用户名: 密码: 验证码:
发光金属配合物/LDHS超分子复合材料的构筑及光功能调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出以发光金属配合物阴离子和中性分子为客体,无机层状复合氢氧化物(LDHs)为主体,采用插层复合和层层组装方法,构筑了多种小分子金属配合物/LDHs复合光功能粉体和薄膜材料,该材料体现了不同的荧光特性,如荧光转变、荧光调控、双色发光、偏振发光、pH响应发光转变性能等,其中客体分别选取三(8-羟基喹啉-5-磺酸)合铝(AQS),二(8-羟基喹啉-5-磺酸)合锌(ZQS),二(8-羟基喹啉)合锌(Znq2),双2-(2-苯并噻唑基)苯酚锌(Zn(BTZ)_2)。提出了通过聚合物阴离子为媒介,将小分子阴离子与LDHs成功组装成薄膜的方法。发展了中性分子/LDHs薄膜组装的新方法,即通过将中性客体分子引入到嵌段共聚物胶束核内,再与LDHs层层组装成薄膜。为发展金属配合物/LDHs光功能复合材料提供了新的研究思路,拓展和延伸了基于LDHs的组装化学。研究了复合插层材料的超分子结构、主客体及客客体相互作用,金属配合物聚集程度和堆积方式,以及材料荧光性能之间的关系。同时探索了复合材料制备条件,外界环境对发光客体光功能的影响。本论文的主要研究内容如下:
     1. AQS阴离子插层LDHs粉体材料构筑:通过水热共沉淀法制备DDS–AQS(x%)/LDHs材料,调变DDS(十二烷基磺酸根)和AQS的比例,发现DDS–AQS(66.67%)/LDHs具有最优的荧光强度。相比AQS溶液位于495nm处的绿光发射,复合材料在450nm处发射蓝光。借助核磁、红外和密度泛函理论(DFT)计算研究了AQS插层LDHs前后的荧光转变机理。发现经式(mer-)AQS异构体插入LDHs层间后转变成面式(fac-)AQS异构体,二维LDH层板的限域作用可以稳定面式AQS构型。同时考察了复合材料的制备条件对发光转变的影响。将AQS引入到无机LDHs层板的方法解决了AQS材料面式不稳定,不能大量制备的问题。
     2. ZQS阴离子插层LDHs粉体材料构筑:以调控客体投料比和主体LDHs层板组成为两条主线,通过共沉淀法制备了不同含量比的荧光客体ZQS和DDS共插层四种LDHs:DDS–ZQS(x%)/MnAlLDHs(Mg2Al, Mg3Al, Zn2Al, Zn3Al)。研究表明LDHs的晶格定位效应和DDS的引入对荧光分子起到了隔离、分散和定向排布作用。调变客体含量和LDHs层板化学组成及金属比例,改变了主客体及客客体作用,进而影响到客体配合物聚集程度,从而获得荧光可调的复合光功能材料:发射波长从464nm到497nm连续可调,量子效率2.3%到24.4%连续可调,寿命从10.5ns到22.8ns可调。
     3.小分子阴离子–单聚物/LDHs薄膜组装:由于小分子阴离子电荷少,静电组装驱动力小带来的组装困难的问题,通过利用阴离子与高聚物阴离子间п–п作用及相互缠绕作用构造预组装单元,再与剥层后带正电的LDHs纳米片层层组装,构筑小分子金属配合物(AQS–Polymer/LDH)n发光多层超薄膜。结构表征该薄膜具有均匀致密的表面,和无机–有机超晶格有序结构。薄膜发光具有一定的偏振性,通过改变组装条件可以精确调控其发光性能,其中(AQS–PPV/LDH)n发射出两种光功能客体的双色发光。该方法拓宽了超分子插层组装的研究范围。
     4.中性配合物@共聚物/LDHs薄膜的组装:嵌段共聚物形成核/壳胶束,可以通过疏水作用包裹中性发光分子,利用此特性,我们获得了大小均匀,粒径约15nm的Znq2@PTBEM胶束。相比Znq2溶液的黄绿色发光(545nm),寿命5.32ns,胶束发射蓝移到494nm,寿命增大为24.71ns。再将胶束和剥层的LDHs纳米片进行层层组装,构筑了(Znq2@PTBEM/LDH)n偏振发光薄膜,进而研究了薄膜的发光性质。
     5.在研究内容4的基础上,制备了具有pH响应性能的Zn(BTZ)_2@PS-b-PAA胶束和(胶束/LDH)n多层薄膜:研究了胶束和薄膜受pH诱导发光性能的转变及其机理的探讨。PS-b-PAA胶束受pH诱导,其胶束核发生可逆的收缩和扩张,会影响核内Zn(BTZ)_2分子堆积方式改变,使得胶束和薄膜具有pH诱导可逆蓝绿光转变现象。该胶束具有很好的稳定性,其荧光可逆转变重复性高。相比胶束与其它聚合物组装的薄膜,(胶束/LDH)n薄膜具有很好的耐光漂白性。
In this dissertation, a series of functional organic/inorganic hybridmaterials have been fabricated by using layered double hydroxides (LDHs)as host material and luminescent metal complexes tris(8-hydroxyquinoline-5-sulfonate) aluminum(AQS), bis(8-hydroxyquinoline-5-sulfonate) zinc(ZQS), bis(8-hydroxy quinolinate) zinc(Znq2)and bis[2-(2-benzothiazoly)phenolato] zinc(Zn(BTZ)_2) as guest molecules.The hybrid materials posses the properties of single/double color emission,polarized fluorescence and pH-responsive fluorescence. By stepwiseself-assembly way, small molecules anions and neutral molecules wereincorporated into the interlayer of LDHs to fabricate multilayer film,which will provide a new idea for the development of optical functionalmaterials and extend the LDHs-based assembly method. The relationshipbetween the supramolecular structure, host-guest interaction, guest-guestinteraction and the aggregation degree, packing mode of the metalcomplexs with the optical properties of the hybrid materials wereinvestigated. The effect of preparing condition, external circumstance to their luminescence was also detected. The main research contents are asfollows:
     1. DDS–AQS(x%)/LDHs material (DDS means dodecyl sulphonateanion) were prepared by a hydrothermal method, and their luminescenceshifted to450nm in comparison to that at495nm for AQS.DDS–AQS(66.67%)/LDHs exhibit the strongest fluorescence. NMR, IRand DFT calculation show that the obvious fluorescence change was dueto the isomer transition from mer-AQS to fac-AQS inducing by thepositive-charged LDHs nanosheet through electrostatic interaction. Theconfinement effect of two-dimensional LDHs plate can stabilize thefac-AQS configuration, which solves the problem for preparing thefac-AQS blue luminescence materials.
     2. ZQS and DDS were co-intercalated into the LDHs host by aco-precipitation method, denoted with DDS–ZQS(x%)/LDHs (Mg2Al,Mg3Al, Zn2Al, Zn3Al). The lattice orientation effect of LDHs and theincorporation of the second guest DDS play the role of the isolation anddispersion of fluorescent molecules, which will lead the maximumemission wavelength, quantum efficiency and lifetime of the productcontinuously adjusted from464nm to497nm,2.3%to24.4%and10.5ns to22.8ns, separately. The results reveal that the LDHs layer chemicalcomposition and metallic proportion, complex content will influence theintercalated product fluorescence properties.
     3. Metal complexes small anion–polyanions/LDHs film: metalcomplex small anions are difficulty to be assembled into the film withexfoliated LDHs nanosheet due to the less charges and driving forcebetween them. We present a new method to solve the problem byco-assembly the small anion and polyanions. Small anion and polyanionare pre-mixed to form the negative-charged mixture through П-Пinteraction and intertwining, then assemble with the positive-chargedLDHs nanosheets through layer-by-layer assembly to prepare the(AQS–polyanion/LDH)nmultilayer ultrathin films. The(AQS–polyanion/LDH)nfilm is continuous, uniform and possesinorganic–organic ordered structure. Furthermore, their luminescence canbe precisely tuned.
     4. Neutral metal complex@block copolymer/LDH film: Neutralmetal complex can be incorporated into micellear core formed from blockcopolymer through hydrophobic interaction. So, Znq2@PTBEM micelles(PTBEM: poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid)with uniform size of15nm were prepared. Compared with thefluorescence emission of545nm and lifetime of5.32ns for Znq2solution,the micelles exhibit a fluorescence enhancement characterize with theiremission blue shifted to494nm, lifetime increased to24.71ns. Themicelles and LDH nanosheets were further assembled into theZnq2@PTBEM/LDH film which exhibited the polarized luminescence.
     5. Based on the research of4, Zn(BTZ)_2@PS-b-PAA micelles(PS-b-PAA: poly(styrene-b-acrylic acid) and(Zn(BTZ)_2@PS-b-PAA/LDH)nfilm with pH-modified fluorescenttransition were prepared: pH=6or acidic atmosphere, the luminescence ofmicelles and film located at460nm, pH=9or alkaline atmosphere, theirluminescence turn to510nm. PS-b-PAA micelles can reversiblycontraction/expansion induced by pH change which will cause the changeof the molecular packing mode for Zn(BTZ)_2incorporated in PS-b-PAAmicellar core. The Zn(BTZ)_2@PS-b-PAA micelles are highly stable andtheir pH-modified fluorescent transition process was reversible. Moreover,the (Zn(BTZ)_2@PS-b-PAA/LDH)nfilm has good light resistance.
引文
[1]杨英.含席夫碱或8-羟基喹啉金属配合物的有机-无机杂化材料的合成、表征及其环氧化催化性能研究[D].2010
    [2]Amati M, Lelj F. Luminescent compounds fac-and mer-aluminum tris(quinolin-8-olate). A pureand hybrid density functional theory and time-dependent density functional theory investigationof their electronic and spectroscopic properties[J]. J. Phys. Chem. A,2003,107:2560-2569
    [3]Xu B S, Hao Y Y, Wang H, Zhou H F, Liu X G, Chen M W. The effects of crystal structure onoptical absorption/photoluminescence of bis(8-hydroxyquinoline)zinc[J]. Solid. State. Commun.,2005,136:318-322
    [4]Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A. Correlation betweenmolecular packing and optical properties in different crystalline polymorphs and amorphous thinfilms of mer-tris(8-hydroxyquinoline)aluminum(Ш)[J]. J. Am. Chem. Soc.,2000,122:5147-5157
    [5]郝玉英.有机金属配合物电致发光材料的物理性能研究[D].博士,太原理工大学,太原,2006
    [6]岳呈阳.新型d8,d10过渡金属配合物的结构、发光性能研究进展[J].济宁学院学报,2006,31:33-36
    [7]杨程.稀土有机配合物及其复合材料的光致发光性能研究[D].博士,北京化工大学,北京,2006
    [8]张蕾,张学俊.8-羟基喹啉类金属配合物电致发光材料研究进展[J].化工中间体,2011,2:28-31
    [9]周瑞,安忠维,柴生勇.有机金属配合物电致发光材料的研究进展[J].光谱学与光谱分析,2004,24:922-926
    [10]吕青竹.晶体8-羟基喹啉铝的合成及光致和电致发光性能[J].当代化工,2009,1:13-16
    [11] Zhao Q, Li F, Huang C. Phosphorescent chemosensors based on heavy-metal complexes[J].Chem. Soc. Rev.,2012,39:3007
    [12] Rajeswaran M, Blanton T N, Tang C W, Lenhart W C, Switalski S C, Giesen D J, Antalek B J,Pawlik T D, Kondakov D Y, Zumbulyadis N, Young R H. Structural, thermal, and spectralcharacterization of the different crystalline forms of Alq3, tris(quinolin-8-olato)aluminum(Ш), anelectroluminescent material in OLED technology[J]. Polyhedron,2009,28:835-843
    [13] Son H-J, Han W-S, Chun J-Y, Kang B-K, Kwon S-N, Ko J, Han S J, Lee C, Kim S J, Kang S O.Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolateligand system: Syntheses, characterizations, and organic light emitting device applications of4-coordinated bis(2-oxazolylphenolate) zinc(П) complexes[J]. Inorg. Chem.,2008,47:5666-5676
    [14] Papadimitrakopoulos F, Zhang X-M. Environmental stability of aluminumtris(8-hydroxyquinoline)(Alq3) and its implications in light emitting devices[J]. Synth. Met.,1997,85:1221-1224
    [15] Muhammad, F F, Sulaiman K. Effects of thermal annealing on the optical, spectroscopic, andstructural properties of tris (8-hydroxyquinolinate) gallium films grown on quartz substrates[J].Mater. Chem. Phys.,2011,129:1152-1158
    [16] Papadimitrakopoulos F, Zhang X-M, Thomsen D L, Higginson K A. A chemical failuremechanism for aluminum (Ш)8-hydroxyquinoline light-emitting devices[J]. Chem. Mater.,1996,8:1363-1365
    [17] Camerel F, Barbera J, Otsuki J, Tokimoto T, Shimazaki Y, Chen L-Y, Liu S-H, Lin M-S, WuC-C, Ziessel R. Solution-processable liquid crystals of luminescentaluminum(8-hydroxyquinoline-5-sulfonato) complexes[J].Adv. Mater.,2008,20:3462-3467
    [18] Thomsen D L, Phely-Bobin T, Papadimitrakopoulos F. Zinc-bisquinoline coordinationassemblies of high refractive index and film uniformity[J]. J. Am. Chem. Soc.,1998,120:6177-6178
    [19]杜乃婴,梅群波,吕满庚.含有Alq3和Znq2的可交联聚合物的合成与表征[J].化学通报,2005,1:49-53
    [20] Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987,51:913-915
    [21] Wan W, D H, Wang J. Novel blue luminescent materials for organic light-emitting diodes basedon C9-fluorenyl anthracenes[J]. Dyes Pigments,2013,96:642-652
    [22] Gold H. In the chemistry of synthetic dyes, Edited by K. Venkataraman (Academic, NewYork)[M], vol.5, p.535.1971
    [23] Chen W, Peng Q, Li Y. Alq3nanorods: Promising building blocks for optical devices[J]. Adv.Mater.,2008,9999:1-4
    [24] Zhao Y S, Di C-A, Yang W, Yu G, Liu Y, Yao J. Photoluminescence and electroluminescencefrom tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physicalvapor deposition[J].Adv. Funct. Mater.,2006,16:1985-1991
    [25] Weder C, Sarwa C, Montali A, Bastiaansen C, Smith P. Incorporation of photoluminescentpolarizers into liquid crystal displays [J]. Science,1998,279:835-837
    [26][26] Bovero E, van Veggel F C J M. Conformational characterization of Eu3+-doped LaF3core-shell nanoparticles through luminescence anisotropy studies[J]. J. Phys. Chem. C.,2007,111:4529-4534
    [27] Clark A P Z, Shen K F, Rubin Y F, Tolbert S H. An amphiphilic poly(phenylene ethynylene) asthe structure-directing agent for periodic nanoscale silica composite materials[J]. Nano. Lett.,2005,5:1647-1652
    [28] Bi H, Chen D, Li D, Yuan Y, Xia D, Zhang Z, Zhang H, Wang Y. A green emissive amorphousfac-alq3solid generated by grinding crystalline blue fac-alq3powder[J]. Chem. Commun.,2011,47:4135-4137
    [29] Ni J, Zhang X, Qiu N, Wu Y-H, Zhang L-Y, Zhang J, Chen Z-N. Mechanochromic luminescenceswitch of platinum(П) complexes with5-trimethylsilylethynyl-2,2'-bipyridine[J]. Inorg. Chem.,2011,50:9090-9096
    [30] Shan G-G, Li H-B, Cao H-T, Zhu D-X, Li P, Su Z-M, Liao Y. Reversible piezochromic behaviorof two new cationic iridium(Ш) complexes[J]. Chem. Commun.,2012,48:2000-2002
    [31] Xiong Y, Ye Z, Xu J, Zhu Y, Chen C, Guan Y. An integrated micro-volume fiber-optic sensor foroxygen determination in exhaled breath based on Ιridium(Ш) complexes immobilized influorinated xerogels[J]. Analyst,2013,138:1819-1827
    [32] Phillips D A, Soroka K, Vithanage R S, Dasgupta P K. Enhancement and quenching offluorescence of metal chelates of8-hydroxyquinoline-5-sulfonic acid[J]. Mikrochim. Acta,1986,I:207-220
    [33] Cui H H, Hu M Q, Wen H M. Efficient [FeFe] hydrogenase mimic dyads covalently linking toiridium photosensitizer for photocatalytic hydrogen evolution[J]. Dalton. T.,2012,41:13899-13907
    [34] Krishnan C V, Brunschwig B S, Creutz C, Sutin N. Homogeneous catalysis of thephotoreduction of water mediation by polypyridine complexes of ruthenium(П) and cobalt(П) inalkaline media[J]. J. Am. Chem. Soc.,1985,107:2005-2015
    [35]周明,费浩,刘扬,李宛飞.金属配位化合物在生物分析、成像以及染色方面的应用[J].化学进展,2010,22:201-208
    [36] Steunenberg P, Ruggi A, Berg N S v d, Buckle T, Kuil J, Leeuwen F W B V, Velders A H.Phosphorescence imaging of living cells with amino acid-functionalizedtris(2-phenylpyridine)iridium(Ш) complexes[J]. Inorg. Chem.,2012,51:2105-2114
    [37] Deaver D R. A new non-isotopic detection system for immunoassays[J]. Nature,1995,377:758-760
    [38] Caravan P, Ellison J J, McMurry T, Lauffer R B. Gadolinium(Ш) chelates as mri contrast agents:structure, dynamics, and applications[J]. Chem. Rev.,1999,99:2293–2352
    [39]冯志明,马俊.钆螯合物磁共振成像对比剂的研究进展[J].国际生物医学工程杂志,2006,29:231-234
    [40] Chakraborty J, Roychowdhury S, Sengupta S. Mg-Al layered double hydroxide-methotrexatenanohybrid drug delivery system: Evaluation of efficacy[J]. Mater. Sci. Engine. C.,2013,33,2168-2174
    [41]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社.2007
    [42] Bugatti V, Livi S, Hayrapetyan S. Deposition of LDH on plasma treated polylactic acid to reducewater permeability[J]. J. Colloid Interf. Sci.,2013,396:47-52
    [43]段雪,张法智.无机超分子材料的插层组装化学[M].北京:科学出版社.2009
    [44]陈虹芸,徐赛龙,陈旭,张法智, Evans D G,段雪.层状双羟基复合金属氧化物薄膜的研究进展[J].中国科学B辑:化学2008,38:659-667
    [45]安哲,何静,段雪.层状材料及催化[J].中国科学:化学,2012,42:1-15
    [46] Ahmed I M, Gasser M S. Adsorption study of anionic reactive dye from aqueous solution toMg-Fe-CO3layered double hydroxide (LDH)[J]. Appl. Surf. Sci.,2012,256:650-656
    [47]韩景斌.层状结构无机-有机纳米复合薄膜材料的组装及性能研究[D].博士,北京化工大学,北京,2011,
    [48]郭孝孝. LDHs薄膜的取向生长及性能研究[D].博士,北京化工大学,北京,2009,
    [49] Wang L Y, Li C, Liu M, Evans D G, Duan X. Large continuous, transparent and orientedself-supporting films of layered double hydroxides with tunable chemical composition[J]. Chem.Commun.,2007,43:123-125
    [50] Itaya K, Chang H C, Uchida I. Anion-exchanged hydrotalcite-like-clay modified electrodes[J].Inorg. Chem.,1987,26:624-626
    [51] Chen H Y, Zhang F Z, Fu S S, Duan X. In situ microstructure control of oriented layered doublehydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Adv. Mater.,2006,18:3089-3093
    [52] Chen H, Zhang F, Xu S, Evans D G, Duan X. Facile fabrication and wettability of nestlikemicrostructure maintained mixed metal oxides films from layered double hydroxide filmsprecursors[J]. Ind. Eng. Chem. Res.,2008,47:6607–6611
    [53] Joh H I, Lee S, K T-W. Synthesis and properties of an atomically thin carbon nanosheet similarto graphene and its promising use as an organic thin film transistor[J]. Carbon,2013,55:299-304
    [54] Zhang F Z, Sun M, Xu S L, Zhao L L, Zhang B W. Fabrication of oriented layered doublehydroxide films by spin coating and their use in corrosion protection[J]. Chem. Eng. J.,2008,141:362-367
    [55] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites[J]. Science,1997,277:1232-1237
    [56] Han J, Lu J, Wei M, Wang Z L, Duan X. Heterogeneous ultrathin films fabricated by alternateassembly of exfoliated layered double hydroxides and polyanion[J]. Chem. Commun.,2008,44:5188–5190
    [57]黄宝晟,李峰,张慧,等.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19:71-75
    [58] Walter T R. Cryatal structures of some double hydroxide minerals[J]. J. Catal.,1985,94:547-557
    [59] Miyata S. Gastric antacid and method for controlling Ph of gastric juice[p]. Us patent,4514389,1985[J].
    [60] Choi S-J, Choy J-H. Layered double hydroxide nanoparticles as target-specific delivery carriers:uptake mechanism and toxicity[J]. Nanomedicine,2011,6:803-814
    [61] Choi S-J, Choy J-H. Effect of physico-chemical parameters on the toxicity of inorganicnanoparticles[J]. J. Mater. Chem.,2011,21:5547-5554
    [62] Kim K-M, Park C-B, Choi A-J, Choy J-H, Oh J-M. Selective DNA adsorption on layered doublehydroxide nanoparticles[J]. B. Korean Chem. Soc.,2011,32:2217-2221
    [63] Oh J-M, Park D-H, Choy J-H. Integrated bio-inorganic hybrid systems for nano-forensics[J].Chem. Soc. Rev.,2011,40:583-595
    [64] Chung H-E, Park D-H, Choy J-H, Choi S-J. Intracellular trafficking pathway of layered doublehydroxide nanoparticles in human cells: size-dependent cellular delivery[J]. Appl. Clay Sci.,2012,65-66:24-30
    [65] Park D-H, Kim J-E, Oh J-M, Shul Y-G, Choy J-H. DNA core@inorganic shell[J]. J. Am. Chem.Soc.,2000,132:16735-16736
    [66] Xu Z P, Lu G Q. Layered double hydroxide nanomaterials as potential cellular drug deliveryagents[J]. PureAppl. Chem.,2006,78:1771-1779
    [67] Xu Z P, Walker T L, Liu K-l, Cooper H M, Lu G Q M, Bartlett P F. Layered double hydroxidenanoparticles as cellular delivery vectors of supercoiled plasmid DNA[J]. Inte. J. Nanomed.,2007,2:163-174
    [68] Xu Z P, Niebert M, Porazik K, Walker T L, Cooper H M, Middelberg A P J, Gray P P, Bartlett PF, Lu G Q. Subcellular compartment targeting of layered double hydroxide nanoparticles[J]. J.Control. Release.,2008,130:86-94
    [69] Ladewig K, Niebert M, Xu Z P, Gray P P, Lu G Q. Controlled preparation of layered doublehydroxide nanoparticles and their application as gene delivery vehicles[J]. Appl. Clay. Sci.,2010,48:280-289
    [70] Wong Y, Markham K, Xu Z P, Chen M, Lu G Q, Bartlett P F, Cooper H M. Efficient delivery ofsirna to cortical neurons using layered double hydroxide nanoparticles[J]. Biomaterials,2010,31:8770-8779
    [71] Li F, Jin L, Han J, Wei M, Li C. Synthesis and controlled release properties of prednisoneintercalated Mg-Al layered double hydroxide composite[J]. Ind. Eng. Chem. Res.,2009,48:5590-5597
    [72] Li Y, Li H, Wei M, Lu J, Jin L. pH-responsive composite based on prednisone-block copolymermicelle intercalated inorganic layered matrix: Structure and in vitro drug release[J]. Chem. Eng.J.,2009,151:359-366
    [73] Kong X, Jin L, Wei M, Duan X. Antioxidant drugs intercalated into layered double hydroxide:Structure and in vitro release[J].Appl. Clay Sci.,2010,49:324-329
    [74] Khan A I, Ragavan A, Fong B, Markland C, O'Brien M, Dunbar T G, Williams G R, O'Hare D.Recent developments in the use of layered double hydroxides as host materials for the storageand triggered release of functional anions[J]. Ind. Eng. Chem. Res.,2009,48:10196-10205
    [75] Markland C, Williams G R, O'Hare D. The intercalation of flavouring compounds into layereddouble hydroxides[J]. J. Mater. Chem.,2011,21:17896-17903
    [76] Li S, Li J, Wang C J, Wang Q, Cader M Z, Lu J, Evans D G, Duan X, O'Hare D. Cellular uptakeand gene delivery using layered double hydroxide nanoparticles[J]. J. Mater. Chem. B,2013,1:61-68
    [77] Li Y H, Shen W D, Zhang Y G. Precise broad-band anti-refection coating fabricated by atomiclayer deposition[J]. Opt. Commun.,2013,292:31-35
    [78] Han J, Dou Y, Wei M, Evans D G, Duan X. Erasable nanoporous antireflection coatings based onthe reconstruction effect of layered double hydroxides[J]. Angew. Chem. Int. Ed.,2010,49:2171–2174
    [79] Tian L, Zhao Y, He S, Wei M, Duan X. Immobilized Cu-Cr layered double hydroxide films withvisible-light responsive photocatalysis for organic pollutants[J]. Chem. Eng. J.,2012,184:261-267
    [80] Zhao Y F, He S, Wei M, Evans D G, Duan X. Hierarchical films of layered double hydroxides byusing a sol–gel process and their high adaptability in water treatment[J]. Chem. Commun.,2010,46:3031-3033
    [81] Xia C, Advincula R C. Decreased aggregation phenomena in polyfluorenes by introducingcarbazole copolymer units[J]. Macromolecules,2001,34:5854–5859
    [82] Gentili P L, Costantino U, Nocchetti M, Miliani C, Favaro G. A new photo-functional materialconstituted by a spirooxazine supported on a zirconium diphosphonate fluoride[J]. J. Mater.Chem.,2002,12:2872-2878
    [83] Gentili P L, Costantino U, Vivani R, Latterini L, Nocchetti M, Aloisi G G. Preparation andcharacterization of zirconium phosphonate azobenzene intercalation compounds: A structural,photophysical and photochemical study[J]. J. Mater. Chem.,2004,14:1656-1662
    [84] Ogawa M, Kuroda K. Photofunctions of intercalation compounds[J]. Chem. Rev.,1995,95:399-438
    [85] Costantino U, Coletti N, Nocchetti M, Aloisi G G, Elisei F, Latterini L. Surface uptake andintercalation of fluorescein anions into Zn Al hydrotalcite. Photophysical characterization ofmaterials obtained[J]. Langmuir,2000,16:10351-10358
    [86] Li L, Liu P, Zhang L, Chen D. Photophysical properties of donor-pi-acceptor azoicchromophores adsorbed and intercalated into Mg-Al-LDH[J]. J. Solid State Chem.,2013,198:218-223
    [87] Wang Z-L, Kang Z-H, Wang E-B, Su Z-M, Xu L. Intercalation and photophysical properties ofthe tetra-(8-hydroxyquinolinato) boron complex and3,3′,4,4′-benzophenone tetracarboxylicanion into Mg-Al layered double hydroxides[J]. Inorg. Chem.,2006,45:4364-4371
    [88] Wang X R, Lu J, Yan D, Wei M, Evans D G, Duan X. A photochromic thin film based onsalicylideneaniline derivatives intercalated layered double hydroxide[J]. Chem. Phys. Lett.,2010,493:333-339
    [89] Shi W, Wei M, Lu J, Evans D G, Duan X. Studies on the orientation and polarizedphotoluminescence of alpha-naphthalene acetate in the layered double hydroxide matrix[J]. J.Phys. Chem. C.,2009,113:12888-12896
    [90] Sun Z, Jin L, Shi W, Wei M, Duan X. Preparation of an anion dye intercalated into layereddouble hydroxides and its controllable luminescence properties[J]. Chem. Eng. J.,2010,161:293-300
    [91] Shi W, Wei M, Lu J, Li F, He J, Evans D G, Duan X. Molecular orientation and fluorescencestudies on naphthalene acetate intercalated Zn2Al layered double hydroxide[J]. J. Phys. Chem.C.,2008,112:19886-19895
    [92] Shi W, Wei M, Evans D G, Duan X. Tunable photoluminescence properties of fluorescein in alayered double hydroxide matrix and its application in sensors[J]. J. Mater. Chem.,2010,20:3901-3909
    [93] Sun Z, Jin L, Shi W, Wei M, Evans D G, Duan X. Controllable photoluminescence properties ofan anion-dye-intercalated layered double hydroxide by adjusting the confined environment[J].Langmuir,2011,27:7113-7120
    [94] Yan D, Lu J, Wei M, Evans D G, Duan X. Sulforhodamine B intercalated layered doublehydroxide thin film with polarized photoluminescence[J]. J. Phys. Chem. B,2009,113:1381-1388
    [95] Sun Z, Jin L, Zhang S, Shi W, Pu M, Wei M, Evans D G, Duan X. An optical sensor based onH-acid/layered double hydroxide composite film for the selective detection of mercury ion[J].Anal. Chim. Acta,2011,702:95-101
    [96] Shi W, Ji X, Zhang S, Wei M, Evans D G, Duan X. Fluorescence chemosensory ultrathin filmsfor Cd2+based on the assembly of benzothiazole and layered double hydroxide[J]. J. Phys.Chem. C.,2011,115:20433-20441
    [97] Han J, Xu X, Rao X, Wei M, Evans D G, Duan X. Layer-by-layer assembly of layered doublehydroxide/cobalt phthalocyanine ultrathin film and its application for sensors[J]. J. Mater.Chem.,2011,21:2126-2130
    [98] Li Z, Lu J, Li S, Qin S, Qin Y. Orderly ultrathin films based on perylene/poly(N-vinyl carbazole)assembled with layered double hydroxide nanosheets:2D fluorescence resonance energy transferand reversible fluorescence response for volatile organic compounds[J]. Adv. Mater.,2012,24:6053-6057
    [99]闫东鹏.无机/有机复合超分子层状光功能材料的组装及性能:实验与理论研究[D].博士,北京化工大学,北京,2012
    [1]Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987,51:913-915
    [2]Barth S, Muller P, Riel H, Seidler P F, Riess W, Westweber H, Bassler H. Electron mobility intris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence fromsingle-and multilayer organic light-emitting diodes[J]. J.Appl. Phys.,2001,89:3711-3719
    [3]Ichikawa H, Saiki K, Suzuki T, Hasegawa T, Shimada T. Uniaxial alignment of Alq3bylaser-assisted molecular beamepitaxy[J]. Jpn. J. Appl. Phys.,2005,44: L1469
    [4]Cheng J-A, Chen C H. White organic electroluminescence from an exciplex based on the novelsubstituted aluminium quinolate complex[J]. J. Mater. Chem.,2005,15:1179-1185
    [5]Chen L Q, Liu X G, Xu H X, Wang H, Xu B S. Characterization and photoluminescenceproperties of a blue-light-emitting material[J]. Spectrosc. Spect. Anal.,2009,29:1201-1204
    [6]Amati M, Lelj F. Luminescent compounds fac-and mer-aluminum tris(quinolin-8-olate). A pureand hybrid density functional theory and time-dependent density functional theory investigationof their electronic and spectroscopic properties[J]. J. Phys. Chem. A,2003,107:2560-2569
    [7]Amati M, Lelj F. Are UV–vis and luminescence spectra of Alq3[aluminum tris(8-hydroxyquinolinate)] δ-phase compatible with the presence of the fac-alq3isomer ATD-DFTinvestigation[J]. Chem. Phys. Lett.,2002,358:144-150
    [8]Bi H, Chen D, Li D, Yuan Y, Xia D, Zhang Z, Zhang H, Wang Y. A green emissive amorphousfac-Alq3solid generated by grinding crystalline blue fac-Alq3powder[J]. Chem. Commun.,2011,47:4135-4137
    [9]Kaji H, Kusaka Y, Onoyama G, Horii F. CP/MAS13C NMR characterization of the isomeric statesand intermolecular packing in tris(8-hydroxyquinoline) aluminum(Ш)(Alq3)[J]. J. Am. Chem.Soc.,2006,128:4292-4297
    [10]C lle M, Brütting W. Thermal, structural and photophysical properties of the organicsemiconductor Alq3[J]. Phys. Stat. Sol.,2004,201:1095-1115
    [11]Muccini M, Loi M A, Kenevty K, Zamboni R, Masciocchi N, Sironi A. Blue luminescence offacial tris(quinolin-8-olato)aluminum(Ш) in solution, crystals, and thin films[J]. Adv. Mater.,2004,16:861-864
    [12]Fukushima T, Kaji H. Green-and blue-emitting tris(8-hydroxyquinoline) aluminum(Ш)(Alq3)crystalline polymorphs: Preparation and application to organic light-emitting diodes[J]. Org.Electron.,2012,13:2985-2990
    [13]Cho C P, Wu C A, Perng T P. Crystallization of amorphous Alq3nanoparticles and thetransformation to nanowires[J]. Adv. Funct. Mater.,2006,16:819-823
    [14]Kang H, Lee I-J, Yoon C S. Sign change in the organic magnetoresistance oftris(8-hydroxyquinolinato)aluminum upon annealing[J]. Appl. Phys. Lett.,2012,100: DOI:10.1063/1.3684873
    [15]Katakura R, Koide Y. Configuration-specific synthesis of the facial and meridional isomers oftris(8-hydroxyquinolinate)aluminum (Alq3)[J]. Inorg. Chem.,2006,45:5730-5732
    [16]Berner D, Klein C, Nazeeruddin M K, De Angelis F, Castellani M, Bugnon P, Scopelliti R,Zuppiroli L, Graetzel M. Efficient blue light-emitting diodes based on a classical "push-pull"architecture molecule4,4'-di-(2-(2,5-dimethoxyphenyl)ethenyl)-2,2'-bipyridine[J]. J. Mater.Chem.,2006,16:4468-4474
    [17]Jesuraj P J, Jeganathan K. Surface defects impeded excitons in Alq3based hetero junctionOLEDs[J].Appl. Surf. Sci.,2013,268:323-326
    [18]Nemkovich A, Rubinov A N, Tomin I T. Inhomogeneous broadening of electronic spectra of dyemolecules in solutions, topics in fluorescence spectroscopy, vol.2(Ed: J. R. Lakowicz), Springer,NewYork [M].1991, p367
    [19]Muegge B D, Brooks S, Richter M M. Electrochemiluminescence oftris(8-hydroxyquinoline-5-sulfonic acid)aluminum(Ш) in aqueous solution[J]. Anal. Chem.,2003,75:1102-1105
    [20]Yan D, Lu J, Wei M, Evans D G, Xue Duan. Sulforhodamine B intercalated layered doublehydroxide thin film with polarized photoluminescence[J]. J. Phys. Chem. B,2009,113:1381-1389
    [21]Camerel F, Barbera J, Otsuki J, Tokimoto T, Shimazaki Y, Chen L-Y, Liu S-H, Lin M-S, Wu C-C,Ziessel R. Solution-processable liquid crystals of luminescentaluminum(8-hydroxyquinoline-5-sulfonato) complexes[J].Adv. Mater.,2008,20:3462-3467
    [22]Baker B C, Sawyer D T. Proton nuclear magnetic resonance studies of8-quinolinol and several ofits metal complexes [J]. Anal. Chem.,1968,40:1945-1951
    [23]Utz M, Chen C, Morton M, Papadimitrakopoulos F. Ligand exchange dynamics in aluminumtris-(quinoline-8-olate): Asolution state NMR study[J]. J.Am. Chem. Soc.,2003,125:1371-1375
    [24]Colle M, Forero-Lenger S, Gmeiner J, Brutting W. Vibrational analysis of different crystallinephases of the organic electroluminescent material aluminium tris(quinoline-8-olate)(Alq3)[J].Phys. Chem. Chem. Phys.,2003,5:2958-2963
    [25]Sapochak L S, Benincasa F E, Schofield R S, Baker J L, Riccio K K C, Fogarty D, Kohlmann H,Ferris K F, Burrows P E. Electroluminescent zinc(Ш) bis(8-hydroxyquinoline): Structural effectson electronic states and device performance[J]. J. Am. Chem. Soc.,2002,124:6119-6125
    [26]Xu B S, Hao Y Y, Wang H, Zhou H F, Liu X G, Chen M W. The effects of crystal structure onoptical absorption/photoluminescence of bis(8-hydroxyquinoline)zinc[J]. Solid. State. Commun.,2005,136:318-322
    [27]Shukla V K, Kumar S. Conversion of a green light emitting zinc-quinolate complex thin film to astable and highly packed blue emitter film[J]. Synthetic Met.,2010,160:450-454
    [28]Meyers A, South C, Weck M. Design, synthesis, characterization and fluorescent studies of thefirst zinc-quinolate polymer[J]. Chem. Commun.,2004,1176-1177
    [29]Son H-J, Han W-S, Chun J-Y, Kang B-K, Kwon S-N, Ko J, Han S J, Lee C, Kim S J, Kang S O.Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolateligand system: Syntheses, characterizations, and organic light emitting device applications of4-coordinated bis(2-oxazolylphenolate) zinc(П) complexes[J]. Inorg. Chem.,2008,47:5666-5676
    [30]Thomsen D L, Phely-Bobin T, Papadimitrakopoulos F. Zinc-bisquinoline coordination assembliesof high refractive index and film uniformity[J]. J.Am. Chem. Soc.,1998,120:6177-6178
    [31]Hopkins T A, Meerholz K, Shaheen S, Anderson M L, Schmidt A, Kippelen B, Padias AB, Hall HK, Peyghambarian N, Armstrong N R. Substituted aluminum and zinc quinolates with blue-shiftedabsorbance/luminescence bands: Synthesis and spectroscopic, photoluminescence, andelectroluminescence characterization[J]. Chem. Mater.,1996,8:344-351
    [32]Wang H, Wang W S, Zhang H S. A spectrofluorimetric method for cysteine and glutathione usingthe fluorescence system of Zn(П)-8-hydroxyquinoline-5-sulphonic acid complex[J]. Spectrochim.Acta. A.,2001,57:2403-2407
    [33]Liu J C I, Bailar J C. The stereochemistry of complex inorganic compounds. XI. The resolution ofbis-(8-quinolinolo-5-sulfonic acid) zinc(П)[J]. J. Am. Chem. Soc.,1951,73:5432-5433
    [34]Chiang C-J, Kimyonok A, Etherington M K, Griffiths G C, Jankus V, Turksoy F, Monkman A P.Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: The key role oftriplet fusion[J].Adv. Funct. Mater.,2013,23:739-746
    [35]Dong G, Ma H, Liu Y, Yang Z, Liu Q. Synthesis and photoluminescence properties of thehigh-brightness Eu3+-doped Sr3Bi(PO4)(3)phosphors[J]. Opt. Commun.,2012,285:4097-4101
    [36]Takeuchi T, Kosugi Y, Itoh K. Nuclear magnetic resonance spectra of8-hydroxyquinolines andtheir zinc chelates in hexamethylphosphoric triamide[J].Analy. Chemie.,1979,294:275-277
    [37]Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of8-quinolinol and its metal chelates [J]. Inorg. Chem.,1964,3:692-696
    [38]Costantino U, Coletti N, Nocchetti M, Aloisi G G, Elisei F, Latterini L. Surface uptake andintercalation of fluorescein anions into ZnAl hydrotalcite. Photophysical characterization ofmaterials obtained[J]. Langmuir,2000,16:10351-10358
    [39]Jones R M, Bergstedt T S, Buscher C T, McBranch D, Whitten D. Superquenching and itsapplications in J-aggregated cyanine polymers[J]. Langmuir,2001,17:2568-2571
    [40]Yan D, Zhao Y, Wei M, Liang R, Lu J, Evans D G, Duan X. Regular assembly of9-fluorenone-2,7-dicarboxylate within layered double hydroxide and its solid-statephotoluminescence: A combined experiment and computational study[J]. Rsc Adv.,2013,3:4303-4310
    [41]Wang Z-L, Kang Z-H, Wang E-B, Su Z-M, Xu L. Intercalation and photophysical properties ofthe tetra-(8-hydroxyquinolinato) boron complex and3,3′,4,4′-benzophenone tetracarboxylic anioninto Mg-Al layered double hydroxides[J]. Inorg. Chem.,2006,45:4364-4371
    [42]Sideris P J, Nielsen U G, Gan Z, Grey C P. Mg/Al ordering in layered double hydroxides revealedby multinuclear NMR spectroscopy[J]. Science,2008,321:113-117
    [43]Tang P, Feng Y, Li D. Fabrication and properties of acid yellow49dye-intercalated layered doublehydroxides film on an alumina-coated aluminum substrate[J]. Dyes. Pigments.,2011,91:120-125
    [44]Tang P, Feng Y, Li D. Improved thermal and photostability of an anthraquinone dye byintercalation in a zinc-aluminum layered double hydroxides host[J]. Dyes. Pigments.,2011,90:253-258
    [45]Tang P, Deng F, Feng Y, Li D. Mordant yellow3anions intercalated layered double hydroxides:Preparation, thermo-and photostability[J]. Ind. Eng. Chem. Res.,2012,51:10542-10545
    [46]Wiederrecht G P, Sandi G, Carrado K A, Seifert S. Intermolecular dimerization within pillared,layered clay templates[J]. Chem. Mater.,2001,13:4233-4238
    [47]Rurack K, Hoffmann K, Al-Soufi W, Resch-Genger U.2,2'-bipyridyl-3,3'-diol incorporated intoalpo4-5crystals and its spectroscopic properties as related to aqueous liquid media[J]. J. Phys.Chem. B,2002,106:9744-9752
    [48]Olejniczak S, Mikua-Pacboczyk J, Hughes C E, Potrzebowski M J. N-15and C-13high-resolution solid-state NMR study of the polymorphism of the L-enantiomer ofN-benzoylphenylalanine[J]. J. Phys. Chem. B,2008,112:1586-1593
    [49]Harper J K, Facelli J C, Barich D H, McGeorge G, Mulgrew A E, Grant D M.13C NMRinvestigation of solid-state polymorphism in10-deacetyl baccatin Ш[J]. J. Am. Chem. Soc.,2002,124:10589-10595
    [50]Shaibat M A, Casabianca L B, Wickramasinghe N P, Guggenheim S, Dios A C d, Ishii Y.Characterization of polymorphs and solid-state reactions for paramagnetic systems by13Csolid-state NMR and ab initio calculations[J]. J.Am. Chem. Soc.,2007,129:10968-10969
    [1]Sheats J R, Antoniadis H, Hueschen M, Leonard W, Miller J, Moon R, Roitman D, Stocking A.Organic electroluminescent devices[J]. Science,1996,273:884-888
    [2]Papadimitrakopoulos F, Zhang X-M, Thomsen D L, Higginson K A. A chemical failuremechanism for aluminum(Ш)8-hydroxyquinoline light-emitting devices[J]. Chem. Mater.,1996,8:1363-1365
    [3]Contoret A E A, Farrar S R, Jackson P O, Khan S M, May L, O'Neill M, Nicholls J E, Kelly S M,Richards G J. Polarized electroluminescence from an anisotropic nematic network on anon-contact photoalignment layer[J]. Adv. Mater.,2000,12:971-974
    [4]Grell M, Knoll W, Lupo D, Meisel A, Miteva T, Neher D, Nothofer H-G, Scherf U, Yasuda A.Blue polarized electroluminescence from a liquid crystalline polyfluorene[J]. Adv. Mater.,1999,11:671-675
    [5]Camerel F, Barbera J, Otsuki J, Tokimoto T, Shimazaki Y, Chen L-Y, Liu S-H, Lin M-S, Wu C-C,Ziessel R. Solution-processable liquid crystals of luminescentaluminum(8-hydroxyquinoline-5-sulfonato) complexes[J].Adv. Mater.,2008,20:3462-3467
    [6]Ahmed R, Patra S K, Hamley I W, Manners I, Faul C F J. Tetragonal and helical morphologiesfrom polyferrocenylsilane block polyelectrolytes via ionic self-assembly[J]. J. Am. Chem. Soc.,2013,135:2455-2458
    [7]Guo Y, Liu Q, Chen H, Wang X, Shen Z, Shu X, Sun R. Direct grafting modification of pulp inionic liquids and self-assembly behavior of the graft copolymers[J]. Cellulose,2013,20:873-884
    [8]Faul C F J. Structure-function relationship in optically and electronically active ISA materials[J].Synthetic Met.,2004,147:63-65
    [9]Zhao M, Zhao Y, Zheng L, Dai C. Construction of supramolecular self-assembled microfiberswith fluorescent properties through a modified ionic self-assembly (ISA) strategy[J]. Chem. Eur.J.,2013,19:1076-1081
    [10]Ahmed R, Patra S K, Hamley I W, Manners I, Faul C F J. Tetragonal and helical morphologiesfrom polyferrocenylsilane block polyelectrolytes via ionic self-assembly[J]. J. Am. Chem. Soc.,2013,135:2455-2458
    [11]He J, Li R, Gu F. Preparation of polyaniline/nylon conducting fabric by layer-by-layer assemblymethod[J]. J. Appl. Polym. Sci.,2013,128:1673-1679
    [12]Linford M R, Auch M, Mhwald H. Nonmonotonic effect of ionic strength on surface dyeextraction during dye-polyelectrolyte multilayer formation[J]. J. Am. Chem. Soc.,1998,120:178-182
    [13]Ariga K, Lvov Y, Kunitake T. Assembling alternate dye-polyion molecular films by electrostaticlayer-by-layer adsorption[J]. J. Am. Chem. Soc.,1997,119:2224-2231
    [14]Nicol E, Habib-Jiwan J-L, Jonas AM. Polyelectrolyte multilayers as nanocontainers for functionalhydrophilic molecules[J]. Langmuir,2003,19:6178-6186
    [15]Ge L, Wang W, Yao C, Xu Z. Environment-sensitive nanofibers and anchoring of dyes[J]. Asian JChem.,2013,25:1270-1274
    [16]Li W, Yan D, Gao R, Lu J, Wei M, Duan X. Recent advances in stimuli-responsivephotofunctional materials based on accommodation of chromophore into layered doublehydroxide nanogallery[J]. J. Nanomater.,2013, DOI:10.1155/2013/586462
    [17]Coelho C, Stimpfling T, Leroux F, Verney V. Inorganic-organic hybrid materials based on aminoacid modified hydrotalcites used as UV-absorber fillers for polybutylene succinate[J]. Eur. J.Inorg. Chem.,2012,5252-5258
    [18]Zhu Y, Zhou Y, Zhang T, He M, Wang Y, Yang X, Yang Y. Preparation and characterization oflactate-intercalated Co-Fe layered double hydroxides and exfoliated nanosheet film with lowinfrared emissivity[J]. Appl. Surf. Sci.,2012,263:132-138
    [19]Ma R, Sasaki T. Synthesis of LDH nanosheets and their layer-by-layer assembly[J]. Recent Pat.Nanotech.,2012,6:159-168
    [20]Yan D, Lu J, Wei M, Han J, Ma J, Li F, Evans D G, Duan X. Ordered poly(p-phenylene)/layereddouble hydroxide ultrathin films with blue luminescence by layer-by-layer assembly[J]. Angew.Chem. Int. Ed.,2009,48:3073-3076
    [21]Yan D, Lu J, Chen L, Qin S, Ma J, Wei M, Evans D G, Duan X. A strategy to the orderedassembly of functional small cations with layered double hydroxides for luminescent ultra-thinfilms[J]. Chem. Commun.,2010,46:5912-5914
    [22]Kenniston J A, Conley G P, Sexton D J, Nixon A E. A homogeneous fluorescence anisotropyassay for measuring transglutaminase2activity[J]. Analy. Biochem.,2013,436:13-15
    [23]Wang X, Zou M, Huang H, Ren Y, Li L, Yang X, Li N. Gold nanoparticle enhanced fluorescenceanisotropy for the assay of single nucleotide polymorphisms (SNPS) based on toehold-mediatedstrand-displacement reaction[J]. Biosens. Bioelectron.,2013,41:569-575
    [24]Kim S T, Hwang D-H, Li X C, Grüner J, Friend R H, Holmes A B, Shim H K. Efficient greenelectroluminescent diodes based on poly(2-dimethyloctylsilyl-1,4-phenylenevinylene)[J]. Adv.Mater.,1996,8:979-982
    [25]Liang Z, Wang Q. Multilayer assembly and patterning of poly(p-phenylenevinylene) via covalentcoupling reactions[J]. Langmuir2004,20:9600-9606
    [26]Crespo-Biel O, Dordi B, Reinhoudt D N, Huskens J. Supramolecular layer-by-layer assembly:Alternating adsorptions of guest-and host-functionalized molecules and particles usingmultivalent supramolecular interactions[J]. J.Am. Chem. Soc.,2005,127:7594-7600
    [1]Zeng G, Gao J, Chen S, Chen H, Wang Z, Zhang X. Combining hydrogen-bonding complexationin solution and hydrogen-bonding-directed layer-by-layer assembly for the controlled loading of asmall organic molecule into multilayer films[J]. Langmuir,2007,23:11631-11636
    [2]Xu H, Schoenhoff M, Zhang X. Unconventional layer-by-layer assembly: Surface molecularimprinting and its applications[J]. Small,2012,8:517-523
    [3]Zhang X, Shi F, Niu J, Jiang Y, Wang Z. Superhydrophobic surfaces: From structural control tofunctional application[J]. J. Mater. Chem.,2008,18:621-633
    [4]Gauczinski J, Liu Z, Zhang X, Schoenhoff M. Mechanism of surface molecular imprinting inpolyelectrolyte multilayers[J]. Langmuir,2010,26:10122-10128
    [5]Gensel J, Dewald I, Erath J, Betthausen E, Mueller AH E, Fery A. Reversible swelling transitionsin stimuli-responsive layer-by-layer films containing block copolymer micelles[J]. Chem. Sci.,2013,4:325-334
    [6]Lin S, Wang Y, Cai C, Xing Y, Lin J, Chen T, He X. Tuning self-assembly and photo-responsivebehavior of azobenzene-containing triblock copolymers by combining homopolymers[J].Nanotechnology,2013,24: doi:10.1088/0957-4484/24/8/085602
    [7]Parmar A, Parekh P, Bahadur P. Solubilization and release of a model drug nimesulide fromPEO-PPO block copolymer core-shell micelles: Effect of size of PEO blocks[J]. J. SolutionChem.,2013,42:80-101
    [8]Wang D, Chen H, Su Y, Qiu F, Zhu L, Huan X, Zhu B, Yan D, Guo F, Zhu X. Supramolecularamphiphilic multiarm hyperbranched copolymer: Synthesis self-assembly and drug deliveryapplications[J]. Polym. Chem.,2013,4:85-94
    [9]Nguyen P M, Zacharia N S, Verploegen E, Hammond P T. Extended release antibacteriallayer-by-layer films incorporating linear-dendritic block copolymer micelles[J]. Chem. Mater.,2007,19:5524-5530
    [10]Heta Y, Kumaki K, Hifumi H, Citterio D, Tanimoto A, Suzuki K. Gadolinium containingphotochromic micelles as potential magnetic resonance imaging traceable drug carriers[J].Photochem. Photobio.,2012,88:876-883
    [11]Liu X, Zhou L, Geng W, Sun J. Layer-by-layer-assembled multilayer films ofpolyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes[J].Langmuir,2008,24:12986-12989
    [12]Ma N, Wang Y, Wang B, Wang Z, Zhang X, Wang G, Zhao Y. Interaction between blockcopolymer micelles and azobenzene-containing surfactants: From coassembly in water tolayer-by-layer assembly at the interface[J]. Langmuir,2007,23:2874-2878
    [13]Cho J, Jinkee H, Char K, Caruso F. Nanoporous block copolymer micelle/micelle multilayer filmswith dual optical properties[J]. J.Am. Chem. Soc.,2006,128:9935-9942
    [14]Inoue T, Chen G, Nakamae K, Hoffman A S. An AB block copolymer of oligo(methylmethacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs[J]. J. Control.Release.,1998,51:221-229
    [15]Choi J, Rubner M F. Influence of the degree of ionization on weak polyelectrolyte multilayerassembly[J]. Macromolecules,2005,38:116-124
    [16]Shukla V K, Kumar S. Conversion of a green light emitting zinc-quinolate complex thin film to astable and highly packed blue emitter film[J]. Synthetic Met.,2010,160:450-454
    [17]Pucci D, Crispini A, Ghedini M, Szerb E I, La Deda M.2,2'-biquinolines as test pilots for tuningthe colour emission of luminescent mesomorphic silver(Ι) complexes[J]. Dalton Trans.,2011,40:4614-4622
    [18]Sapelli E, Brand o T A S, Fiedler H D, Nome F. Fluorescence of zn(П)8-hydroxyquinolinecomplex in the presence of aqueous micellar media: The special cetyltrimethylammoniumbromide effect[J]. J. Colloid. Interf. Sci.,2007,314:214–222
    [19]Devol I, Bardez E. Complexation of Al(Ш) by8-hydroxyquinoline and drastic fluorescenceenhancement in reverse micelles[J]. J. Colloid. Interf. Sci.,1998,200:241–248
    [20]Hopkins T A, Meerholz K, Shaheen S, Anderson M L, Schmidt A, Kippelen B, Padias AB, Hall HK, Peyghambarian N, Armstrong N R. Substituted aluminum and zinc quinolates with blue-shiftedabsorbance/luminescence bands: Synthesis and spectroscopic, photoluminescence, andelectroluminescence characterization[J]. Chem. Mater.,1996,8:344-351
    [21]Li S, Lu J, Xu J, Dang S, Evans D G, Duan X. Bis(8-hydroxyquinolate-5-sulfonate)zincintercalated layered double hydroxide and its controllable luminescent properties[J]. J. Mater.Chem.,2010,20:9718-9725
    [22]Tsuboi T, Nakai Y, Torii Y. Photoluminescence of bis(8-hydroxyquinoline) zinc (Znq2) andmagnesium (Mgq2)[J]. Cent. Eur. J. Phys.,2012,10:524-528
    [23]Chen H, Ji X, Zhang S, Shi W, Wei M, Evans D G, Duan X. A ratiometric fluorescencechemosenser for Hg2+based on primuline and layered double hydroxide ultrafilms[J]. Sensor.Actuat. B-Chem.,2013,178:155-162
    [24]Li S, Lu J, Ma H, Xu J, Yan D, Wei M, Evans D G, Duan X. Ordered blue luminescent ultrathinfilms by the effective coassembly of tris(8-hydroxyquinolate-5-sulfonate)aluminum andpolyanions with layered double hydroxides[J]. Langmuir,2011,27:11501-11507
    [25]Niu J, Shi F, Liu Z, Wang Z, Zhang X. Reversible disulfide cross-linking in layer-by-layer films:Preassembly enhanced loading and pH/reductant dually controllable release[J]. Langmuir,2007,23:6377-6384
    [26]Wang Y, Han P, Wu G, Xu H, Wang Z, Zhang X. Selectively erasable multilayer thin film byphotoinduced disassembly[J]. Langmuir,2010,26:9736-9741
    [27]Chiang W-H, Viet Thang H, Huang W-C, Huang Y-F, Chern C-S, Chiu H-C. Dualstimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drugrelease[J]. Langmuir,2012,28:15056-15064
    [28]Itoh T, Komada S, Ihara E, Inoue K. Dispersion polymerization of styrene using apolystyrene/poly(l-glutamic acid) block copolymer as a stabilizer[J]. J. Colloid. Interf. Sci.,2012,388:112-117
    [29]Clodt J I, Filiz V, Rangou S, Buhr K, Abetz C, Hoeche D, Hahn J, Jung A, Abetz V. Doublestimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembleddiblock copolymer membranes[J].Adv. Funct. Mater.,2013,23:731-738
    [30]Han X, Zhang X, Zhu H, Yin Q, Liu H, Hu Y. Effect of composition of PDMAEMA-b-PAAblockcopolymers on their pH-and temperature-responsive behaviors[J]. Langmuir,2013,29:1024-1034
    [31]Minoda M, Shimizu T, Miki S, Motoyanagi J. Thermoresponsive Nipam block copolymerscontaining densely grafted poly(vinyl ether) brushes synthesized by a combination of livingcationic polymerization and raft polymerization[J]. J. Polym. Sci. Pol. Chem.,2013,51:786-792
    [32]Wu S, Qi R, Kuang H, Wei Y, Jing X, Meng F, Huang Y. pH-responsive drug delivery byamphiphilic copolymer through boronatecatechol complexation[J]. Chempluschem.,2013,78:175-184
    [33]Zhang K, Wang Z, Li Y, Jiang Z, Hu Q, Liu M, Zhao Q. Dual stimuli-responsiveN-phthaloylchitosan-graft-(poly(N-isopropylacrylamide)-block-poly(acrylic acid)) copolymerprepared via raft polymerization[J]. Carbohyd. Polym.,2013,92:662-667
    [34]Li C, Zhang Y, Hu J, Cheng J, Liu S. Reversible three-state switching of multicolor fluorescenceemission by multiple stimuli modulated FRET processes within thermoresponsive polymericmicelles[J].Angew. Chem. Int. Ed.,2010,49:5120-5124
    [35]Hu J, Zhang X, Wang D, Hu X, Liu T, Zhang G, Liu S. Ultrasensitive ratiometric fluorescent pHand temperature probes constructed from dye-labeled thermoresponsive double hydrophilic blockcopolymers[J]. J. Mater. Chem.,2011,21:19030-19038
    [36]Pietsch C, Hoogenboom R, Schubert U S. Soluble polymeric dual sensor for temperature and pHvalue[J].Angew. Chem. Int. Ed.,2009,48:5653-5656
    [37]Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer B D, Gao J. Tunable, ultrasensitivepH-responsive nanoparticles targeting specific endocytic organelles in living cells[J]. Angew.Chem. Int. Ed.,2011,50:6109-6114
    [38]Xu H, Xu B, Fang X, Yue Y, Chen L, Wang H, Hao Y. Molecular structure, photoluminescent andelectroluminescent properties of bis(2-(4-methyl-2-hydroxyphenyl)benzothiazolate) zinc withexcellent electron-transport characteristics[J]. Mater. Chem. Phys.,2011,129:840-845
    [39]Xu H, Xu B, Fang X, Chen L, Wang H, Hao Y. Correlation between molecular structure andoptical properties for the bis(2-(2-hydroxyphenyl)benzothiazolate) complexes[J]. J. Photoch.Photobio. A.,2011,217:108-116
    [40]Xu H, Wang H, Yue Y, Chen L, Hao Y, Xu B. Achieving the blue-light-emitting materials forbenzothiazolate zn(П) complexes by introducing different functional groups[J]. Synthetic Met.,2012,162:775-780
    [41]Xu H, Yue Y, Wang H, Chen L, Hao Y, Xu B. Single-crystal structure, photophysicalcharacteristics and electroluminescent properties ofbis(2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazolate)zinc[J]. J. Lumin,2012,132:919-923
    [42]Xu X, Liao Y, Yu G, You H, Di C A, Su Z, Ma D, Wang Q, Li S, Wang S, Ye J, Liu Y. Chargecarrier transporting, photoluminescent, and electroluminescent properties ofzinc(П)-2-(2-hydroxyphenyl)benzothiazolate complex[J]. Chem. Mater.,2007,19:1740-1748
    [43]Qureshi M, S. Sundar Manoharana, Singhb S P, Mahapatra Y N. Electroluminescent properties ofdimeric bis(2-(2-hydroxylphenyl)benzthiazolate)zinc (П) complex[J]. Solid. State. Commun.,2005,133:305–309
    [44]Takagi H D, Noda K, Itoh S, Iwatsuki S. Piezochromism and related phenomena exhibited bypalladium complexes[J]. Platin. Met. Rev.,2004,48:117-124
    [45]Shan G-G, Li H-B, Cao H-T, Zhu D-X, Li P, Su Z-M, Liao Y. Reversible piezochromic behaviorof two new cationic iridium(Ш) complexes[J]. Chem. Commun.,2012,48:2000-2002
    [46]Shan G-G, Li H-B, Sun H-Z, Zhu D-X, Cao H-T, Su Z-M. Controllable synthesis ofiridium(Ш)-based aggregation-induced emission and/or piezochromic luminescence phosphors bysimply adjusting the substitution on ancillary ligands[J]. J.Mater. Chem. C,2013,1:1440-1449
    [47]Mizukami S, Houjou H, Sugaya K, Koyama E, Tokuhisa H, Sasaki T, Kanesato M. Fluorescencecolor modulation by intramolecular and intermolecular п-п interactions in a helical zinc(П)complex[J]. Chem. Mater.,2005,17:50-56
    [48]Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K,Sawamura M. Reversible mechanochromic luminescence of[(C6F5Au)2(μ-1,4-diisocyanobenzene)][J]. J.Am. Chem. Soc.,2008,130:10044-10045
    [49]Bi H, Chen D, Li D, Yuan Y, Xia D, Zhang Z, Zhang H, Wang Y. A green emissive amorphousfac-alq3solid generated by grinding crystalline blue fac-alq3powder[J]. Chem. Commun.,2011,47:4135-4137
    [50]Li S, Lu J, Ma H, Yan D, Li Z, Qin S, Evans D G, Duan X. Luminous ultrathin films by theordered micellar assembly of neutral bis(8-hydroxyquinolate)zinc with layered doublehydroxides[J]. J. Phys. Chem. C,2012,116:12836-12843
    [51]Yan D, Lu J, Ma J, Qin S, Wei M, Evans D G, Duan X. Layered host-guest materials withreversible piezochromic luminescence[J]. Angew. Chem. Int. Ed.,2011,50:7037-7040
    [52]Yan D, Lu J, Ma J, Wei M, Evans D G, Duan X. Reversibly thermochromic, fluorescent ultrathinfilms with a supramolecular architecture[J]. Angew. Chem. Int. Ed.,2011,50:720-723
    [53]Yang S, Yu X, Wang L, Tu Y, Zheng J X, Xu u, Horn R M V, Cheng S Z D.Hydrogen-bonding-driven complexation of polystyrene-block-poly(ethylene oxide) micelles withpoly(acrylic acid)[J]. Macromolecules,2010,43:3018–3026
    [54]Beeby A, Bettington S, Samuel I D W, Wang Z J. Tuning the emission of cyclometalated iridiumcomplexes by simple ligand modification[J]. J. Mater. Chem.,2003,13:80-83
    [55]Demas J N, DeGraff B A. Applications of luminescent transition platinum group metal complexesto sensor technology and molecular probes[J]. Coord. Chem. Rev.,2001,211:317-351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700