用户名: 密码: 验证码:
光波段负折射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负折射是一种奇特的光传播现象,表现为在两介质界面处入射光和折射光位于法线的同侧,由此提供了一种新型操纵光束的手段,可以实现突破衍射极限的亚波长成像以及应用于隐身设备,在纳米波导、新束流操纵设备、量子光子学和非线性开关等一系列光学领域都有巨大的应用价值,成为近年研究的热点。
     2000年,D. R. Smith等人首次利用金属线和开口谐振环组合阵列结构在微波段证实了负折射现象的存在,此外以渔网状双负材料为代表的微纳结构已经在光波段实现了负折射。但是这些负折射材料的微纳结构复杂,制备时需要利用高端的纳米加工技术,且存在着强烈的能量损耗,制约着负折射材料实用化的发展。结合液晶可以通过分子排列方式来调节光传播的特性,本论文探索了实现光波段负折射的各种材料结构。
     首先研究了向列相液晶中产生光波段负折射现象的条件。研究了液晶双折射率差Δn、分子排列方向和入射角等因素对负折射角的影响。液晶分子指向矢与入射界面的夹角0°<<90°可以实现光波段负折射;约为40°时,能够获得最大负折射角;在高Δn液晶中可以实现更大的负折射角,实验上利用Δn高达0.42的液晶材料,在λ=532nm处检测到-14°的负折射角,约为文献报道值的2倍;通过调控电压改变液晶分子排列方向,可以实现负折射角的调谐。
     针对向列相液晶中只能在某一侧入射产生负折射以及负折射角度小的缺陷,依据符号相反介电张量的双曲线型负折射材料的设计,研究了金属纳米球掺杂液晶的介电张量模型,计算了银纳米球掺杂液晶的双曲线型色散曲线,并得出在450~560nm波长范围内能够获得负折射;同时在银纳米球半径较小、掺杂体积分数较高以及液晶的Δn值较大时,更利于双曲线型材料的实现。实验上还制备了多孔氧化铝支撑的银纳米线阵列型材料,利用反射光谱检测出在波长780nm处的负折射。
     针对银纳米球/液晶和银纳米线/氧化铝材料的强烈能量吸收问题,提出采用反六角溶质液晶自组装银纳米线阵列的方案,利用反六角溶质液晶小介电常数的性质,降低光能吸收,实现了宽光波段的负折射。理论计算了银纳米线/反六角溶质液晶材料的负折射,表明在大于440nm的可见到近红外光波段内均能获得全方位负折射,且折射角随着波长的减小而增大;如果再在此材料中加入增益染料分子,可以更有效地减小能量损耗,透过率显著提高。
Negative refraction is a novel phenomenon of optical propagation showing thatrefractive light position at the same side of the normal with incident light,consequently,it provides new approach to manipulate optical behavior to realizesubwavelength superlens and invisible cloak devices and bring out many enormouspotential applications such as nano waveguide, steer devices, quantum photonics andnonlinear optical switch and so on. Negative refraction has become hot researchfiled.
     2000, D. R. Smith et al. firstly realized experimentally negative refraction inartificial structures composed of metallic wires arrays and slit resonant rings atmicrowave range, additionally, negative refraction has been realized experimentallyin the micro-or nano structures such as the representative of fishnet metamaterial inoptical wavelength range. However,These structures realizing negative refraction iscomplex and need to be prepared by way of complicated nano processing technology.Negative refraction in these structures exist strong energy loss, so that restrictsfurther practical applications. Combination with unique property of manipulatingoptical propagation of liquid crystals through the alignment of liquid crystalmolecules, the thesis explores that negative refraction at optical wavelength isrealized in different constitute structures.
     Firstly, negative refraction in nematic liquid crystals is investigatedtheoretically. Negative refraction angle can be influenced by birefringence Δn,molecule aligned direction and incident angles and so on. Negative refraction can beobtained when the angle φ between aligned direction of liquid crystal molecules andinterface are more than0°and less than90°. The maximal negative refraction angleis obtained when the angle between aligned direction of liquid crystal molecules andinterface is approximately equal to40°. Liquid crystal with larger Δn can realizelarger negation refraction angle, maximal-14°is obtained experimentally for Δn=0.42at λ=532nm. Calculation results demonstrate tunable negative refractioncan be achieved through the reorientation of liquid crystals molecules by voltagecontrol.
     For overcoming the confinement including certain incident direction and smallnegative refraction angles, depending on the principle of negative refraction ofhyperbolic metamaterial possessing dielectric tensors with opposite signs, thedielectric tensors of aligned liquid crystals doped metallic nanospheres areinvestigated and achieved hyperbolic dispersion relations. Negative refraction can berealized at approximately wavelength450~560nm range. For smaller radius andlarger volume fraction of silver nanospheres and larger Δn of liquid crystals,negative refraction can be obtained easier. Optical hyperbolic metamaterialcomposed porous alumina embedded silver nanowires is fabricated experimentallyby means of two-step anodize oxidize methods and alternating current depositionmethod. Making use of reflectivity, experiments demonstrate negative refraction atλ=780nm.
     Due to strong energy loss in silver nanospheres/liquid crystals and silvernanowire/Alumina, hyperbolic metamaterial composed of silver nanowiresembedding reverse hexagonal lyotropic liquid crystal (RHLLC) is proposed torealize wide-spectrum negative refraction and can reduce optical absorption becauseof small permittivity of reverse hexagonal lyotropic liquid crystal. Throughtheoretical analysis, silver nanowires/RHLLC can realize all-angle negativerefraction at approximately more than440nm optical wavelength range and negativerefraction angles increase as the wavelengths decrease. Energy loss is compensatedby adding conveniently gain dye molecules in to reverse hexagonal lyotropic liquidcrystal embedded silver nanowires. The simulated results demonstrate transmittancecan be improved remarkable in contrast to material with no gain.
引文
[1] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation,Interference and Diffraction of Light[M]. Seventh Edition, London: CambridgeUniversity Press,2002.
    [2] V. G. Veselago, The electrodynamics of substances with simultaneously negativevalues of ε and μ[J], Phys. Usp.1968,10(4):509-514.
    [3] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Extremely low frequencyplasmons in metallic mesostructures[J], Phys. Rev. Lett.1996,76(25):4773-4776.
    [4] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, Magnetism fromconductors and enhanced nonlinear phenomena[J], IEEE Trans. Microwave TheoryTech.1999,47(11):2075-2084.
    [5] D. R. Smith, N. Kroll, Negative refractive index in left-handed materials[J], Phys.Rev. Lett.2000,85(14):2933-2936.
    [6] R. A. Shelby, D. R. Smith, S. Schultz, Experimental verification of a negativeindex of refraction[J], Science.2001,292(5514):77-79.
    [7] V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev,A. V. Kildishev, Negative index of refraction in optical metamaterials[J], Opt. Lett.2005,30(24):3356-3358.
    [8] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck,Experimental demonstration of near-infrared negative-index metamaterials[J], Phys.Rev. Lett.2005,95(13):137404.
    [9] A. Yariv, P. Yeh, Optical waves in crystals: propagation and control of laserradiation[M]. New York: John Wiley&Sons,1984.
    [10] S. A. Ramakrishna, Physics of negative refractive index materials[M].Bellingham: CRC Press,2009.
    [11] P. B. Johnson, R. W. Christy, Optical constants of noble metals[J], Phys. Rev. B.1972,6(12):4370-4379.
    [12] C. Kittel, Introduction to Solid State Physics[M]. Eighth Edition, New Jersey:John Wiley&Sons Press,2005.
    [13] P. Edward, I. Palik, Handbook of optical constants of solids[M]. San Diego:Academic Press,1985.
    [14] V. M. Shalaev, Optical negative-index metamaterials[J], Nat. Photon.2007,1(1):41-48.
    [15] J. T. Huangfu, L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M.Grzegorczyk, J. A. Kong, Experimental confirmation of negative refractive index of ametamaterial composed of Omega-like metallic patterns[J], Appl. Phys. Lett.2004,84(9):1537-1539.
    [16] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis,Magnetic response of metamaterials at100terahertz[J], Science.2004,306(5700):1351-1353.
    [17] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F.Zhou, T. Koschny, C. M. Soukoulis, Magnetic metamaterials at telecommunicationand visible frequencies[J], Phys. Rev. Lett.2005,95(20):203901.
    [18] S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, S. R. J. Brueck,Midinfrared resonant magnetic nanostructures exhibiting a negative permeability[J],Phys. Rev. Lett.2005,94(3):037402.
    [19] J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M.Soukoulis, Saturation of the magnetic response of split-ring resonators at opticalfrequencies[J], Phys. Rev. Lett.2005,95(22).
    [20] M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, Single-slitsplit-ring resonators at optical frequencies: limits of size scaling[J], Opt. Lett.2006,31(9):1259-1261.
    [21] H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P.Drachev, V. M. Shalaev, A negative permeability material at red light[J], Opt. Express.2007,15(3):1076-1083.
    [22] V. Yannopapas, A. Moroz, Negative refractive index metamaterials frominherently non-magnetic materials for deep infrared to terahertz frequency ranges[J],J. Phys.:Condens. Mat.2005,17(25):3717-3734.
    [23] M. S. Wheeler, J. S. Aitchison, M. Mojahedi, Three-dimensional array ofdielectric spheres with an isotropic negative permeability at infrared frequencies[J],Phys. Rev. B.2005,72(19):193103.
    [24] A. Garcia-Etxarri, R. Gomez-Medina, L. S. Froufe-Perez, C. Lopez, L. Chantada,F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J. J. Saenz, Strong magnetic responseof submicron Silicon particles in the infrared[J], Opt. Express.2011,19(6):4815-4826.
    [25] D. R. Smith, J. B. Pendry, M. C. Wiltshire, Metamaterials and negative refractiveindex[J], Science.2004,305(5685):788-792.
    [26] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Compositemedium with simultaneously negative permeability and permittivity[J], Phys. Rev.Lett.2000,84(18):4184-4187.
    [27] G. V. Eleftheriades, K. G. Balmain, Negative-Refraction MetamaterialsFundamental principal and application[M]. John Wiley and Sons,2005.
    [28] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, Low-lossnegative-index metamaterial at telecommunication wavelengths[J], Opt. Lett.2006,31(12):1800-1802.
    [29] S. Zhang, W. Fan, K. Malloy, S. Brueck, N. Panoiu, R. Osgood, Demonstrationof metal-dielectric negative-index metamaterials with improved performance atoptical frequencies[J], J. Opt. Soc. Am. B.2006,23(3):434-438.
    [30] G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, Negative-indexmetamaterial at780nm wavelength[J], Opt. Lett.2007,32(1):53-55.
    [31] S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, R. M. Osgood,Near-infrared double negative metamaterials[J], Opt. Express.2005,13(13):4922-4930.
    [32] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, Simultaneousnegative phase and group velocity of light in a metamaterial[J], Science.2006,312(5775):892-894.
    [33] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X.Zhang, Three-dimensional optical metamaterial with a negative refractive index[J],Nature.2008,455(7211):376-379.
    [34] U. K. Chettiar, A. V. Kildishev, T. A. Klar, V. M. Shalaev, Negative indexmetamaterial combining magnetic resonators with metal films[J], Opt. Express.2006,14(17):7872-7877.
    [35] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Determination of effectivepermittivity and permeability of metamaterials from reflection and transmissioncoefficients[J], Phys. Rev. B.2002,65(19):195104.
    [36] D. R. Smith, D. C. Vier, T. Koschny, C. M. Soukoulis, Electromagneticparameter retrieval from inhomogeneous metamaterials[J], Phys. Rev. E.2005,71(3):036617.
    [37] C. M. Soukoulis, M. Wegener, Past achievements and future challenges in thedevelopment of three-dimensional photonic metamaterials[J], Nat. Photon.2011,5(9):523-530.
    [38] D. R. Smith, D. Schurig, Electromagnetic wave propagation in media withindefinite permittivity and permeability tensors[J], Phys. Rev. Lett.2003,90(7):77405.
    [39] P. A. Belov, Backward waves and negative refraction in uniaxial dielectrics withnegative dielectric permittivity along the anisotropy axis[J], Microw. Opt. Tech. Lett.2003,37(4):259-263.
    [40] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A.Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Negative refraction insemiconductor metamaterials[J], Nat. Mater.2007,6(12):946-950.
    [41] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, Opticalnegative refraction in bulk metamaterials of nanowires[J], Science.2008,321(5891):930.
    [42] M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, Bulkphotonic metamaterial with hyperbolic dispersion[J], Appl. Phys. Lett.2009,94:151105.
    [43] J. Kanungo, J. Schilling, Experimental determination of the principal dielectricfunctions in silver nanowire metamaterials[J], Appl. Phys. Lett.2010,97:021903.
    [44] G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Demonstrationof Al: ZnO as a plasmonic component for near-infrared metamaterials[J], Proc. Natl.Acad. Sci.2012,109(23):8834-8838.
    [45] S. John, Strong localization of photons in certain disordered dielectricsuperlattices[J], Phys. Rev. Lett.1987,58(23):2486-2489.
    [46] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics[J], Phys. Rev. Lett.1987,58(20):2059-2062.
    [47] J. D. Joannopoulos, Photonic crystals: molding the flow of light[M]. SecondEdition, New Jersey: Princeton University,2008.
    [48] M. Notomi, Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap[J], Phys. Rev. B.2000,62(16):10696-10705.
    [49] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, S. Sridhar, Negativerefraction and left-handed electromagnetism in microwave photonic crystals[J], Phys.Rev. Lett.2004,92(12):127401.
    [50] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, S. Anand,Negative refraction at infrared wavelengths in a two-dimensional photonic crystal[J],Phys. Rev. Lett.2004,93(7):073902.
    [51] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, All-angle negativerefraction without negative effective index[J], Phys. Rev. B.2002,65(20):201104.
    [52] C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Negative refractionwithout negative index in metallic photonic crystals[J], Opt. Express.2003,11(7):746-754.
    [53] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis,Electromagnetic waves: Negative refraction by photonic crystals[J], Nature.2003,423(6940):604-605.
    [54] P. V. Parimi, W. T. Lu, P. Vodo, S. Sridhar, Photonic crystals: imaging by flat lensusing negative refraction[J], Nature.2003,426(6965):404.
    [55] A. T. aflove, S. C. Hagness, Computational Electrodynamics: TheFinite-Difference Time-Domain Method [M]. Second Edition, Boston: ArtechHouse,2000.
    [56] Y. Zhang, B. Fluegel, A. Mascarenhas, Total negative refraction in real crystalsfor ballistic electrons and light[J], Phys. Rev. Lett.2003,91(15):157404.
    [57] O. P. Pishnyak, O. D. Lavrentovich, Electrically controlled negative refraction ina nematic liquid crystal[J], Appl. Phys. Lett.2006,89(25):251103.
    [58] Q. Zhao, L. Kang, B. Li, J. Zhou, H. Tang, B. Z. Zhang, Tunable negativerefraction in nematic liquid crystals[J], Appl. Phys. Lett.2006,89(22):221918.
    [59] L. Kang, Q. Zhao, B. Li, J. Zhou, H. Zhu, Experimental verification of a tunableoptical negative refraction in nematic liquid crystals[J], Appl. Phys. Lett.2007,90(18):191831.
    [60] J. B. Pendry, Negative refraction makes a perfect lens[J], Phys. Rev. Lett.2000,85(18):3966-3969.
    [61] N. Fang, H. Lee, C. Sun, X. Zhang, Sub-Diffraction-Limited Optical Imagingwith a Silver Superlens[J], Science.2005,308:534-537.
    [62] A. Alu, A. Salandrino, Negative effective permeability and left-handed materialsat optical frequencies[J], Opt. Express.2006,14(4):1557-1567.
    [63] A. Ishikawa, T. Tanaka, S. Kawata, Negative magnetic permeability in the visiblelight region[J], Phys. Rev. Lett.2005,95(23).
    [64] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-fieldmicroscopy through a SiC superlens[J], Science.2006,313(5793):1595-1595.
    [65] Z. Jacob, L. V. Alekseyev, E. Narimanov, Optical Hyperlens Far-field imagingbeyond the diffraction limit[J], Opt. Express.2006,14(18):8247-8256.
    [66] A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy usingmetamaterial crystals: Theory and simulations[J], Phys. Rev. B.2006,74:075103.
    [67] Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlensmagnifying sub-diffraction-limited objects[J], Science.2007,315(5819):1686-1686.
    [68] Smolyaninov, II, Y. J. Hung, C. C. Davis, Magnifying superlens in the visiblefrequency range[J], Science.2007,315(5819):1699-1701.
    [69] J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields[J],Science.2006,312(5781):1780-1782.
    [70] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R.Smith, Metamaterial electromagnetic cloak at microwave frequencies[J], Science.2006,314(5801):977-980.
    [71] W. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, Optical cloaking withmetamaterials[J], Nat. Photon.2007,1(4):224-227.
    [72] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadbandground-plane cloak[J], Science.2009,323(5912):366-369.
    [73] J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made ofdielectrics[J], Nat. Mater.2009,8(7):568-571.
    [74] T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, Three-dimensionalinvisibility cloak at optical wavelengths[J], Science.2010,328(5976):337-339.
    [75] S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M.Shalaev, Loss-free and active optical negative-index metamaterials[J], Nature.2010,466(7307):735-738.
    [76] D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Physical Properties ofliquid crystals[M]. New York: Wiley,1999.
    [77] H. Luo, W. Hu, X. Yi, H. Liu, J. Zhu, Amphoteric refraction at the interfacebetween isotropic and anisotropic media[J], Opt. Commun.2005,254:353-360.
    [78] S. Gauza, J. Li, S. T. Wu, A. Spadlo, R. Dabrowski, Y. N. Tzeng, K. L. Cheng,High birefringence and high resistivity isothiocyanate-based nematic liquid crystalmixtures[J], Liq. Cryst.2005,32(8):1077-1085.
    [79] Y. M. Liao, H. L. Chen, C. S. Hsu, S. Gauza, S. T. Wu, Synthesis andmesomorphic properties of super high birefringence isothiocyanato bistolane liquidcrystals[J], Liq. Cryst.2007,34(4):507-517.
    [80] J. L. Ericksen, Conservation Laws for Liquid Crystals[J], T Soc Rheol.1961,5:23-34.
    [81] F. M. Leslie, Some Constitutive Equations for Liquid Crystals[J], Arch RationMech An.1968,28(4):265-283.
    [82] Q. Wang, S. L. He, F. H. Yu, N. R. Huang, Iterative finite-difference method forcalculating the distribution of a liquid-crystal director[J], Opt. Eng.2001,40(11):2552-2557.
    [83] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by smallparticles[M]. New York: Wiley-Interscience,1983.
    [84] J. D. Jackson, Classical Electrodynamics[M]. Third Edition, New York: JohnWiley&Sons,1999.
    [85] H. Hovel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Width of Cluster PlasmonResonances-Bulk Dielectric Functions and Chemical Interface Damping[J], Phys.Rev. B.1993,48(24):18178-18188.
    [86] M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, R. L.Whetten, Optical absorption spectra of nanocrystal gold molecules[J], J. Phys. Chem.B.1997,101(19):3706-3712.
    [87] B. Palpant, B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez,J. L. Vialle, M. Broyer, Optical properties of gold clusters in the size range2-4nm[J],Phys. Rev. B.1998,57(3):1963-1970.
    [88] A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, Optical properties ofmetallic films for vertical-cavity optoelectronic devices[J], Appl. Opt.1998,37(22):5271-5283.
    [89] J. Li, C. H. Wen, S. Gauza, R. Lu, S. T. Wu, Refractive indices of liquid crystalsfor display applications[J], J. Dis. Tech.2005,1(1):51-61.
    [90] H. Raether, Surface Plasmons: on Smooth and Rough Surfaces and on Gratings
    [M]. Berlin: Springer,1988.
    [91] S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, C. S. Hsu, Super highbirefringence isothiocyanato biphenyl-bistolane liquid crystals[J], Jpn. J. Appl.Phys.,Part2.2004,43(No.11A):7634-7638.
    [92] I. C. Khoo, Liquid Crystals[M]. Second Edition, New Jersey: John Wiley andSons,2007.
    [93] R. Wangberg, J. Elser, E. E. Narimanov, V. A. Podolskiy, Nonmagneticnanocomposites for optical and infrared negative-refractive-index media[J], J. Opt.Soc. Am. B.2006,23(3):498-505.
    [94] V. A. Podolskiy, A. K. Sarychev, V. M. Shalaev, Plasmon modes and negativerefraction in metal nanowire composites[J], Opt. Express.2003,11(7):735¨C745.
    [95] C. A. FOSS, J. G. L. Hornyak, J. A. Stockert, C. R. Martin, Template-SynthesizedNanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size andShape[J], J. Phys. Chem.1994,98:2963-2971.
    [96] H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura, Photoniccrystal using anodic porous alumina[J], Jpn. J. Appl. Phys.,Part2.1999,38:L1403-L1405.
    [97] H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-stepreplication of honeycomb structures of anodic alumina[J], Science.1995,268(5216):1466-1468.
    [98] M. Adachi, D. J. Lockwood, Self-Organized Nanoscale Materials[M]. New York:Springer,2006.
    [99] R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, S. Buddhudu,Synthesis and optical properties of silver nanowire arrays embedded in anodicalumina membrane[J], J. Phys. Chem. B.2004,108(43):16713-16716.
    [100] S. A. Ramakrishna, J. B. Pendry, Removal of absorption and increase inresolution in a near-field lens via optical gain[J], Phys. Rev. B.2003,67(20):201101.
    [101] Y. Sivan, S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev,Frequency-domain simulations of a negative-index material with embedded gain[J],Opt. Express.2009,17(26):24060-24074.
    [102] O. D. Lavrentovich, Liquid crystals, photonic crystals, metamaterials, andtransformation optics[J], Proc. Natl. Acad. Sci.2011,108(13):5143-5144.
    [103] A. M. F. Neto, S. R. A. Salinas, The physics of lyotropic liquid crystals[M].New York: Oxford Univerity Press,2005.
    [104] P. Alexandridis, U. Olsson, B. Lindman, A record nine different phases (fourcubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellarsolutions) in a ternary isothermal system of an amphiphilic block copolymer andselective solvents (water and oil)[J], Langmuir.1998,14(10):2627-2638.
    [105] P. Ekwall, L. Mandell, K. Fontell, Solubilization in Micelles and Mesophasesand Transition from Normal to Reversed Structures[J], Mol. Cryst. Liq. Cryst.1969,8:157-213.
    [106] L. Huang, H. Wang, Z. Wang, A. Mitra, K. N. Bozhilov, Y. S. Yan, Nanowirearrays electrodeposited from liquid crystalline phases[J], Adv. Mater.2002,14(1):61-64.
    [107] O. Hess, J. Pendry, S. Maier, R. Oulton, J. Hamm, K. Tsakmakidis, Activenanoplasmonic metamaterials[J], Nat. Mater.2012,11(7):573-584.
    [108] A. Yariv, Photonics: Optical Electronics in Modern Communications[M]. SixthEdition, New York: Oxford University Press,2007.
    [109] G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, Guiding, focusing, andsensing on the subwavelength scale using metallic wire arrays[J], Phys. Rev. Lett.2007,99(5):053903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700