工字钢—端板组焊结构焊接残余应力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着数值方法和计算机技术的发展,采用有限元模拟研究焊接残余应力的方法得以发展,目前对于大型复杂结构焊接残余应力的研究比较热门。工字钢-端板组焊结构是建筑工程中最常见的节点构造形式之一,在对这种结构进行焊接过程三维有限元分析时,不但实体模型构建和有限元网格划分非常困难,而且计算时间冗长,使这类结构的有限元模拟研究受到了很大程度的限制,到目前为止,有关该类结构焊接残余应力三维有限元分析的研究尚未见报道。
     本课题以中厚板工字钢-端板组焊结构为研究对象,采用ANSYS软件的参数化设计语言编制有限元计算程序,选择基于生死单元技术的移动体热源模型,对模拟计算过程中所用的参考温度、焊接电流、电弧电压、焊接速度、焊缝熔融断面尺寸等部分参数进行试验测定,建立了可行的焊接温度场和应力场的数值模拟方法,对组焊结构整体模型的焊接温度场和焊接残余应力场进行了三维有限元模拟,对模拟计算结果进行了分析。本研究利用红外测量仪对观察点的焊接热循环实测,对焊缝断面熔合线观察实测,并采用盲孔法对焊接残余应力进行测量,以验证模拟结果的可靠性。温度场模拟结果与实测结果吻合良好,焊接残余应力模拟结果与测量结果趋势基本一致,表明本文三维数值模拟分析方法可行,数据可靠,为大型复杂结构整体构件焊接温度场及应力场数值模拟研究与实际应用提供了技术支持和理论依据。焊接温度场和焊接残余应力的模拟分析结论,可以为制定焊接工艺、调控焊接残余应力、优化焊接顺序等提供参考。
     针对大型复杂焊接结构整体模拟困难的问题,本课题提出了三种解决大型复杂钢结构焊接残余应力模拟问题的简化计算新方法,即整体结构分解算法、对称性结构简化计算方法、远距离焊缝整体结构简化计算方法,并对分解模型的尺寸及边界约束条件对焊接残余应力模拟结果的影响进行了研究,为大型复杂钢结构焊接残余应力定量计算和分析提供了新颖的方法,并可大幅度提高计算效率。
     本文还研究了焊接顺序对整体结构焊接残余应力的影响。在本文焊接工艺和约束条件下,焊接顺序可以改变组焊结构焊接残余应力的分布,但对残余应力峰值的影响较小,可为合理制定焊接工艺提供理论依据。
     本文的总体研究成果,可以为数值模拟技术在大型复杂结构焊接过程模拟研究、结构及工艺设计、工程施工中的应用提供基础性参考,具有重要的理论意义和工程实际应用价值。
In recent years, with the development of numerical calculation methods and computer technology, numerical simulation for welding residual stress has been developed. But the study focusing on welding residual stress for large and complex structure is limited, due to the complexity of the welding process and restriction of computing capacity. The welding assembly of I-beam and end-plate is a widely used node form in steel structures. But for the three-dimensional (3D) finite element analysis on welding process for such complex and large welded structure, it is very difficult to build3D physical model and divide finite element mesh. In addition, the calculation is time-consuming. These reasons limited the numerical simulation study for this type of welded structure. Research work on3D finite element analysis of welding residual stress for I-beam and end-plate welding assembly has not been reported until now.
     In this paper, welding assembly of I-beam and end-plate with medium plate was taken as the research model, moving body heat source model was adopted based on the birth-death technique, welding temperature field and residual stress were calculated via parametric design language of ANSYS software, and the simulation results were analyzed. Parameters used in the simulation process such as reference temperature, welding current, arc voltage, welding speed and size of weld section were obtained by experimental method. Infrared thermometers were employed to measure temperatures of test points on the weld seams, the fusion line of the weld cross-section was observed and measured to verify the validity of simulation results. The hole-drilling method was adopted to determine residual stress for verification purpose. Simulation and experimental results of temperature field are in good agreement, simulation and measurement results of welding residual stress distribution trend are roughly the same, prove that in this paper the3D finite element analysis method is feasible and the data are reliable. The results of this study provide support for practical application and simulation research on welding temperature field and stress field of large and complex structure.
     According to the difficulty for numerical simulation on full-scale model of large and complex welded structure, three kinds of simplified algorithm were proposed, namely split method, simplified method for symmetrical structure and simplified method for structure with long-distance welds. The influence of the size and boundary constraint conditions of the split model on the simulation results of welding residual stress were studied. These simplified methods provide a novel approach for quantitative calculation and analysis of welding residual stress for large and complex steel structure, and can significantly improve computational efficiency.
     This paper also studied the effect of welding sequence on welding residual stress. The results show that the change of the welding sequence has a significant influence on the distribution pattern of the stress, but has little influence on the peak value of welding residual stress. This conclusion provides a theoretical basis for the reasonable welding process design.
     In summary, the study of this paper provides basic reference for research of finite elememt simulation applied in welding process design, structure optimization of large and complex welded structure. It has important theoretical significance and practical engineering value.
引文
[1][日]上田修三著,荆洪阳译.结构钢的焊接[M].北京:冶金工业出版社,2004.
    [2]中华人民共和国建设部.建筑钢结构焊接技术规程[J].JGJ81-2002,2003.
    [3]游敏,郑小玲.连接结构分析[M].武汉:华中科技大学出版社,2004.
    [4]五肇民,宗听聪,宣国梅等.钢结构设计原理[M].上海:同济大学出版社,1991.
    [5]欧阳可庆.钢结构[M].上海:同济大学出版社,1986.
    [6]H O.奥凯尔勃洛姆,雷原译.焊接变形与应力[M].北京:机械工业出版社,1958.
    [7]库兹米诺大,下承权译.船体结构的焊接变形[M].北京:国防工业出版社,1978.
    [8]Ueda Y,T, Yamakawa. Analysis of Thermal Elactic-Plastic Stress and Strain During Welding[J].Trans. Japan Ewlding Soc.,1971,2(2):90-100.
    [9]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [10]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [11]H. D. Hibbitt,Marcal, P. V.A numerical, thermo-mechanical model for the welding and subsequent loading of a fabricated structure[J].Computers and Structures,1973,3(5):1145-1174.
    [12]薛忠明,杨广臣,张彦华.焊接温度场与力学场模拟的研究进展[J].中国机械工程,2002,13(11):977-980.
    [13]顾强,陈绍蕃.厚板焊接工形截面柱残余应力的有限元分析[J].西安冶金建筑学院学报,1991,23(3):290-296.
    [14]李冬霞,贾春宝.T型接头多次补焊焊缝的应力分析[J].郑州纺织工学院学报,1999,10(4):53-56.
    [15]陈俊梅,霍立兴等.十字接头焊接残余应力的有限元计算[C].第三届计算机在焊接中的应用技术交流会论文集.2000:121-124.
    [16]S. Sarkani, Tritchkov, V.,Michaelov, G.An efficient approach for computing residual stresses in welded joints[J].Finite Elements in Analysis and Design,2000,35(3):247-268.
    [17]赵海燕,史清宇等.角接头的多层焊和焊缝金属熔敷的数值模拟[C].第十届全国焊接会议论文集.2001:2-528~522-531.
    [18]T. L. Teng, Fung, C. P., Chang, P. H.,Yang, W. C.Analysis of residual stresses and distortions in T-joint fillet welds[J].International Journal of Pressure Vessels and Piping.2001,78(8):523-538.
    [19]陈丽敏,陈思作,基于ANSYS软件的焊接工字型截面梁残余应力的有限元分析[J].钢结构,,2003,2(18):45-52.
    [20]薛小龙,桑芝富,朱加贵.多道间断焊T型接头的数值模拟[J].压力容器,2004,21(11):27-31.
    [21]薛小龙,王志亮,桑芝富,蒲淼.T形焊接接头的三维有限元模拟[J].中国机械工程,2005,16(9):811-814.
    [22]张利国,姬书得,方洪渊等.分段焊的焊接顺序对T形接头残余应力场的影响[J].焊接学报,2006,27(12):109-112.
    [23]韩海玲.张宇,吕野楠.T型接头焊接残余应力的有限元模拟[J].辽宁省交通高等专科学校学报,2006,8(4):32-34.
    [24]张利国,姚臣书,方洪渊等.焊接顺序对T形接头焊残余应力场的影响[J].机械工程学报,2007,43(2):234-238.
    125]徐琳,严仁军.T形焊接接头残余应力与变形的三维数值模拟[J].江苏船舶,2007,24(1):5-8.
    [26]杨文,石永久,王元清等.结构钢焊接残余应力三维有限元分析[J].吉林大学学报(工学版).2007,37(2):347.352.
    [27]张振先,徐耀玲,杜国君.基于有限元的三向角焊缝残余应力分析[J].热加工工艺,2007,36(7):71-74.
    [28]丁林,周永涛,李明喜.T型接头激光焊接的温度场和应力场的数值模拟[J].安徽工业大学学报(自然科学版),2007,24(4):384-388.
    [29]翟晓鹏,张系斌,刘泰凤.T型钢节点焊接残余应力及变形研究[J].山西建筑,2007,33(8):57-28.
    [30]熊震宇,董洁.谢雨田等.焊接过程的有限元模拟[J].南昌航空大学学报,2008,22(2):63.67.
    [31]张喜梅,张世联,胡铁牛.T型材角接焊的变形和残余应力分析[J].舰船科学技术,2008,30(3):72-77.
    [32]Kyong-Ho Chang.Finite element analysis of the residual stresses in T-joint fillet welds made of similar and dissimilar steels.[J]. Int J Adv Manuf Technol,2009,41:250-258.
    [33]N. Murugan,Narayanan, R.Finite element simulation of residual stresses and their measurement by contour method[J].Materials & Design,2009,30(6):2067-2071.
    [34]Z. Barsoum,Lundback, A.Simplified FE welding simulation of fillet welds-3D effects on the formation residual stresses[J].Engineering Failure Analysis,2009,16(7):2281-2289.
    [35]潘友光,钟善桐.国内外焊接残余应力的测试技术和理论分析的综述[J].钢结构,1994,9(25):145.152.
    [36]宋天民.焊接残余应力的产生与消除[M].北京.中国石化出版社,2005.
    [37]林丽华,陈立功,顾明元.残余应力测量技术现状及其发展动向[J].机械工程学报,1998,25(5):46-49.
    [38]徐虹,滕宏春,崔波.残余应力非破坏性测量技术的发展现状简介[J].理化检验-物理分册,2003,39(11):595-598.
    [39]陈会丽,钟毅,王华昆.残余应力测试方法的研究进展[J].云南冶金,2005,34(3):52-54.
    [40]Sun Yuan,Qingming, Wang.Reaearch status of stress measurement [J].Journal of Shanghai Dianji University,2006,9(4):6-10.
    [41]蒋刚,谭明华,王伟明等.残余应力测最方法的研究现状[J].机床与液压,2007,35(6):213-216.
    [42]王亚民,王彦龙.残余应力的超声波检测系统[J].仪表技术,2004,4:33-34.
    [43]孙光爱,陈波.中子衍射残余应力分析技术及其应用[J].核技术,2007,30(4):286-289.
    [44]熊学忠.建筑钢结构焊接残余应力磁测技术研究[J].广东建材,2007,8:27-29.
    [45]萧迅.表面宏观残余应力测试实验[J].实验室研究与探索,2000,1:45-48.
    [46]罗健豪.无损残余应力测量及其新技术[J].力学与实践,2003,25(4):7-11.
    [47]许承东,刘学文,李强.磁弹性方法无损测试钢轨残余应力分布的实验研究[J].北京交通大学学报,2004,28(4):76-78.
    [48]陆才善.测帚三维残余应力的多孔差方法[J].机械强度,1992,14(4):29-31.
    [49]张道钢,李金峰.用热评仨法测最残余应力[J].机械强度,1993,15(1):54-56.
    [50]李英子.应用屈服条件确定残余应力[J].哈尔滨理工大学学报,1999,4(1):97-100.
    [51]游敏,侯东芳,付建科.反向叠加应力法无损检测焊接残余应力[J].三峡大学学报(自然科学版),2002,2(24):143-145.
    [52]王秋成,柯映林,邢鸿燕.板类构件内部残余应力测试技术研究[J].浙江大学学报(工学版),2005,39(3):381-384.
    [53]张艳梅,王宝,张汉谦.一种新的焊接残余应力测量方法[J].太原理工大学学报,2001,32(5):529-532.
    [54]苏阳.残余应力无损电测法的研究[J].昆明理工大学学报,2000,25(6):79-84.
    [55]马杭,邓化凌.边界元辅助焊接残余应力计测的实验验证[J].甘肃工业关学学报,1998,24(3):4-7.
    [56]王卫锋,韩大建,罗文结.一种新的残余应力测试方法研究[J].华南理工大学学报(自然科学版),2000,28(1):91-95.
    [57]邵卓平,张伟林.振动时效工艺中残余应力测试方法的探讨[J].安徽建筑工业学院学 报,1998,6(3):58-61.
    [58]姜翠香,熊健民.余天庆.厚板焊接残余应力的测试[J].湖北工学院学报,2000,15(1):6-9.
    [59]戚寅寅,吴保桥,李忠义.热轧H型钢与焊接H型钢残余应力初步测定分析[J].马钢科研,2001,2:16.22.
    [60]Man Jin Park, Yang, Hee Nam,Jang, Dong Y.Residual stress measurement on welded specimen by neutron diffraction[J].Journal of Materials Processing Technology,2004,155-156:1171-1177.
    [61]S. V. Pearce, Linton, V. M.,Oliver, E. C.Residual stress in a thick section high strength T-butt weld[J].Materials Science and Engineering:A,2008,480:411-418.
    [62]江克斌,肖叶桃,郭永涛.T型焊接试件焊接残余应力分布的测定[J].焊接学报,2008,29(1):53-56.
    [63]李风臣,田石柱,张常明.屈服刚度法测试焊接残余应力的试验方法[J].沈阳建筑大学学报(自然科学版),2008,24(4):548-552.
    [64]田石柱,李风臣.梁板类构件焊接残余应力测试的试验方法研究[J].哈尔滨工程大学学报,2009,30(5):501-507.
    [65]M. A. Nawafleh, Hunaiti, Y. M.,Younes, R. M.A comparison of residual stresses in built-up steel beams using hole-drilling method[J].Journal of Mechanical Science and Technology,2009,23(5):1289-1293.
    [66]曾攀编著.有限元分析及应用[M].北京:清华大学出版社,2004.
    [67]田锡唐主编.焊接结构[M].北京:机械工业出版社,1997.
    [68][日]米谷茂.残余应力的产生和对策[M].北京:中国工业出版社,1983.
    [69]汪建华,魏良武.焊接变形和残余应力预测理论的发展及应用前景(1)[J].焊接,2001,9:5-7.
    [70]鹿安理,史清宇,赵海燕.厚板焊接过程温度场、应力场的三维有限元数值模拟[J].中国机械工程,2001,12(2):183-186.
    [71]汪建华.管板接头三维焊接变形的有限元模拟[J].焊接学报,1995,16(3):140-145.
    [72]汪建华等.压缩机焊接变形的三维数值模拟[J].机械工程学报,1996,32(1):85-91.
    [73]汪建华,戚新海,钟小敏.三维瞬态焊接温度场的有限元模拟[J].海交通大学学报,1996,30(3):120-125.
    [74]张建强,吴甦,赵海燕等.焊接应力与变形的数值模拟方法及应用[C].第十次全国焊接会议.第十次全国焊接会议论文集第二册,2001,2-496-492-503.
    [75]汪建华.焊接力学数值模拟的发展及其工程应用[C].第十次全国焊接会 议.2001.2-492~492-495.
    [76]鹿安理,史清宇,赵海燕等.焊接过程仿真领域的若干关键问题及其初步研究[J].中国机械工程,2002,11(1):201-205.
    [77]George Vinas, Dauda, Tamba,Al., Nicola Moyes Et.Computational Weld Mechanics, Constraint and Weld Fracture [M]. ASME,2002.
    [78]罗金华,工晓熙,胡伦骥.基于ANSYS的中厚板焊接有限元三维数值模拟[J].华中科技大学学报(自然科学版),2002,30(11):83-86.
    [79]吴言高,李午中,邹宏军等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92.
    [80]林燕,董俊慧,刘军.焊接残余应力数值模拟研究技术的现状与发展[J].焊接技术,2003,32(6):5-7.
    [81]周建新,李栋才,徐宏伟.焊接残余应力数值模拟的研究与发民[J].金属成形工艺,2003,12(6):62-64.
    [82]张建强,赵海燕,吴甦等.焊接过程三维应力变形数值模拟研究进展[J].焊接学报,2003,24(5):91-96.
    [83]董航海,刘建华,杜汉斌等.焊接应力应变与变形的数值研究进展[J].电焊机,2003,33(09):15-17.
    [84]王强,李冬林.基于ansys平台的堆焊热应力的动态模拟[J].武汉理工大学学报(交通科学与工程版),2004,28(6):866-869.
    [85]谭险峰,张华.焊接温度场和应力场的热弹塑性有限元分析[J].塑性工程学报,2004,11(5):71-74.
    [86]万正权,孙文婷.焊接残余应力的简化数值模拟技术[J].现代焊接,2006,5(41):16-18.
    [87]L.-E. Lindgren.Numerical modeling of welding[J].Comput. Methods Appl. Mech. Engrg,2006,195:6710-6736.
    [88]王继锋,周洪彬,郭素娟.组合热源电弧焊残余应力数值模拟[J].工业建筑,2007,37(S1):1200-1204.
    [89]胡敏英,吴志生.基于单元生死焊接温度场应力场模拟研究[J].机械工程与自动化,2007,6:58-60.
    [90]G. Jang, Chang, K.,Lee, C.Characteristics of the residual stress distribution in welded tubular T-joints[J].Journal of Mechanical Science and Technology,2007,21 (10):1714-1719.
    [91]Dean Deng, Liang, Wei,Murakawa, Hidekazu.Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J].Journal of Materials Processing Technology,2007,183(2-3):219-225.
    [92]方洪渊,张学秋,杨建国等.焊接应力场与应变场的计算与讨论[J].焊接学报,2008,29(3):129-132.
    [93]鲁丽君,白世武,丁红生.焊接接头有限元模拟的研究进展[J].金属世界,2008,2:35-38.
    [94]Dean Deng.FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J].Materials & Design,2009,30(2):359-366.
    [95]H. Runnemalm,Hyun, S.Three-dimensional welding analysis using an adaptive mesh scheme[J].Computer Methods in Applied Mechanics and Engineering,2000,189(2):515-523.
    [96]Shi Qingyu, Anli, Lu, Haiyan, Zhao,Aiping, Wu.Development and application of the adaptive mesh technique in the three-dimensional numerical simulation of the welding process[J].Journal of Materials Processing Technology,2002,121 (2-3):167-172.
    [97]J. Montalvo-Urquizo, Akbay, Z.,Schmidt, A.Adaptive finite element models applied to the laser welding problem[J].Computational Materials Science,2009,46:245-254.
    [98]薛勇,张建勋.基于ansys软件的焊接变形工程预测[J].焊接技术,2001,30(S1):25-26.
    [99]盖登宇、李鸿,马旭梁.材料加工过程的建模与数值分析[M].西安:西北工业大学出版社,2009.
    [100]黎志鹏.大型结构焊接变形数值模拟的研究与应用[D].清华大学,2001.
    [101]俞鸿斌,倪昀.基于神经网络焊接数值模拟研究及工艺参数优化[J].成组技术与生产现代化,2008,25(1):50-55.
    [102]张艳飞,董俊慧.模糊神经网络在焊接中的应用[J].现代焊接,2006,46(10):25-28.
    [103]曾志,王立君.数值模拟技术在焊接中的应用[J].航空制造造技术,2008,8:44-47.
    [104]滞际銮.展望21世纪焊接科研[J]3.中国机械工程,2000,11(1-2):21-25.
    [105]D.拉达伊著,熊第京等译.焊接热效应 温度场 残余应力 变形[M].北京:机械工业出版社,1997.
    [106]陈绍蕃.钢结构设计原理[M].北京:科技出版社,2000.
    [107]田锡唐主编.焊接结构[M].北京:机械工业出版社,1997.
    [108]方洪渊主编.焊接结构学[M].北京:机械工业出版社,2008.
    [109]潘孙銮.现代弧焊控制[M].北京:机械工业出版社,2000.
    [110]F.P因克罗普拉,D.P.德威特著:陆大有等译.传热基础[M].北京:宇航出版社,1987.
    [111]武传松.焊接热过程教值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [112]汪建华,陆皓.焊接残余应力形成机制与消除原理若干问题的讨论[J].焊接学 报,2002,23(3):75-79.
    [113]唐慕尧.焊接温度场计算(一)一介稳态温度计算[J].西安交通大学科学技术报告,1981.
    [114]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,4(3):139-148.
    [115]张晓燕.焊接温度场的二维数值模拟[C].第六届全国材料科学与图像科技学术会议论文集.2007.
    [116]陈勇,余天庆,熊健民.T型焊接接头焊接温度场的确定[J].湖北工学院学报,1999,1214(4):27-30.
    [117]Jeong S.K.,H.S., Cho.An analytical solution to predict the transient temperature distribution in fillet arc welds[J].Welding Journal,1997,76(6):223s-232s.
    [118]韩海玲,赵波,李茂福.T型接头焊接温度场的有限元模拟[J].辽宁省交通高等专科学校学报,2004,6(4):41-43.
    [119]薛小龙,王志亮,桑芝富等.薄板T型接头焊接温度场的研究[J].热加工工艺,2006,35(3):46-48.
    [120]C.-H. Kim, Zhang, W.,Debroy, T.Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding[J].Journal of Applied Physics,2003,94(4):2667-2679.
    [121]W. Zhang, Kim, C.-H.,Debroy, T. Heat and fluid flow in complex joints during gas metal arc welding—Part Ⅰ:Numerical model of fillet welding[J].Journal of Applied Physics,2004,95(9):5210-5219.
    [122]W. Zhang, Kim, C.-H.,Debroy, T.Heat and fluid flow in complex joints during gas metal arc welding—Part Ⅱ:Application to fillet welding of mild steel[J]. Journal of Applied Physics,2004,95(9):5220-5229.
    [123]A. Kumar,Debroy, T.Guaranteed fillet weld geometry from heat transfer model and multivariable optimization[J].International Journal of Heat and Mass Transfer,2004,47(26):5793-5806.
    [124]A. Kumar,Debroy, T.Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions[J].Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2007,38A(3):506-519.
    [125]Zhi Zeng, Wang, Lijun, Wang, Yue,Zhang, Han.Numerical and experimental investigation on temperature distribution of the discontinuous welding[J].Computational Materials Science,2009,44(4):1153-1162.
    [126]毕艳霞.T型接头焊接温度场与应力场的数值模拟[D].浙江大学,2007.
    [127]熊震宇,董洁.T形接头焊接温度场的三维数值模拟[J].焊接技术,2008,37(6):21-23.
    [128]N. Siva Shanmugam, Buvanashekaran, G.,Sankaranarayanasamy, K.A transient finite element simulation of the temperature and bead profiles of T-jiont laser welds[J].Materials and Design,2010,31:4528-4542.
    [129]L. Fratini, Buffa, G.,Shivpuri, R.Influence of material characteristics on plastomechanics of the FSW process for T-joints[J].Materials & Design,2009,30(7):2435-2445.
    [130]肖冯,米彩盈.T型角接头焊接热源模型研究[J].电焊机,2010,40(6):41-45.
    [131]D. Gery, Long, H.,Maropoulos, P.Effects of welding speed, energy input and head source distribution on temperature variations in butt joint welding[J].Journal of materials processing technology,2005,167:393-401.
    [132]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析[J].机械工程学报,1996,32(2):34-39.
    [133]徐琳.角焊缝角变形数值预测方法研究[D].武汉理工大学,2007.
    [134]李淑华,王申.焊接技师技术问答[M].北京:国防工业出版社,2005.
    [135]史清宇.焊接过程三维数值模拟的研究及应用[D].清华大学,2000.
    [136]J. Goldak, Bibby, M.,Moore, J.Computer modeling of heat flow in welds[J].Metallurgical Transactions B,1986,17B(9):587-600.
    [137]郑振太.大型厚壁结构焊接过程的数值模拟研究与应用[D].天津大学,2007.
    [138]李凌.中厚板焊接温度场及应力场数值计算[D].天津大学,2006.
    [139]王晓熙.中厚板焊接过程温度场和应力应变场的三维数值模拟[D].华中科技大学,2002.
    [140]李冬林.焊接应力和变形的数值模拟研究[D].武汉理工大学,2003.
    [141]梁晓燕.中厚板多道焊焊接过程中温度场和应力场的三维数值模拟[D].华中科技大学,2004.
    [142]赵锐.焊接残余应力的数值模拟及控制消除研究[D].大连理工大学,2006.
    [143]谢元峰.基于ANSYS的焊接温度场和应力的数值模拟研究[D].武汉理工大学,2006.
    [144]王传标.熔焊热过程的数值模拟与综合分析[D].合肥工业大学,2008.
    [145]冯艳辉.基于ANSYS的焊接梁残余应力分析[D].西安建筑科技大学,2008.
    [146]机械工程材料性能手册[M].北京:机械工业出版社,1995.
    [147]张家荣,赵廷元,工程常用物质的热物理性质手册[M].北京:新时代出版社,1987.
    [148]H.H雷卡林著,徐碧宇,庄鸿寿译.焊接热过程计算[M].北京:中国工业出版社,1958.
    [149]黎江.三维焊接热应力和残余应力演化虚拟分析技术研究[D].广西大学,2002.
    [150]华一晶,T型接头焊接残余应力数值模拟及强度分析[D].大连理工大学,2009.
    [151]W. S. Chang,Na, S. J.A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining[J].Journal of Materials Processing Technology,2002,120(1-3):208-214.
    [152]盖登宇,褚元召,李庆芬,李莉.组合热源模型在焊接数值模拟中的应用[J].焊接学报,2009,30(5):61-64.
    [153]Kyong-Ho Chang,Lee, Chin-Hyung.Finite element analysis of the residual stresses in T-joint fillet welds made of similar and dissimilar steels[J].International Journal of Advanced Manufacturing Technology,2009,41:250-258.
    [154]肖顺湖.薄板焊接过程数值模拟与试验研究[D].广西大学,2005.
    [155]迟鸣声.镁合金复合热源焊接工艺与数值模拟研究[D].大连理工大学,2005.
    [156]曾强,舒芳誉,李清华.红外测温仪工作原理及误差分析[J].传感器世界,2007,32-35.
    [157]张弓.红外测温基本原理及注意问题[J].计量天地,2008,9-10.
    [158]晏敏,颜永红,曾云等.非接触式红外测温原理及误差分析[J].测量与设备,2005,1:23-25.
    [159]D. Farson, Richardson, R. W.,Li, X. C.Infrared measurement of base metal temperature in gas tungsten arc welding[J]. Welding Journal,1998,77(9):396-401.
    [160]N. S. Boulton,Martin, E. Lance.Residual Stresses in Arc-welded Plates[J].Proc. Inst. Mech. Engrs.,1936,133:295-347.
    [161]崔晓芳.箱型结构焊接变形预测、控制及应用[D].大连交通大学,2005.
    [162]马继,陆皓,汪建华.预测焊接变形几种方法的比较[J].造船技术,2002,245(1):27-29.
    [163]周筑宝,卢楚芬,郑学军.对经典塑性力学增量理论的再认识[J].长沙铁道学院学报,1997,15(1):89-94.
    [164]美国ansys公司ANSYS非线性分析指南[M].北京:美国ANSYS公司北京办事处,2000.
    [165]孔亮,花丽坤,郑璐石.广义塑性力学的硬化理论[J].宁夏大学学报(自然科学版),2002,23(1):30-33.
    [166]汪建华,戚新海,钟小敏等.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,82(6):59-65.
    [167]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用[J].焊接学报,2002,23(6):36-40.
    [168]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000.
    [169]唐慕尧.焊接测试技术[M].北京:机械工业出版社,1988.
    [170]Jun Sun.Modeling and finite element analysis of welding distortions and residual stresses in large and complex structures[D], The Pennsylvania State University,2005.
    [171]赵海燕,鹿安理,史清宇,吴苏.焊接结构CA E中数值模拟技术的实现[J].中国机械工程,2000,11(7):732-734.
    [172]L. E. Lindgren.Numerical modelling of welding[J].Computer Methods in Applied Mechanics and Engineering,2006,195(48-49):6710-6736.
    [173]张建勋,王小迎.李永兴,王昆Stellite31合金静叶片焊接残余应力的计算[J].焊接学报,1995,9(3):162-166.
    [174]庥永林,陈重毅,王强,韩强,赵勇桃.基于ANSYS分布式算法进行焊接模拟计算的实验研究[J].内蒙古科技大学学报,2009,28(1):65-67.
    [175]李敬东.选择合理的焊接顺序是制定焊接顺序的关键[J].内蒙古水利,2002.4:116.
    [176]J. Guirao, Rodriguez, E., Bayon, A., Bouyer, F., Pistono, J.,Jones, L.Determination through the distortions analysis of the best welding sequence in longitudinal welds VATS electron beam welding FE simulation[J].Fusion Engineering and Design,2010,85(5):766-779.
    [177]Mahsa Seyyedian Choobi, Haghpanahi, Mohammad,Sedighi, Mohammad.Effect of welding sequence and direction on angular distortions in butt-welded plates[J].Journal of Strain Analysis for Engineering Design,2012,47(1):46-54.
    [178]Mohammad Najafi, Mehrali, Hossein,Sattari-Far, Iradj.Decreasing welding distortions in penetration nozzles by applying proper welding sequences[J].Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2012,226(B9):1519-1526.
    [179]I. Sattari-Far,Javadi, Y.Influence of welding sequence on welding distortions in pipes[J].International Journal of Pressure Vessels and Piping,2008,85:265-274.
    [180]A. Fallahi, Jafarpur, K.,Nami, M.R.Analysis of welding condition sbased on induced thermal irreversibilities in welded structures:Cases of welding sequences and preheating treatment[J].Scientialranica,2011,18(3):398-406.
    [181]Wei Jiang,Yahiaoui, Kadda.Effect of welding sequence on residual stress distribution in a multipass welded piping branch junction[J].International Journal of Pressure Vessels and Piping,2012,95:39-47.
    [182]Tso-Liang Teng, Chang, Peng-Hsiang,Tseng, Wen-Cheng.Effect of welding sequences on residual stresses[J].Computers and Structures,2003,81:273-286.
    [183]A. R. Kohandehghan,Serajzadeh, S.Experimental Investigation into the Effects of Weld Sequence and Fixture on Residual Stresses in Arc Welding Process[J].Journal of Materials Engineering and Performance,2012,21 (6):892-899.
    [184]A. R. Kohandehghan,Serajzadeh, S.Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate[J].International Journal of Materials Research,2012,103(3):371-377.
    [185]S. Feli, Aaleagha, M. E. Aalami, Foroutan, M.,Farahani, E. Borzabadi.Finite Element Simulation of Welding Sequences Effect on Residual Stresses in Multipass Butt-Welded Stainless Steel Pipes[J].Journal of Pressure Vessel Technology-Transactions of the Asme,2012,134(1):241-252.
    [186]董志波,下敏,魏艳红.TA15钛合金飞机壁板TIG焊接顺序优化的研究.[C].第十二界中国体视学与图像分析学术年会论文集.2008:327-330.
    [187]戴晴华,季鹏.殷晨波等.焊接顺序对中厚板对接焊残余应力的影响[J].机械设计与制造,2011,7:64-66.
    [188]Kazuo Ogawa, Deng, Dean, Kiyoshima, Shoichi, Yanagida, Nobuyoshi,Saito, Koichi.Investigations on welding residual stresses in penetration nozzles by means of 3D thermal elastic plastic FEM and experiment[J].Computational Materials Science,2009,45:1031-1042.
    [189]姬书得,方洪渊,刘雪松等.焊接顺序对混流式水轮机转轮焊接应力的影响[J].机械工程学报,2005,41(8):224-227.
    [190]Liam Gannon, Liu, Yi, Pegg, Neil,Smith, Malcolm.Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates[J].Marine Structures,2010,23(3):385-404.
    [191]张利国,姬书得,方洪渊等.焊接顺序对T形接头焊接残余应力场的影响[J].机械工程学报,2007,43(2):232-238.
    [192]黎超文,下勇,韩涛.焊接顺序对T形接头残余应力和变形的影响[J].焊接学报,2011,32(10):37-40.