中药化学、分析化学、药理学、微生物学和计算机技术,对鹿衔草的化学成分和质量控制方法进行了较系统的研究,初步探讨了鹿衔草抗肿瘤和抗菌的药效物质基础和活性成分的体内药动学过程。本研究为鹿衔草的开发利用提供了科学依据,为中药现代化做了有意义的探索。
Lu xian cao(Herba Pyrolae) is commonly used herbal drug as tonics, sedatives, hemostatics, anti-inflammation, and analgesics against rheumatoid arthritis in China since the antiquity. According to the Pharmacopoeia of the PRC(edition 2005), lu xian cao is the dried whole plant of Pyrola decorata H. Andres. In this dissertation, the chemical components, therapeutic basis, quality control method, as well as pharmacokinetics of lu xian cao were studied systematically.
     From the whole plant of Pyrola decorata H. Andres, 22 compounds were isolated by various chromatographic techniques and structurally elucidated by chemical and spectroscopic methods. One of them was a new compound, 6,6'-dihydroxy-4,5'-dimethyl-[1,1'-biphenyl]-3,3'-diyl bis-β-D-glucopyranoside, and sixteen of them were isolated from this plant for the first time: chimaphilin, oleanolic acid(OA), ursolic acid(UA), toluhydroquinone, vanillic acid, pomolic acid(PA), maslinic acid(MA), colosic acid(CA), quercetin(QG1), isoquercitrin(QRh), quercitrin, pyrolaside A, isohomoarbutin, gallic acid, 3-β-O-α-L-arabinopyranosylsiaresinolic acid-28-O-β-D-glucopyranosyl ester(ASGE) and ziyuglycoside I(APGE). Five known ones, hyperin(QGa), quercetin-3-O-α-L-arabinofuranoside(QAr), homoarbutin, 2"-O-galloylhyperin(GQGa) and pirolatin were also isolated.
     The therapeutic bases of lu xian cao were explored by antitumor and antibacterial activity evaluation.①The antitumor activity of lu xian cao was firstly studied on screening of active ingredients with their cytotoxicity against Bel-7402 hepatoma cell line by using MTT method. As a result, the ethyl acetate soluble extract of lu xian cao showed intense activity. Further fractionation of the ethyl acetate soluble extract on silica gel column lead to two main parts, namely fraction eluted with chloroform and fraction eluted with menthol-chloroform(1:9). These two fractions acted only when they were combined and the activity of the combination was not significantly different from the acetate soluble extract by ANOVA test. The cytotoxicitiy of compounds isolated from the two main effect parts was further investigated using five human tumor cell lines, namely, Bel-7402 hepatoma ceil line, HepG-2 hepatoma cell line, Hela epithelial carcinoma cell line, SGC-7901 gastric carcinoma cell line, and HT-1080 fibrosarcoma cell line. Chimaphilin, toluhydroquinone, ursolic acid, pomolic acid, and colosic acid showed significant cytotoxicities against the aforementioned cell lines and gave IC_(50) values in the range of 7.64~19.14μg·mL~(-1), 14.87~28.52μg·mL~(-1), 1.36~5.84μg·mL~(-1), 17.34~23.99μg·mL~(-1) and 12.69~28.75μg·mL~(-1), respectively. Maslinic acid showed slelective activity on three tumor cell lines with IC_(50) values in the range of 24.24~47.29μg·mL~(-1).②The in vitro antimicrobial activity of the isolated compounds from lu xian cao was tested against gram-positive(Staphylococcus aureus and Streptococcus pneumoniae), gram-negative(Escherichia coli and Pseudomonas aeruginosa) bacteria and the yeast(Candida albicans). The MIC was estimated by filter paper mensuration and the broth micro-dilution method in 96-well microtiter plates. As a result, chimaphiiin and toluhydroquinone exhibited significant inhibitory effect against S. aureus, S. pneumoniae and E. coli with MIC values in the range of 4~64μg·mL~(-1) and 8~32μg·mL~(-1), respectively. 2"-O-galloylhyperin exhibited significant inhibitory effect against C. albicans and the MIC was 32μg·mL~(-1)
     Simultaneous quantification methods of multi-constituents in lu xian cao were developed and validated in this paper. The selected indices involved three main kinds of constituents in lu xian cao. A LC-MS method was established for the determination of seven major triterpenoids ASGE, APGE, PA, MA, CA, OA and UA. LC separation was performed on Hypersil C_(18) column using gradient elution of methanol-water as mobile phase. The analytes were ionized by APCI source and determined on SIM mode. All analytes showed good linearity within the test ranges and the recovery rates were 94.5~103.3%(RSD<4.6%). A HPLC-UV method was developed for the determination of five major flavonoids QGa, QGl, GQGa, QAr and QRh, the separation was carried on Zobax Extend C_(18) column using acetonitrile-water(14:86, v/v) as mobile phase. The absorbance was monitored at 350 nm. All analytes show good linearity within the test ranges and the recovery rates were 96.3~104.2%(RSD<4.2%). A HPLC-UV method was developed for the determination of major phonolic compounds toluhydroquinone, isohomoarbutin and homoarbutin. Separation was achieved on Zobax Extend C_(18) column using gradient elution of methanol-water as mobile phase. The absorbance was monitored at 280 nm. All analytes show good linearity within the test ranges and the recovery rates were 97.2~101.3%(RSD<2.7%). The established assay methods were simple, accurate and performed well in application to the determination of twenty commercial samples of lu xian cao collected from different regions of China. It can be further used for the quality control of both plant materials and preparations of lu xian cao.
     Pharmacokinetic study of lu xian cao was accomplished on the constituent toluhydroquinone, isohomoarbutin and homoarbutin, oleanolic acid and ursolic acid. Chimaphilin: The LC separation was carried on Cromasil C_(18) column using methanol-water(75:25, v/v) as mobile phase after the plasma sample was extracted with diethyl ether. APCI-MS in SIM mode was used to determine[M]~-at 186 and 210 for chimaphilin and benzyl(internal standard). Toluhydroquinone: The GC separation was achieved on HP-5 capillary column. After extracted with diethyl ether-isopropanol(9:1, v/v), the plasma sample was analyzed by FID with p-nitroacetophenone as internal standard. Isohomoarbutin and homoarbutin: The HPLC separation was achieved on Zobax Extend C_(18) column using methanol-water(6:94, v/v) as mobile phase after the plasma sample was deproteinized by methanol, acyclovir was used as internal standard and the UV detector was set at 280 nm. Oleanolic acid and ursolic acid: The LC separation was carried on Hypersil C_(18) column using methanol-water(82:12, v/v) as mobile phase after the plasma sample was extracted with ethyl acetate. APCI-MS in SIM mode was used to determine[M-H]~-at 455 for oleanolic acid, ursolic acid and betulinic acid(internal standard). Validation assays indicated that the established methods were simple and performs well in terms of selectivity, linearity, precision, and accuracy.
     After oral administration of Lu Xian Cao Decoction, the main pharmacokinetic parameters for aforementioned constituents were as follows: chimaphilin(30 mg·kg~(-1)): T_(max), 1.2 h; MRT, 5.0 h; V, 44.5 L·kg(-1), AUC_(0-∞), 3467 ng·h·mL(-1); isohomoarbutin(20.2 mg·kg(-1)): T_(max), 0.6 h; C_(max), 18.5μg·mL~(-1); AUC_(0-∞), 37.7μg·h·mL~(-1); homoarbutin(20.0 mg·kg(-1)): T_(max), 0.5 h; C_(max), 35.1μg·mL~(-1); AUC_(0-∞), 52.7μg·h·mL~(-1); oleanolic acid(88.4 mg·Kg(-1)): C_(max), 93.5 ng·mL(-1);AUC_(0-∞), 215.2 ng·h·mL(-1); t(1/2), 1.7 h; ursolic acid(20.8 mg·Kg(-1)): C_(max), 178.9 ng·mL(-1); AUC_(0-∞), 1685.9 ng·h·mL(-1); t_(1/2),6.9 h; toluhydroquinone was not founded in plasma due to its minor content in lu xian cao. After intravenous administration of toluhydroquinone(20 mg·Kg(-1)) injection, the pharmacokinetic behavior of toluhydroquinone was found to be in line with the two-compartment intravenous model. The t_(1/2α), t_(1/2β),C_(max) and AUC_(0-∞) were 1.6 min, 31.6 min, 23.9μg·mL~(-1),37.7μg·h·mL~(-1), respectively.
     Conclusively, under the theory and methodologies of traditional Chinese medicine, utilizing the knowledge of phytochemistry, analytical chemistry, pharmacology, microbiology, pharmacokinetics and chemometrics, the quality control methods for lu xian cao was developed, the pharmacokinetic study of this medicinal herb was also investigated to some extend. The present research provided valuable academic evidences for the future research and development of lu xian cao.
引文
[1]肖培根,肖小河.21世纪与中药现代化.中国中药杂志,2000,25(2):67-69
    [2]王峥涛,胡之壁.中药标准化研究的思路与方法.药学实践杂志,2000,18(5):270-271
    [3]王智民.中药化学对照品和标准品是中药行业快速发展的瓶颈之一.药物分析杂志.2006,26(10):1527—1529
    [4]唐慎微.重修政和经史政论备用本草(第一版).北京:人民卫生出版社.1957:190-191
    [5]浙江省革命委员会生产指挥组卫生办公室.浙江民间常用草药.1970,第一集:116,164;第二集:142
    [6]罗定强,杨燕子,宋莉,等.中国特有鹿蹄草属植物的研究进展.中草药.2004,34(4):463-466
    [7]赵学敏.本草纲目拾遗(第一版).北京:人民卫生出版社.1983:268—269
    [8]兰茂.滇南本草(整理本,第一版).昆明:云南人民出版社.1977,第二卷:261
    [9]吴其浚.植物名实图考.上海:商务印书馆.1919:212,552,407,409
    [10]权益淑.鹿蹄草的生药学研究.西北药学杂志.1989,4(4):34-36
    [11]中国药材公司.中国中药资源志要.北京:科学出版社.1994:881-884
    [12]药典委员会.中华人民共和国药典(一部).北京:化学工业出版社.2005:226
    [13]中国科学院.中国植物志.北京:科学出版社.56:170
    [14]中国高等植物图鉴(图版).北京:科学出版社.59:7-12
    [15]谢志民,姜谋志.鹿衔草和鹿蹄草的本草考证.中药材.1996,19(1):38-41
    [16]中国科学院西北植物研究所.秦岭植物志(第一版).北京:科学出版社.1983,第一卷,第四册:1-5
    [17]林泉.中药鹿衔草的原植物调查.中药通报.1984,9(4):12-13
    [18]江苏新中医学院.中药大辞典.上海:上海科学与技术出版社.1977:2243
    [19]Inoue H, Kanaya Y. Constituents of Pyrola plants Ⅷ: Constituents of Pyrola incarnata. Yakugaku Zasshi. 1958, 78:301-303
    [20]Chang J, Inui T. Novel phenolic glycoside dimer and trimer from the whole herb of Pyrola rotundifolia. Chem. Pharm. Bull.. 2005, 53(8): 1051-1053
    [21]Inouye H, Arai T, Yaoi Y, et al. Occurrence of hydroquinone-type glucosides, chimaphilin and monotropein, in Pyrolaceae. Chem. Pharm. Bull.. 1964, 12(2): 255-256
    [22]Thieme H, Sekt Biowiss. Phytochemical studies on Mongolian medicinal plants. Phenol glucosides of Pyrola rotundifolia. Pharmazie. 1970, 25(2): 129
    [23]Yazaki K, Shida S, Okuda T. Galloylhomoarbutin and related polyphenols from Pyrola incarnata. Phytochemistry. 1989, 28(2): 607-609
    [24]Kim JS, Shim SH, Xu YN, et al. Phenolic Glycosides from Pyrola japonica. Chem. Pharm. Bull.. 2004, 52(6): 714-717
    [25]Inouye H, Tokura K, Tobita S. Components of Pyrolacae: Structure of pyrolatin. Chemische Berichte. 1968, 101(12): 4057-4065
    [26]王军宪,张莉,吕修梅,等.普通鹿蹄草化学成分的研究.中草药.2003,34(4):307-308
    [27]王军宪,陈新民,李宏,等.鹿衔草化学成分的研究(第1报).天然产物研究与开发.1991,3(3):1-5
    [28]王军宪,陈新民,李宏,等.鹿衔草化学成分的研究:羟基肾叶鹿蹄草苷的结构鉴定.植物学报.1994,36(11):895-897
    [29]石娟,王军宪.鹿衔草化学成分的再研究.天然产物研究与开发.2002.14(1):37—38
    [30]Inouye H, Arai T. Components of Pyrolaceae: Structure of monotropein. Chem. Pharm. Bull.. 1964, 12(8): 888-901
    [31]Inoue H. Constituents of Pirola plants Ⅶ: Constituents of Pirola japonica. Yakugaku Zasshi. 1958, 78:298-300
    [32]王军宪,王晓黎,石娟.紫背鹿蹄草化学成分的研究Ⅱ.中草药.2003,34(2):113-115
    [33]Chantal B, Andrew M, Sandor A, et al. Flavonoids from Pyrola Elliptica. Phytochemistry. 1998, 49(1): 233-236
    [34]王西发,张健民.鹿蹄草有效成分的研究.中草药.1988,19(1):8-10
    [35]Inouye H. A naphthoquinone dye from Pyrola incarnata. Yakugaku Zasshi. 1956, 76: 976-977
    [36]Fischer Robert, Linser Erich. Microchemical detection of arbutin and ursone in plants. Arch. pharm.. 1930, 268:185-190
    [37]Kagawa K, Tokura K, Uchida K, et al. Platelet aggregation inhibitors and inotropic constituents in Pyrolae Herba. Chem. Pharm. Bull.. 1992, 40(8): 2083-2087
    [38]Inoue H, Arai T. Constituents of the Pyrola plants. Ⅺ: Constituents of Pyrola renifolia. Chem. Pharm. Bull.. 1964, 12(5): 533-539
    [39]Lee S, An R, Min B, et al. A new naphthoquinone from Pyrola japonica. Ar ch. Pharm. Res. 2001, 24(6): 522-523
    [40]王晓黎,王军宪.鹿蹄草植物化学成分及化学分类研究.国外医药(植物药分册).2000,15(5):187-190
    [41]王军宪,王晓黎,石娟,等.紫背鹿蹄草化学成分研究.中草药.2001,32(增刊):31-32
    [42]刘存海,张崇玉,石康培.鹿蹄草中微量元素的测定.山西师范大学学报(自然科学版).1996,24(1):78-80
    [43]罗文谦,王浩东,刘存海.对鹿蹄草化学成分的研究.安康师专学报.2602,1(14):56-57
    [44]杨大中,李诗梅.普通鹿蹄草水提物的初步研究.中医药信息.1987,6:39-41
    [45]全国中草药汇编编写组.全国中草药汇编.上册.北京:人民卫生出版社.1995:719-720
    [46]吕明.鹿衔草对慢性细菌性痢疾46例疗效的初步报告.中华内科杂志.1960,8(4):360-361
    [47]上海中医学院附属曙光医院中草药小组.鹿蹄草抗菌成分—鹿蹄草素的分离提取与合成.中草药通讯.1976,7(1):12-13
    [48]上海中医学院附属曙光医院儿科.鹿蹄草素的临床试验.上海医学.1978,(7):57—58
    [49]段泾云.鹿蹄草的抗炎作用.陕西中医.1992,13(9):424—426
    [50]Kosuge T, Yokota M, Sugiyama K, et al. Studies on bioactive substances in crude drugs used for arthritic diseases in traditional Chinese medicine (Ⅲ): isolation and identification of anti-inflammatory and analgesic principles from the whole herb of Pyrola rotundifolia. Chem. Pharm. Bull.. 1985, 33(12): 5355-5357
    [51]王树梓,边全禄.鹿蹄草对血管扩张作用的实验观察.陕西中医.1989,10(1):473
    [52]王树梓.鹿蹄草对兔离体器官血管作用的实验与临床研究.陕西中医学院学报.1978,(1):35-42
    [53]庄斐尔.鹿蹄草随心肌营养性血流的影响.中药通报.1981,6(6):31
    [54]马树德,谢人明,冯英菊,等.鹿蹄草对麻醉动物脑循环的影响.中草药.1988,19(2):23-25
    [55]王朝宏,吴垂光,薛光华,等.鹿蹄草制剂治疗高血压101例疗效观察.中西医结合杂志.1986,6(10):604—605
    [56]边晓丽,邓秀玲,刘次伯,等.没食子酰基金丝桃甙对实验性心肌缺血再灌注损伤的保护作用.西安医科大学学报.1998,19(3):339-341.
    [57]边晓丽,潘青,董军.没食子酰基金丝桃甙的抗氧化性及其构效关系研究.2003,24(5):452-454
    [58]周天寒.鹿衔草的临床运用.四川中医.1987(2):51-53
    [59]董民声,李全民.复方黄芪注射液对庆大霉素肾毒性拮抗作用实验研究.广西医学.1995 17(1):17-19
    [60]柯铭清.中草药有效成分理化与药理特性.长沙:湖南科学技术出版社.1952:61
    [61]马振亚.鹿蹄草等中草药方剂对细胞免疫功能的影响.陕西新医药.1984,13(6):54-55
    [62]田玉先.鹿衔草的研究与应用.陕西中医函授.1998,7(5):1-2
    [63]周仲达,蒋珠芬.金丝桃苷的药理作用.中国药理学通报.1984,10(5):20-24
    [64]李星海,王军宪,王晓燕.鹿衔草中2"-O-没食子酰基金丝桃苷的含量测定.中国中药杂志1994,19(2):103-104
    [65]李星海,王军宪,唐有明.鹿蹄草中金丝桃苷及总黄酮的含量测定.中药材.1994,17(3):36-37
    [66]石娟,刘瑞,宋晓涛,等.HPLC测定不同种鹿衔草中金丝桃苷的含量.中国中药杂志.2002,27(8):618-619
    [67]卫莹芳,山森千彰,郭力,等.HPLC测定川产六种鹿蹄草中高熊果苷的含量.华西药学杂志.2002,17(6):435-436
    [68]周玉波,李洪侠,王金辉,等.绿花鹿蹄草中的化学成分.中药研究与信息.2005,7(6):11-13
    [69]杨秀伟,赵静.蓝萼香茶菜化学成分的研究.天然产物研究与开发.2003,15(6):490-495
    [70]杨维力,陈封政,田军,等.峨眉蔷薇果实化学成分的研究.中国药学杂志.2000,35(7):445-457
    [71]Shashi B, Asish P. ~(13)C NMR Spectra of pentacyclic triterpenoids: A compilation and some salient features. Phytochemistry. 1994, 37(6): 1517-1575
    [72]黄成钢,陈耀祖,苑春升.两种天然五环三萜酸的~(13)C核磁共振谱分析.浙江大学学报(自然科学版).1998,32(4):406-410
    [73]Liang GY, Alexander IG, Peter GW. Pentacyclic triterpenes from the fruits of Rosa sterilis. J. Nat. Prod.. 1989, 52(1): 162-165
    [74]Yamagishi T, Zhang DC, Chang JJ, et al. The cytotoxic principles of Hyptis capitata and the structures of the new triterpenes hyptatic acid A and B. Phytochemistry. 1988, 27(10): 3213-3219
    [75]Yagi A, Okamura N, Haraguchi Y, et al. Studies on the constituents of Zizyphi fructus Ⅱ: Structure of new p-coumaroylates of maslinic acid. Chem. Pharm. Bull.. 1978, 26(10): 3075
    [76]Bandaranayake WM, Gtmasekera SP, Karunanayake SK, et al. Terpenes of Dipterocarpus and Doona species. Phytochemistry. 1975, 14:2043
    [77]Petler A, Ward R, Lansgray T. The ~(13)C nuclear magnetic resonance spectra of flavonoids and related compounds. Journal of the Chemical Society. 1976:2475-2483
    [78]Zuhal G, Omur D. Flavonol Glycosides from Asperula arvensis L. Turk. J. Chem.. 2005, 29(2): 163-169
    [79]陈玉武,任丽娟.蜜甘草抗癌有效成分研究-黄酮类成分的分离与鉴定.中草药.1997,28(1):5—7
    [80]李蓉涛,李晋玉,王京昆,等.金叶子的化学成分.云南植物研究.2005,27(5):565-571
    [81]谢百波,许福泉,李良波,等.元宝槭树叶中的黄酮苷.云南植物研究.2005,27(3):232-236
    [82]Nishimura T, Wang LY, Kusano K, et al. Flavonoids that mimic human ligands from the whole plants of Euphorbia lunulata. Chem. Pharm. Bull.. 2005, 53(3): 305-308
    [83]Shashi BM, Sudip KS and Gurudas P. Triterpenoid saponins. Phytochemistry. 1988. 27(10): 3037-3067
    [84]Niranjan P. Sahu and Basudeb A. Advances in structural determination of saponins and tertenoid glycosides. Curr. Org. Chem.. 2001, 5(5): 315-334.
    [85]Mimaki Y, Fukushima M. Yokosuka A., et al. Triterpene glycosides from the roots of Sanguisorba officinalis. Phytochemistry. 2001, 57(5): 773-779
    [86]Yosioka I, Sugawara T, Ohsuka A, et al. Soil bacterial hydrolysis leading to genuine aglycone Ⅲ: structures of glycosides and genuine aglycone of the root of Sanguisorba. Chem. Pharm. Bull.. 1971, 19(8): 1700-1707
    [87]秦盛莹,刘雯,张园园,等.4种中药抗肿瘤活性的初步研究.西北药学杂志.2007,22(1):16-18
    [88]边兴艳.MTT比色法及其应用.国外医学临床生物化学与检验学分册.1998,19(2):83-85
    [89]宋维华,许超迁,孙建平,等.MTT法测定矿物提取物MICOM及中药提AN4的体外抗肿瘤活性.哈尔滨医科大学学报.2001,35(6):402—403
    [90]冯伟,石印玉,沈培芝,等.MTT法分析中药含药血清对体外软骨细胞增值影响的研究.上海中医药大学学报.2000,14(1):43-45
    [91]徐叔云,卞如濂,陈修.药理实验方法学.北京:人民卫生出版社.2002:1849-1856
    [92]程宝鸾.动物细胞培养技术.广州:华南理工大学出版社.2000:107-112
    [93]Pardee AB, Li YZ, Li CJ. Cancer therapy with β-lapachonel. Curr. Cancer Drug Targets. 2002, 2(3): 227-242
    [94]Tiwari SB, Pai RM, Udupa N. Temperature sensitive iiposomes of plumbagin: characterization and in vivo evaluation in mice bearing melanoma B16F11. J. Drug Target. 2002, 10(8): 585-591
    [95]Sankawa U, Ebizuka Y, Miyazaki T, et al. Antitumor activity of shikonin and its derivativesl. Chem. Pharm. Bull.. 1977, 25(9): 2392-2395
    [96]Kuo YH, Li SY, Shen CC. Cytotoxic constituents from the fruit of Diospyros ferrea. Chin. Pharm. J (Tai Pei). 1997, 49(4): 207-216.
    [97]Bae KH, Kim HM, Lee SM, et al. Isolation and evaluation of an antitumor constituent from Pyrolae Herba. 1996, 40(2): 225-229
    [98]Carr BI, Wang Z, Car S. K vitamins, PTP antagonism, and cell growth arrest. J. Cell Physiol. 2002, 193(3): 263-274
    [99]Markovits J, Wang Z, Carr BI, et al. Differential effects of two growth inhibitory K-vitamin analogs on cell cycle regulating proteins in human bepatoma cells. Life Sci. 2003,72(24): 2769-2784
    [100]艾启俊,王储炎,吴小虎.农产品加工学刊.2006(2):16-18
    [101]Liu J, Liu Y, Madhu C, et al. Protective effects of oleanolic acid on acetaminophen induced hepatoxicity in mice. J. Pharmacol. Exp. Ther.. 1993, 266:1607-1613
    [102]Kim KA, Lee JS, Park HJ, et al. Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci.. 2004, 74:2769-2779
    [103]Ma CM, Nakamura N, Miyashiro H, et al. Inhibitory effects of constituents from Cynomorium songaricum and related triterpene derivatives on HIV-1 protease. Chem. Pharm. Bull.. 1999, 47(2): 141-145.
    [104]Hsu HY, Yang JJ, Lin C. Effects of oleanolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett. 1997, 111(1): 7-13
    [105]刘红兵,崔承彬,蔡兵,等.东京枫杨中三萜成分的分离鉴定与抗肿瘤活性.中国药物化学杂志.2004,14(3):165-168
    [106]Lee KH, Lin YM, Wu TS, et al. The cytotoxic principles of Prunella vulgaris, Psychotria serpens, and Hyptis capitata: ursolic acid and related derivatives. Planta Med.. 1988, 54: 308-311.
    [107]中华人民共和国卫生部医政司.纸片法抗菌药物敏感试验标准 WS/T125-1999.2000,5,1
    [108]沈关心.微生物与免疫学.北京:人民卫生出版社.2003:310
    [109]赵心懋,徐英春,段琼,等.氟康唑体外抗菌活性及五种体外敏感试验方法的比较.中华检验医学杂志.2006,29(2):128-132
    [110]药典委员会.中华人民共和国药典(一部).北京:化学工业出版社.2005:附录67-70
    [111]弭向辉,龚祝南,张卫明,等.花椒挥发油的提取、分离和抗菌实验.南京师大学报(自然科学版).2004,27(4):63-66
    [112]Chattopadhyay D, Arunachalam G, Mandal AB, et al. Antimicrobial and antiinflammatory activity of folklore: Mallotus peltatus leaf extract. 2002, J Ethnopharmacol. 2002, 82 (2,3): 229-237
    [113]刘晓秋,李维维,李晓丹,等.拳参提取物及单体化合物的体外抑菌活性初步研究.中药材.2006,29(1):51-53
    [114]钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志.1996,16(5):343—346
    [115]Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. J. Pharm. Sci.. 1992, 81(3): 309-312
    [116]Karnes HT, March C. Precision, accuracy and data acceptance criteria in biopharmaceutical analysis. Pharmaceut. Res. 1993, 10(10): 1420-1426
    [117]章元沛.药理学实验(第二版).北京:人民卫生出版社.1996:238
    [118]马越鸣,孙瑞元.药物C-T曲线的双峰现象.国外医学(药学分册).1987,3:168—173
    [119]Revised review of vitamin K. ed. by Expert Group on Vitamins and Minerals. August, 2002
    [120]Liu J, Oleanolic acid and ursolic acid: Research perspectives. J Ethnopharmaco.. 100(2005): 92-94
    [121]Song M, Hang T, Wang Y, et al. Determination of oleanolic acid in human plasma and study of its pharmacokinetics in Chinese healthy male volunteers by HPLC tandem mass spectrometry. J. Pharmaceut. Biomed. 40(2006): 190-196