用户名: 密码: 验证码:
构筑手性多孔有机材料应用于多相不对称有机催化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔有机材料由于具有大的比表面积、稳定性好、重量轻以及易于功能化等诸多优点,被广泛应用在气体存储分离、传感、有机光电和多相催化等领域。尤其是具有催化活性的多孔有机材料引起了人们的研究兴趣。目前,关于有机多孔材料在多相催化领域应用的研究工作主要有两类:一类是通过"bottom-up"策略将有机金属配合物嵌入有机多孔材料骨架来构建多相催化剂;一类是是将有机多孔材料作为载体,通过后修饰的方法负载金属纳米颗粒作为多相催化剂。迄今为止,还没有将有机孔材料应用于多相不对称有机催化的例子见诸报道。随着有机小分子催化的迅猛发展,将手性有机催化剂与多孔有机材料结合起来,通过" bottom-up "策略构筑纯有机骨架的手性有机多孔材料来实现多相不对称有机催化将会是该领域中一个新的、有挑战性的研究方向。
     本论文的主要研究内容为基于有机小分子催化剂(J(?)rgensen-Hayashi catalyst, MacMillan catalyst)骨架的手性有机多孔材料的设计、合成、表征以及多相不对称有机催化应用。相应地,本论文的主要研究工作分为以下四个部分:
     一.通过"bottom-up"策略成功将J(?)rgensen-Hayashi催化剂嵌入手性多孔有机材料骨架,合成了手性多孔有机材料JH-CPP,并实现了该材料在多相催化不对称Michael加成反应中的应用。该材料高的比表面积(881m2/g)、开放的和相互交叉贯通的孔道结构使得其在催化不对称Michael加成反应时有着和均相催化剂相媲美的催化效果,并且该材料可以循环使用四次,产物的ee值没有降低(97-99%ee)。
     二.进一步拓展了JH-CPP材料在催化硝基甲烷对α,β-不饱和醛的不对称Michael加成反应中的应用。研究发现,JH-CPP材料在催化该反应时,除了有着和均相催化剂相媲美的催化效果外,它还优越于采用传统方式固载的J(?)rgensen-Hayashi催化剂,并且该材料可以循环使用六次,产物的ee值没有任何降低(95-96%ee)。
     三.通过"bottom-up"策略成功将MacMillan催化剂嵌入手性多孔有机材料骨架,实现了该材料在多相催化不对称Diels-Alder反应中的应用。通过调节不同的结构性砌块合成了三种具有不同比表面积的材料(Mac-CPP-1, Mac-CPP-2, Mac-CPP-3),考察了材料的结构一性质一催化活性之间的关系。
     四.通过“自负载”策略合成了MacMillan聚合物催化剂(Mac-ChiOSP),并研究了其在催化不对称Diels-Alder反应中的应用。研究发现该手性材料可以实现均相条件下催化反应,多相条件下回收循环。与“后合成”策略得到的固载催化剂相比,通过“自负载”策略合成的多聚MacMillan催化剂有着均一分布的和高密度的催化活性位,再加上这种均相条件下催化反应的特性,使得该材料有着和均相催化剂同等的催化活性和对映选择性。并且该材料可以循环使用三次,产物的ee值没有降低(86-90%ee for endo,84-88%ee for exo)。
Due to their inherent porosity, large specific surface area, light weight, and easy functionalization at the molecular level, porous organic polymers have recently received significant attention for potential applications in gas storage/separation, light-harvesting, sensoring, and heterogeneous catalysis. Especially, the construction of functional porous organic polymers via bottom-up strategy for heterogeneous catalysis has made tremendous development in recent years. The reported research works in this field are mainly focused on the embedding of the organometallics into the polymers, or the encapsulation of the metal particles into the porous organic polymers. Nevertheless, to date, the embedding of chiral organocatalysts into the frameworks of the porous organic polymers via bottom-up strategy has been not reported yet. In this context, with the rapid development of asymmetric organocatalysis, construction of organocatalysts embedded chiral porous organic polymers via bottom-up strategy for the heterogeneous asymmetric organocatalysis will be a promising and challenging research issue.
     Accordingly, the main research contents of this thesis is to design, synthesize and characterize the chiral porous organic polymers based on chiral organocatalysts (J(?)rgensen-Hayashi catalyst and MacMillan catalyst), and utilize them in the heterogeneous asymmetric organocatalysis. The main achievements of this thesis could be divided into the following four parts:
     1. The Jorgensen-Hayashi catalyst has been successfully embedded into a nanoporous polymer via the bottom-up strategy. The obtained JH-CPP polymer has been utilized as a highly efficient heterogeneous organocatalyst for the asymmetric Michael addition reaction. Owing to the high BET surface area (881m2/g), as well as the widely pervasive and interconnected pores, JH-CPP possesses comparable activity and enantioselectivity with the homogeneous JH catalyst. Furthermore, the JH-CPP catalyst can be reused for at least four times with no decrease of enantioselectivity (97-99%ee).
     2. To further expanding the catalytic application of JH-CPP to other asymmetric reactions, we have also applied JH-CPP as the heterogeneous organocatalyst in the asymmetric Michael addition reaction of nitromethane with a, p-unsaturated aldehydes. The JH-CPP catalyst shows comparable catalytic efficiency with the homogeneous JH catalyst, and can be reused for at least six times with no decrease of enantioselectivity (95-96%ee). Notably, the catalytic efficiency of JH-CPP catalyst is superior to that of the traditional immobilized J(?)rgensen-Hayashi catalyst.
     3. The MacMillan catalyst has been successfully embedded into nanoporous polymers via the bottom-up strategy, and the obtained polymers have been applied as highly efficient heterogeneous organocatalysts for the asymmetric Diels-Alder reaction. The specific surface areas of the three MacMillan catalyst-embedded chiral porous polymers (Mac-CPP-1, Mac-CPP-2, Mac-CPP-3) can be adjusted by changing the size of the structural building blocks. We have also investigated the structure-property-catalytic activity relationship of these MacMillan catalyst-embedded chiral porous polymers.
     4. We have synthesized a "self-supported" polymeric MacMillan catalyst (Mac-ChiOSP), which can be applied as an efficient catalyst for homogeneous organocatalysis and heterogeneous recycling for the asymmetric Diels-Alder reaction. In comparison with thosee immobilized MacMillan catalysts, this "self-supported" polymeric MacMillan catalyst possesses homogeneously-distributed and highly-concentrated catalytic sites. This advantage together with the homogeneous catalytic nature ensured its excellent catalytic ability. Furthermore, the heterogeneous catalyst can be reused for at least three times with no decrease of enantioselectivity (86-90%ee for endo,84-88%for exo).
引文
[1]S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs):from design to applications. Chem. Soc. Rev.2013,42,548-568.
    [2]R. Dawson, A. I. Cooper, D. J. Adams, Nanoporous organic polymer networks. Prog. Polym. Sci.2012,37,530-563.
    [3]N. B. McKeown, P. M. Budd, Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules 2010,43,5163-5176.
    [4]V. A. Davankov, M. P. Tsyurupa, Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. Reactive Polymers 1990,13,27-42.
    [5]N. B. McKeown, P. M. Budd, Polymers of intrinsic microporosity (PIMs):organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev.2006,35,675-683.
    [6]a) A. I. Cooper, Conjugated Microporous Polymers. Adv. Mater 2009,21,1-5; b) J. X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc.2008,130,7710-7720.
    [7]a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Porous, Crystalline, Covalent Organic Frameworks. Science 2005,310,1166-1170; b) H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Designed Synthesis of 3D Covalent Organic Frameworks. Science 2007,316, 268-272; c) X. Feng, X. Ding, D. Jiang, Covalent organic frameworks. Chem. Soc. Rev. 2012,41,6010-6022. d) S.-Y. Ding, W. Wang, Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev.2013,42,548-568.
    [8]a) E. Klontzas, E. Tylianakis, G. E. Froudakis, Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Lett.2010,10,452-454; b) A. Li, R.-F. Lu, Y. Wang, X. Wang, K.-L. Han, W.-Q. Deng, Lithium-Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage. Angew. Chem. Int. Ed.2010,49,3330-3333.
    [9]B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, D. Fritsch, High-Performance Membranes from Polyimides with Intrinsic Microporosity. Adv. Mater.2008,20, 2766-2771.
    [10]a) T. Ben, K. Shi, Y. Cui, C. Pei, Y. Zuo, H. Guo, D. Zhang, J. Xu, F. Deng, Z. Tian, S. Qiu, Targeted synthesis of an electroactive organic framework. J. Mater. Chem.2011,21, 18208-18214; b) X. Liu, Y. Xu, D. Jiang, Conjugated Microporous Polymers as Molecular Sensing Devices:Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing. J. Am. Chem. Soc.2012,134,8738-8741.
    [11]a) P. Kaur, J. T. Hupp, S. T. Nguyen, Porous Organic Polymers in Catalysis:Opportunities and Challenges. ACS Catal.2011,1,819-835; b) Y. Zhang, S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev.2012,41, 2083-2094.
    [12]a) L. Chen, Y. Honsho, S. Seki, D. Jiang, Light-Harvesting Conjugated Microporous Polymers:Rapid and Highly Efficient Flow of Light Energy with a Porous Polyphenylene Framework as Antenna. J. Am. Chem. Soc.2010,132,6742-6748; b) A. Patra, U. Scherf, Fluorescent Microporous Organic Polymers:Potential Testbed for Optical Applications. Chem. Eur. J.2012,18,10074-10080; c) J. Weber, A. Thomas, Toward Stable Interfaces in Conjugated Polymers:Microporous Poly(p-phenylene) and Poly(phenyleneethynylene) Based on a Spirobifluorene Building Block. J. Am. Chem. Soc.2008,130,6334-6335; d) Y. Xu, L. Chen, Z. Guo, A. Nagai, D. Jiang, Light-Emitting Conjugated Polymers with Microporous Network Architecture:Interweaving Scaffold Promotes Electronic Conjugation, Facilitates Exciton Migration, and Improves Luminescence. J. Am. Chem. Soc.2011,133,17622-17625.
    [13]H. J. Mackintosh, P. M. Budd, N. B. McKeown, Catalysis by microporous phthalocyanine and porphyrin network polymers. J. Mater. Chem.2008,18,573-578.
    [14]S. Makhseed, F. Al-Kharafi, J. Samuel, B. Ateya, Catalytic oxidation of sulphide ions using a novel microporous cobalt phthalocyanine network polymer in aqueous solution. Catal. Commun.2009,10,1284-1287.
    [15]N. B. McKeown, S. Hanif, K. Msayib, C. E. Tattershall, P. M. Budd, Porphyrin-based nanoporous network polymers. Chem. Commun.2002,0,2782-2783.
    [16]L. Chen, Y. Yang, D. Jiang, CMPs as Scaffolds for Constructing Porous Catalytic Frameworks:A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers.J. Am. Chem. Soc.2010,132,9138-9143.
    [17]L. Chen, Y. Yang, Z. Guo, D. Jiang, Highly Efficient Activation of Molecular Oxygen with Nanoporous Metalloporphyrin Frameworks in Heterogeneous Systems. Adv. Mater. 2011,25,3149-3154.
    [18]A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem. Sci.2011,2, 686-689.
    [19]P. M. Budd, B. Ghanem, K. Msayib, N. B. McKeown, C. Tattershall, A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. J. Mater. Chem.2003,13,2721-2726.
    [20]Z. Xie, C. Wang, K. E. deKrafft, W. Lin, Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis. J. Am. Chem. Soc.2011,133,2056-2059.
    [21]J.-L. Wang, C. Wang, K. E. deKrafft, W. Lin, Cross-linked Polymers with Exceptionally High Ru(bipy)32+Loadings for Efficient Heterogeneous Photocatalysis. ACS Catal.2012, 2,417-424.
    [22]J.-X. Jiang, C. Wang, A. Laybourn, T. Hasell, R. Clowes, Y. Z. Khimyak, J. Xiao, S. J. Higgins, D. J. Adams, A. I. Cooper, Metal-Organic Conjugated Microporous Polymers. Angew. Chem., Int. Ed.2011,50,1072-1075.
    [23]Y. Zhang, S. N. Riduan, J. Y. Ying, Microporous Polyisocyanurate and Its Application in Heterogeneous Catalysis. Chem. Eur. J.2009,15,1077-1081.
    [24]R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schuth, Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angew. Chem. Int. Ed. 2009,48,6909-6912.
    [25]L. Ma, M. M. Wanderley, W. Lin, Highly Porous Cross-Linked Polymers for Catalytic Asymmetric Diethylzinc Addition to Aldehydes. ACS Catal.2011,1,691-697.
    [26]S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, Construction of Covalent Organic Framework for Catalysis:Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. J. Am. Chem. Soc.2011,133,19816-19822.
    [27]B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan, T. Li, Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki-Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media. Adv. Mater.2012,24,3390-3395.
    [28]Q. Sun, X. Meng, X. Liu, X. Zhang, Y. Yang, Q. Yang, F.-S. Xiao, Mesoporous cross-linked polymer copolymerized with chiral BINAP ligand coordinated to a ruthenium species as an efficient heterogeneous catalyst for asymmetric hydrogenation. Chem. Commun.2012,48,10505-10507.
    [29]J. Schmidt, J. Weber, J. D. Epping, M. Antonietti, A. Thomas, Microporous Conjugated Poly(thienylene arylene) Networks. Adv. Mater.2009,21,702-705.
    [30]C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Lett.2010,10, 537-541.
    [31]T. Hasell, C. D. Wood, R. Clowes, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing. Chem. Mater.2009,22,557-564.
    [32]P. Zhang, Z. Weng, J. Guo, C. Wang, Solution-Dispersible, Colloidal, Conjugated Porous Polymer Networks with Entrapped Palladium Nanocrystals for Heterogeneous Catalysis of the Suzuki-Miyaura Coupling Reaction. Chem. Mater.2011,23,5243-5249.
    [33]X. Du, Y. Sun, B. Tan, Q. Teng, X. Yao, C. Su, W. Wang, Troger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun.2010,46, 970-972.
    [34]H. C. Cho, H. S. Lee, J. Chun, S. M. Lee, H. J. Kim, S. U. Son, Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem. Commun.2011,47,917-919.
    [35]Y. Zhang, Y. Zhang, Y. L. Sun, X. Du, J. Y. Shi, W. D. Wang, W. Wang, 4-(N,N-Dimethylamino)pyridine-Embedded Nanoporous Conjugated Polymer as a Highly Active Heterogeneous Organocatalyst. Chem. Eur. J.2012,18,6328-6334.
    [36]K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Surface Area Control and Photocatalytic Activity of Conjugated Microporous Poly(benzothiadiazole) Networks. Angew. Chem. Int. Ed.2013,52,1432-1436.
    [37]E. Merino, E. Verde-Sesto, E. M. Maya, M. Iglesias, F. Sanchez, A. Corma, Synthesis of Structured Porous Polymers with Acid and Basic Sites and Their Catalytic Application in Cascade-Type Reactions. Chem. Mater.2013. DOI:org/10.1021/cm400123d
    [38]C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert, A. Thomas, A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst. Adv. Synth. Catal.2011, 353,3101-3106.
    [39]D. S. Kundu, J. Schmidt, C. Bleschke, A. Thomas, S. Blechert, A Microporous Binol-Derived Phosphoric Acid. Angew. Chem. Int. Ed.2012,51,5456-5459.
    [40]C. A. Wang, Z. K. Zhang, T. Yue, Y. L. Sun, L. Wang, W. D. Wang, Y. Zhang, C. Liu, W. Wang, "Bottom-Up" Embedding of the J(?)rgensen-Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chem. Eur. J. 2012,18,6718-6723.
    [41]C. A. Wang, Y. Zhang, W. Wang,2013. Unpublished result.
    [42]B. List, R. A. Lerner, C. F. Barbas, Pro line-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc.2000,122,2395-2396.
    [43]K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc.2000,122,4243-4244.
    [44]S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Asymmetric Enamine Catalysis. Chem. Rev.2007,107,5471-5569.
    [45]A. Erkkila, I. Majander, P. M. Pihko, Iminium Catalysis. Chem. Rev.2007,107, 5416-5470.
    [46]a) T. Akiyama, Stronger Br(?)nsted Acids. Chem. Rev.2007,107,5744-5758; b) A. G. Doyle, E. N. Jacobsen, Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev.2007,107,5713-5743; c) X. Yu, W. Wang, Hydrogen-Bond-Mediated Asymmetric Catalysis. Chem. Asian J.2008,3,516-532.
    [47]T. D. Beeson, A. Mastracchio, J. B. Hong, K. Ashton, D. W. C. MacMillan, Enantioselective organocatalysis using SOMO activation. Science 2007,316,582-585.
    [48]T. Hashimoto, K. Maruoka, Recent Development and Application of Chiral Phase-Transfer Catalysts. Chem. Rev.2007,107,5656-5682.
    [49]D. Enders, O. Niemeier, A. Henseler, Organocatalysis by N-Heterocyclic Carbenes. Chem. Rev.2007,107,5606-5655.
    [50]a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009,38,1450-1459; b) L. Ma, C. Abney, W. Lin, Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev.2009,38,1248-1256; c) F. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, Isoreticular Chiral Metal-Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes. J. Am. Chem. Soc.2010,132,15390-15398; d) C.-D. Wu, A. Hu, L. Zhang, W. Lin, A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc.2005,127,8940-8941.
    [51]M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo, K. Kim, Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials. J. Am. Chem. Soc.2009,131,7524-7525.
    [52]G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005,309,2040-2042.
    [53]D. Dang, P. Wu, C. He, Z. Xie, C. Duan, Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc.2010,132,14321-14323.
    [54]D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, A General Thermolabile Protecting Group Strategy for Organocatalytic Metal-Organic Frameworks. J. Am. Chem. Soc.2011,133, 5806-5809.
    [55]M. Zheng, Y. Liu, C. Wang, S. Liu, W. Lin, Cavity-induced enantioselectivity reversal in a chiral metal-organic framework Bronsted acid catalyst. Chem. Sci.2012,3,2623-2627.
    [56]P. Wu, C. He, J. Wang, X. Peng, X. Li, Y. An, C. Duan, Photoactive Chiral Metal-Organic Frameworks for Light-Driven Asymmetric a-Alkylation of Aldehydes. J. Am. Chem. Soc. 2012,134,14991-14999.
    [57]a) T. Asefa, M. J. MacLachlan, N. Coombs, G A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 1999,402,867-871; b) S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. J. Am. Chem. Soc.1999,121,9611-9614; c) B. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chem. Mater.1999,11,3302-3308.
    [58]a) A. Kuschel, S. Polarz, Effects of Primary and Secondary Surface Groups in Enantioselective Catalysis Using Nanoporous Materials with Chiral Walls. J. Am. Chem. Soc.2010,132,6558-6565; b) Q. Yang, J. Liu, L. Zhang, C. Li, Functionalized periodic mesoporous organosilicas for catalysis. J. Mater. Chem.2009,19,1945-1955.
    [59]J. Gao, J. Liu, J. Tang, D. Jiang, B. Li, Q. Yang, Chirally Functionalized Hollow Nanospheres Containing L-Prolinamide:Synthesis and Asymmetric Catalysis. Chem. Eur. J.2010,16,7852-7858.
    [60]J. Y. Shi, C. A. Wang, Z. J. Li, Q. Wang, Y. Zhang, W. Wang, Heterogeneous Organocatalysis at Work:Functionalization of Hollow Periodic Mesoporous Organosilica Spheres with MacMillan Catalyst. Chem. Eur. J.2011,17,6206-6213.
    [1]D. W. C. MacMillan, The Advent and Development of Organocatalysis. Nature 2008,455, 304-308.
    [2]a) J. Franzen, M. Marigo, D. Fielenbach, T. C. Wabnitz, K. A. J(?)rgensen, A General Organocatalyst for Direct a-Functionalization of Aldehydes:Stereoselective C-C, C-N, C-F, C-Br, and C-S Bond-Forming Reactions. Scope and Mechanistic Insights. J. Am. Chem. Soc.2005,127,18296-18304; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angew. Chem. Int. Ed.2005,44,4212-4215; c) K. L. Jensen, G. Dickmeiss, H. Jiang, L. Albrecht, K. A. Jergensen, The Diarylprolinol Silyl Ether System:A General Organocatalyst. Acc. Chem. Res.2011,45,248-264; d) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. J(?)rgensen, Enantioselective Organocatalyzed a Sulfenylation of Aldehydes. Angew. Chem. Int. Ed.2005,44,794-797; e) A. Mielgo, C. Palomo, a,a-Diarylprolinol Ethers:New Tools for Functionalization of Carbonyl Compounds. Chem. Asian J.2008,3,922-948.
    [3]a) M. Gruttadauria, F. Giacalone, R. Noto, Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev.2008,37,1666-1688; b) T. E. Kristensen, T. Hansen, Polymer-Supported Chiral Organocatalysts:Synthetic Strategies for the Road Towards Affordable Polymeric Immobilization. Eur. J. Org. Chem.2010,2010, 3179-3204; c) S. Shylesh, V. Schunemann, W. R. Thiel, Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem., Int. Ed.2010,49,3428-3459; d) A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, Recyclable Stereoselective Catalysts. Chem. Rev.2009,109,418-514.
    [4]a) E. Alza, M. A. Pericas, A Highly Selective, Polymer-Supported Organocatalyst for Michael Additions with Enzyme-Like Behavior. Adv. Synth. Catal.2009,351, 3051-3056;b) E. Alza, S. Sayalero, P. Kasaplar, D. Almasi, M. A. Pericas Polystyrene-Supported Diarylprolinol Ethers as Highly Efficient Organocatalysts for Michael-Type Reactions. Chem. Eur. J.2011,17,11585-11595; c) I. Mager, K. Zeitler, Efficient, Enantioselective Iminium Catalysis with an Immobilized, Recyclable Diarylprolinol Silyl Ether Catalyst. Org. Lett.2010,12,1480-1483; d) M. C. Varela, S. M. Dixon, K. S. Lam, N. E. Schore, Asymmetric epoxidation, Michael addition, and triple cascade reaction using polymer-supported prolinol-based auxiliaries. Tetrahedron 2008, 64,10087-10090.
    [5]Y. Li, X.-Y. Liu, G. Zhao, Effective and recyclable dendritic catalysts for the direct asymmetric Michael addition of aldehydes to nitrostyrenes. Tetrahedron Asymmetry 2006, 17,2034-2039.
    [6]L. Zu, H. Li, J. Wang, X. Yu, W. Wang, Highly enantioselective aldehyde-nitroolefin Michael addition reactions catalyzed by recyclable fluorous (S) diphenylpyrrolinol silyl ether. Tetrahedron Lett.2006,47,5131-5134.
    [7]a) M. Lombardo, M. Chiarucci, A. Quintavalla, C. Trombini, Highly Efficient Ion-Tagged Catalyst for the Enantioselective Michael Addition of Aldehydes to Nitroalkenes. Adv. Synth. Catal.2009,351,2801-2806; b) O. V. Maltsev, A. S. Kucherenko, I. P. Beletskaya, V. A. Tartakovsky, S. G. Zlotin, Chiral Ionic Liquids Bearing O-Silylated a,a-Diphenyl (S)-or (R)-Prolinol Units:Recoverable Organocatalysts for Asymmetric Michael Addition of Nitroalkanes to α,β-Enals. Eur. J. Org. Chem.2010,2010,2927-2933; c) O. V. Maltsev, A. S. Kucherenko, A. L. Chimishkyan, S. G. Zlotin, a,a-Diarylprolinol-derived chiral ionic liquids:recoverable organocatalysts for the domino reaction between α,β-enals and N-protected hydroxylamines. Tetrahedron Asymmetry 2010,21,2659-2670; d) O. V. Maltsev, A. S. Kucherenko, S. G. Zlotin, O-TMS-a,a-diphenyl-(S)-prolinol Modified with an Ionic Liquid Moiety:A Recoverable Organocatalyst for the Asymmetric Michael Reaction between α,β-Enals and Dialkyl Malonates. Eur. J. Org. Chem.2009, 2009,5134-5137; e) B. K. Ni, S. K. Ghosh, Z. L. Zheng, Highly Active Water-Soluble and Recyclable Organocatalyst for the Asymmetric 1,4-Conjugate Addition of Nitroalkanes to alpha,beta-Unsaturated Aldehydes. Adv. Synth. Catal.2010,352, 2378-2382; f) B. K. Ni, Z. L. Zheng, B. L. Perkins, Diarylprolinol Silyl Ether Salts as New, Efficient, Water-Soluble, and Recyclable Organocatalysts for the Asymmetric Michael Addition on Water. J. Am. Chem. Soc.2010,132,50-51.
    [8]B. G. Wang, B. C. Ma, Q. Wang, W. Wang, Superparamagnetic Nanoparticle-Supported (S)-Diphenyl-prolinol Trimethylsilyl Ether as a Recyclable Catalyst for Asymmetric Michael Addition in Water. Adv. Synth. Catal.2010,352,2923-2928.
    [9]X. Du, Y. Sun, B. Tan, Q. Teng, X. Yao, C. Su, W. Wang, Troger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun.2010,46, 970-972.
    [10]a) T. E. Kristensen, K. Vestli, K. A. Fredriksen, F. K. Hansen, T. Hansen, Synthesis of Acrylic Polymer Beads for Solid-Supported Proline-Derived Organocatalysts. Org. Lett. 2009,11,2968-2971; b) T. E. Kristensen, K. Vestli, M. G. Jakobsen, F. K. Hansen, T. Hansen, A General Approach for Preparation of Polymer-Supported Chiral Organocatalysts via Acrylic Copolymerization. J. Org. Chem.2010,75,1620-1629.
    [11]M. Rueping, E. Sugiono, A. Steck, T. Theissmann, Synthesis and Application of Polymer-Supported Chiral Bn(?)nsted Acid Organocatalysts. Adv. Synth. Catal.2010,352, 281-287.
    [12]a) A. C. Evans, A. Lu, C. Ondeck, D. A. Longbottom, R. K. O'Reilly, Organocatalytic Tunable Amino Acid Polymers Prepared by Controlled Radical Polymerization. Macromolecules 2010,43,6374-6380; b) A. Lu, T. P. Smart, T. H. Epps, D. A. Longbottom, R. K. O'Reilly,1-Proline Functionalized Polymers Prepared by RAFT Polymerization and Their Assemblies as Supported Organocatalysts. Macromolecules 2011,44,7233-7241.
    [13]a) P. Kaur, J. T. Hupp, S. T. Nguyen, Porous Organic Polymers in Catalysis:Opportunities and Challenges. ACS Catal.2011,1,819-835; b) Y. Zhang, S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev.2012,41, 2083-2094.
    [14]J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Conjugated Microporous Poly(aryleneethynylene) Networks. Angew. Chem., Int. Ed.2007,46,8574-8578.
    [15]S. Yuan, S. Kirklin, B. Dorney, D.-J. Liu, L. Yu, Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage. Macromolecules 2009,42,1554-1559.
    [16]Z. Xie, C. Wang, K. E. deKrafft, W. Lin, Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis. J. Am. Chem. Soc.2011,133,2056-2059.
    [17]J. Bures, A. Armstrong, D. G. Blackmond, Mechanistic Rationalization of Organocatalyzed Conjugate Addition of Linear Aldehydes to Nitro-olefins. J. Am. Chem. Soc.2011,133,8822-8825
    [1]a) S. B. Tsogoeva, Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem.2007,2007,1701-1716; b) Y. Zhang, W. Wang, Recent advances in organocatalytic asymmetric Michael reactions. Catal. Sci. Technol.2012,2, 42-53.
    [2]T. Ooi, K. Doda, K. Maruoka, Highly Enantioselective Michael Addition of Silyl Nitronates to α,β-Unsaturated Aldehydes Catalyzed by Designer Chiral Ammonium Bifluorides:Efficient Access to Optically Active γ-Nitro Aldehydes and Their Enol Silyl Ethers. J. Am. Chem. Soc.2003,125,9022-9023.
    [3]L. Hojabri, A. Hartikka, F. M. Moghaddam, P. I. Arvidsson, A New Imidazole-Containing Imidazolidinone Catalyst for Organocatalyzed Asymmetric Conjugate Addition of Nitroalkanes to Aldehydes. Adv. Synth. Catal.2007,349,740-748.
    [4]H. Gotoh, H. Ishikawa, Y. Hayashi, Diphenylprolinol Silyl Ether as Catalyst of an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroalkanes with α,β-Unsaturated Aldehydes. Org. Lett.2007,9,5307-5309.
    [5]C. Palomo, A. Landa, A. Mielgo, M. Oiarbide, A. Puente, S. Vera, Water-Compatible Iminium Activation:Organocatalytic Michael Reactions of Carbon-Centered Nucleophiles with Enals. Angew. Chem. Int. Ed.2007,46,8431-8435.
    [6]I. Mager, K. Zeitler, Efficient, Enantioselective Iminium Catalysis with an Immobilized, Recyclable Diarylprolinol Silyl Ether Catalyst. Org. Lett.2010,12,1480-1483.
    [7]E. Alza, S. Sayalero, P. Kasaplar, D. Almasi, M. A. Pericas Polystyrene-Supported Diarylprolinol Ethers as Highly Efficient Organocatalysts for Michael-Type Reactions. Chem. Eur. J.2011,17,11585-11595.
    [8]O. V. Maltsev, A. S. Kucherenko, I. P. Beletskaya, V. A. Tartakovsky, S. G Zlotin, Chiral Ionic Liquids Bearing O-Silylated a,a-Diphenyl (S)-or (R)-Prolinol Units:Recoverable Organocatalysts for Asymmetric Michael Addition of Nitroalkanes to α,β-Enals. Eur. J. Org. Chem.2010,2010,2927-2933.
    [9]S. K. Ghosh, Z. Zheng, B. Ni, Highly Active Water-Soluble and Recyclable Organocatalyst for the Asymmetric 1,4-Conjugate Addition of Nitroalkanes to α,β-Unsaturated Aldehydes. Adv. Synth. Catal.2010,352,2378-2382.
    [10]C. A. Wang, Z. K. Zhang, T. Yue, Y. L. Sun, L. Wang, W. D. Wang, Y. Zhang, C. Liu, W. Wang, "Bottom-Up" Embedding of the J(?)rgensen-Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chem. Eur. J. 2012,18,6718-6723.
    [1]B. List, R. A. Lerner, C. F. Barbas, Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc.2000,122,2395-2396.
    [2]K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels-Alder Reaction. J. Am. Chem. Soc.2000,122,4243-4244.
    [3]D. W. C. MacMillan, The advent and development of organocatalysis. Nature 2008,455, 304-308.
    [4]T. D. Beeson, A. Mastracchio, J. B. Hong, K. Ashton, D. W. C. MacMillan, Enantioselective organocatalysis using SOMO activation. Science 2007,316,582-585.
    [5]D. A. Nicewicz, D. W. C. MacMillan, Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008,322,77-80.
    [6]M. Benaglia, G. Celentano, M. Cinquini, A. Puglisi, F. Cozzi, Poly(ethylene glycol)-Supported Chiral Imidazolidin-4-one:An Efficient Organic Catalyst for the Enantioselective Diels-Alder Cycloaddition. Adv. Synth. Catal.2002,344,149-152.
    [7]S. A. Selkala, J. Tois, P. M. Pihko, A. M. P. Koskinen, Asymmetric Organocatalytic Diels-Alder Reactions on Solid Support. Adv. Synth. Catal.2002,344,941-945.
    [8]Y. Zhang, L. Zhao, S. S. Lee, J. Y. Ying, Enantioselective Catalysis over Chiral Imidazolidin-4-one Immobilized on Siliceous and Polymer-Coated Mesocellular Foams. Adv. Synth. Catal.2006,348,2027-2032.
    [9]H. Hagiwara, T. Kuroda, T. Hoshi, T. Suzuki, Immobilization of MacMillan Imidazolidinone as Mac-SILC and its Catalytic Performance on Sustainable Enantioselective Diels-Alder Cycloaddition. Adv. Synth. Catal.2010,352,909-916.
    [10]T. E. Kristensen, K. Vestli, M. G. Jakobsen, F. K. Hansen, T. Hansen, A General Approach for Preparation of Polymer-Supported Chiral Organocatalysts via Acrylic Copolymerization. J. Org. Chem.2010,75,1620-1629.
    [11]a) T. T. Hao, J. Y. Shi, T. Y. Zhuang, W. D. Wang, F. C. Li, W. Wang, Mesostructure-controlled synthesis of chiral norbornane-bridged periodic mesoporous organosilicas. RSC Advances 2012,2,2010-2014; b) T. Y. Zhuang, J. Y. Shi, B. C. Ma, W. Wang, Chiral norbornane-bridged periodic mesoporous organosilicas. J. Mater. Chem. 2010,20,6026-6029.
    [12]J. Y. Shi, C. A. Wang, Z. J. Li, Q. Wang, Y. Zhang, W. Wang, Heterogeneous Organocatalysis at Work:Functionalization of Hollow Periodic Mesoporous Organosilica Spheres with MacMillan Catalyst. Chem. Eur. J.2011,17,6206-6213.
    [13]N. Haraguchi, H. Kiyono, Y. Takemura, S. Itsuno, Design of main-chain polymers of chiral imidazolidinone for asymmetric organocatalysis application. Chem. Commun.2012, 45,4011-4013.
    [14]a) Z.-L. Shen, H.-L. Cheong, Y.-C. Lai, W.-Y. Loo, T.-P. Loh, Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels-Alder reactions. Green Chem.2012,14,2626-2630; b) Z.-L. Shen, K. K. K. Goh, C. H. A. Wong, W.-Y. Loo, Y.-S. Yang, J. Lu, T.-P. Loh, Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chem. Commun.2012,48,5856-5858.
    [15]P. Riente, J. Yadav, M. A. Pericas, A Click Strategy for the Immobilization of MacMillan Organocatalysts onto Polymers and Magnetic Nanoparticles. Org. Lett.2012,14, 3668-3671.
    [16]C. A. Wang, Z. K. Zhang, T. Yue, Y. L. Sun, L. Wang, W. D. Wang, Y. Zhang, C. Liu, W. Wang, "Bottom-Up" Embedding of the J(?)rgensen-Hayashi Catalyst into a Chiral Porous Polymer for Highly Efficient Heterogeneous Asymmetric Organocatalysis. Chem. Eur. J. 2012,18,6718-6723.
    [17]J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks. J. Am. Chem. Soc.2008,130, 7710-7720.
    [18]K. Ishihara, H. Kurihara, M. Matsumoto, H. Yamamoto, Design of Br(?)nsted Acid-Assisted Chiral Lewis Acid (BLA) Catalysts for Highly Enantioselective Diels-Alder Reactions. J. Am. Chem. Soc.1998,120,6920-6930
    [1]a) L.-X. Dai, Chiral Metal-Organic Assemblies—A New Approach to Immobilizing Homogeneous Asymmetric Catalysts. Angew. Chem. Int. Ed.2004,43,5726-5729; b) K. Ding, Z. Wang, X. Wang, Y. Liang, X. Wang, Self-Supported Chiral Catalysts for Heterogeneous Enantioselective Reactions. Chem. Eur. J.2006,12,5188-5197; c) T. Sawaki, Y. Aoyama, Immobilization of a Soluble Metal Complex in an Organic Network. Remarkable Catalytic Performance of a Porous Dialkoxyzirconium Polyphenoxide as a Functional Organic Zeolite Analogue. J. Am. Chem. Soc.1999,121,4793-4798; d) T. Sawaki, T. Dewa, Y. Aoyama, Immobilization of Soluble Metal Complexes with a Hydrogen-Bonded Organic Network as a Supporter. A Simple Route to Microporous Solid Lewis Acid Catalysts. J. Am. Chem. Soc.1998,120,8539-8540.
    [2]S. Takizawa, H. Somei, D. Jayaprakash, H. Sasai, Metal-Bridged Polymers as Insoluble Multicomponent Asymmetric Catalysts with High Enantiocontrol:An Approach for the Immobilization of Catalysts without Using any Support. Angew. Chem. Int. Ed.2003,42, 5711-5714.
    [3]H. Guo, X. Wang, K. Ding, Assembled enantioselective catalysts for carbonyl-ene reactions. Tetrahedron Lett.2004,45,2009-2012.
    [4]X. Wang, L. Shi, M. Li, K. Ding, Heterogenization of Shibasaki's Binol/La Catalyst for Enantioselective Epoxidation of a,(3-Unsaturated Ketones with Multitopic Binol Ligands: The Impact of Bridging Spacers. Angew. Chem. Int. Ed.2005,44,6362-6366.
    [5]X. Wang, K. Ding, Self-Supported Heterogeneous Catalysts for Enantioselective Hydrogenation. J. Am. Chem. Soc.2004,126,10524-10525.
    [6]Y. Liang, Q. Jing, X. Li, L. Shi, K. Ding, Programmed Assembly of Two Different Ligands with Metallic Ions:Generation of Self-Supported Noyori-type Catalysts for Heterogeneous Asymmetric Hydrogenation of Ketones. J. Am. Chem. Soc.2005,127, 7694-7695.
    [7]A. B. Powell, Y. Suzuki, M. Ueda, C. W. Bielawski, A. H. Cowley, A Recyclable, Self-Supported Organocatalyst Based on a Poly(N-Heterocyclic Carbene). J. Am. Chem. Soc.2011,133,5218-5220.
    [8]a) T. T. Hao, J. Y. Shi, T. Y. Zhuang, W. D. Wang, F. C. Li, W. Wang, Mesostructure-controlled synthesis of chiral norbornane-bridged periodic mesoporous organosilicas. RSC Advances 2012,2,2010-2014; b) T. Y. Zhuang, J. Y. Shi, B. C. Ma, W. Wang, Chiral norbornane-bridged periodic mesoporous organosilicas. J. Mater. Chem. 2010,20,6026-6029.
    [9]H. Takeda, Y. Goto, Y. Maegawa, T. Ohsuna, T. Tani, K. Matsumoto, T. Shimada, S. Inagaki, Visible-light-harvesting periodic mesoporous organosilica. Chem. Commun. 2009,6032-6034.
    [10]a) S. W. Boettcher, J. Fan, C.-K. Tsung, Q. Shi, G. D. Stucky, Harnessing the Sol-Gel Process for the Assembly of Non-Silicate Mesostructured Oxide Materials. Acc. Chem. Res.2007,40,784-792; b) C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation-Induced Self-Assembly:Nanostructures Made Easy. Adv. Mater.1999,11,579-585; c) J. Fan, S. W. Boettcher, G D. Stucky, Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol-Gel Process. Chem. Mater.2006,18, 6391-6396; d) D. Grosso, F. Cagnol, G. J. d. A. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, C. Sanchez, Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly. Adv. Funct. Mater.2004, 14,309-322.
    [11]K. Ishihara, H. Kurihara, M. Matsumoto, H. Yamamoto, Design of Brensted Acid-Assisted Chiral Lewis Acid (BLA) Catalysts for Highly Enantioselective Diels-Alder Reactions. J. Am. Chem. Soc.1998,120,6920-6930

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700